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Abstract. We present a fast algorithm for the following classic scheduling prob-
lem: Determine a maximum-weight schedule for a collection of unit jobs, each
of which has an associated release time, deadline, and weight. All previous algo-
rithms for this problem have at least quadratic worst-case complexity. This job
scheduling problem can also be viewed as a special case of weighted bipartite
matching: each job represents a vertex on the left side of the bipartite graph;
each time slot represents a vertex on the right side; each job is connected by
an edge to all time slots between its release time and deadline; all of the edges
adjacent to a given job have weight equal to the weight of the job. Letting U
denote the set of jobs and V denote the set of time slots, our algorithm runs in
O(|U | + k log2 k) time, where k ≤ min{|U |, |V |} denotes the cardinality of a
maximum-cardinality matching. Thus our algorithm runs in nearly linear time, a
dramatic improvement over the previous quadratic bounds.

1 Introduction

We address the classic scheduling problem in which the input is a collection of jobs,
each with an associated release time, deadline, and weight, and our objective is to sched-
ule a maximum-weight subset of the jobs. For the reader who is familiar with Graham’s
notation for scheduling problems, this problem is denoted (1 | rj ; pj = 1 |

∑
wjUj),

where Uj is a 0-1 variable indicating whether job j is successfully scheduled. A num-
ber of special cases and variants of this scheduling problem have been studied for many
years; see the scheduling survey of Graham et al. [8] for additional pointers to the
early literature in this area. Various well-known algorithms textbooks include a detailed
treatment of the special case in which all jobs are released at time zero, for which it is
relatively straightforward to design a nearly linear time algorithm [1, pp. 207–214], [3,
pp. 399–401], [9, pp. 161–168].

The unweighted version of the above scheduling problem is equivalent to a special
case of bipartite matching called “convex” bipartite matching. Since we find it conve-
nient to present our results in the matching framework, we now develop the necessary
definitions. A subset A of a totally ordered set (S,≤) is said to be convex if the follow-
ing condition holds for all x, y, and z in S: If x and y belong to A and x ≤ z ≤ y, then
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z belongs to A. A convex bipartite graph is a bipartite graph together with a bipartition
(U, V ) of the vertices, and a total order ≤ on the vertices of V , such that the neighbors
of any vertex u in U form a convex subset of V .

Glover presented a simple greedy algorithm [7] for maximum-cardinality convex
bipartite matching that admits anO(|V |+|U | log |U |)-time implementation using an el-
ementary priority queue data structure. Later, van Emde Boas used a fast priority queue
to obtain an O(|V |+ |U | log log |U |)-time implementation of Glover’s algorithm [15].
Lipski and Preparata [11] used Tarjan’s fast union-find data structure [14] to devise a
different algorithm running in timeO(|U |+ |V |α(|V |)), where α is a functional inverse
of Ackermann’s algorithm. Gabow and Tarjan [5] show that this application of union-
find falls into a category admitting a linear-time implementation, thereby reducing the
Lipski-Preparata time bound to O(|U | + |V |). Another line of work focused on elimi-
nating the dependence of the running time on |V | [6, 12]. This research culminated in
the O(|U |)-time algorithm of Steiner and Yeomans [13].

The scheduling problem considered in this paper corresponds to the weighted vari-
ant of convex bipartite matching in which each vertex of U has an associated weight,
and the weight of any edge is given by that of its endpoint in U . It is worth remarking
that other weighted variants of the convex bipartite matching problem can be contem-
plated. One possibility is to allow each edge to have an arbitrary weight, but since
the complete bipartite graph is convex, this weighted variant is equivalent to general
weighted bipartite matching. A weighted variant of convex bipartite matching that is
incomparable to the one considered in the present paper is obtained by associating a
weight with each vertex in V , and defining the weight of each edge as that of its end-
point in V . For this “right-weighted” (i.e., V -weighted) variant, Katriel [10] has recently
obtained an O(|E|+ |V | log |U |)-time algorithm to find a maximum-weight matching.
Since the input size is Θ(|U | + |V |) words, and |E| could be as large as Θ(|U | · |V |),
this algorithm has quadratic complexity. Another weighted variant of convex bipartite
matching — this time more general than the one considered in the present paper — is
obtained by associating a weight with each vertex in U ∪ V , and defining the weight of
each edge as the sum of the weights of its two endpoints. If the input graph admits a
U -perfect matching, Katriel’sO(|E|+ |V | log |U |)-time algorithm can be used to find a
maximum-weight |U |-perfect matching. Since many bipartite graphs — including, for
example, all bipartite graphs such that |U | > |V |— do not admit a U -perfect matching,
Katriel’s algorithm addresses only a special case of this weighted variant.

Throughout the remainder of this paper, we focus on the “left-weighted” (i.e., U -
weighted) variant of convex bipartite matching that corresponds to scheduling weighted
unit jobs with release times and deadlines. Any left-weighted (or right-weighted) bipar-
tite matching instance is well-known to form a matroid, where the independent sets of
the matroid are those subsets U ′ of vertices on the left such that there exists a matching
M that matches every vertex in U ′. Thus, left-weighted convex bipartite matching can
be addressed using the framework of the matroid greedy algorithm. Indeed, all efficient
algorithms for left-weighted convex bipartite matching that have been proposed to date,
including the algorithm presented in this paper, exploit this framework. In the next para-
graph, we describe a simple O(|U | log |U |+ |U | · |V |)-time algorithm of this sort. This
algorithm, which we refer to in this paper as the greedy algorithm, produces a matching



that we call the greedy matching. The fast matching algorithm presented in this paper,
which we refer to as the hierarchically greedy algorithm, maintains a hierarchical rep-
resentation of a collection of matchings that includes the greedy matching. We establish
the correctness of the hierarchically greedy algorithm by relating its behavior to that of
the greedy algorithm.

Here is a description of the greedy algorithm. First, we sort the vertices in U in
nonincreasing order of weight, initialize an independent set Z to the empty set, and
initialize a matching M to the empty matching. Then, we iteratively attempt to grow
the independent set Z by considering each successive vertex u in U (according to the
sorted order previously determined) and adding it to Z if the resulting set remains inde-
pendent. In order to simplify the task of determining whether u can be added to Z, we
maintain the invariant that M is the greedy matching of Z that is produced by Glover’s
unweighted convex bipartite matching algorithm. Glover’s algorithm attempts to match
the vertices v in |V |, from lowest to highest, using a natural “earliest deadline” rule that
the vertex in Z matched to v is the as yet unmatched vertex adjacent to v (if any) that
has the smallest number of remaining opportunities to be matched. (If a tie occurs, it is
broken according to a fixed ordering of the vertices in U .) Using a naive representation
of the greedy matching M in the form of an array of length V , in O(|V |) time we can
determine whether Glover’s algorithm successfully matches all vertices in I ∪{u}, and
if so, update Z and M appropriately. Upon termination of the greedy algorithm, the
greedy matching M is a maximum-weight matching.

Lipski and Preparata [11] use the matroid greedy framework to develop a left-
weighted convex bipartite matching algorithm which, while somewhat different from
the greedy algorithm described above, has a similar time complexity of O(|U |2 + |U | ·
|V |). Dekel and Sahni [4] present a parallel algorithm for left-weighted convex bipartite
matching that uses O(|U |2) processors and O(log2 |U |) time, and which is based on a
sequential algorithm with O(|U |2) complexity.

In this paper, we introduce a data structure that maintains a hierarchical representa-
tion of a collection of matchings that includes the greedy matching. This data structure
allows us to implement each iteration of the matroid greedy algorithm in amortized
polylogarithmic time. As a result, we obtain a nearly linear time algorithm for left-
weighted convex bipartite matching. The remainder of this paper is organized as fol-
lows. Section 2 contains some preliminary definitions. Section 3 presents an efficient
dynamic data structure for a special class of convex bipartite graphs. Section 4 presents
our “hierarchically greedy” matching algorithm. Section 5 discusses the time complex-
ity of this algorithm. Section 6 offers some concluding remarks.

2 Preliminaries

In this section, we specify the formal representation of a convex bipartite graph, or
CBG, that will be used throughout the remainder of the paper. We also define certain
special kinds of CBGs.

Instead of working with “jobs” and “time slots”, we find it convenient to intro-
duce more abstract types “ping” and “pong”, which we define as follows. A pong is
an element of some totally ordered universe, such as the integers. A ping u is charac-



terized by four attributes: pongs u.first and u.last, a positive weight u.weight, and a
unique integer ID u.id. We define three total orders over the set of all pings: under the
first-ID total order, ping u is at most u′ if (u.first, u.id) is lexicographically at most
(u′.first, u′.id); under the last-ID total order, ping u is at most u′ if (u.last, u.id) is
lexicographically at most (u′.last, u′.id); under the weight-ID total order, ping u is at
most u′ if (u.weight, u.id) is lexicographically at most (u′.weight, u′.id). We primarily
make use of the last-ID total order. For this reason, we adopt the convention that all ping
comparisons are resolved according to the last-ID total order unless stated otherwise.

A pair (U, V ), where U is a set of pings and V is a set of pongs, represents a CBG
as follows: (1) we identify each ping in U with a vertex on the LHS; (2) we identify
each pong in V with a vertex on the RHS; (3) there is an edge from ping u to pong v if
and only if u.first ≤ v ≤ u.last.

A CBG (U, V ) is proper if {u.first, u.last} ⊆ V for all pings u in U . A CBG
(U, V ) is simple if |U | ≥ |V | and v ≤ u.last for all pings u in U and all pongs v in V .
A CBG (U, V ) is nice if |U | ≤ |V |+ 1 and (U, V ) is simple and admits a matching of
cardinality |V |. A nice CBG (U, V ) with |U | = |V | is said to be in-kilter; otherwise, it
is out-of-kilter.

3 A Dynamic Data Structure for Nice CBGs

In this section, we develop a dynamic data structure for maintaining a nice CBG subject
to a collection of six operations. Three of these operations are applicable when the nice
CBG is in an in-kilter state; the other three are applicable in out-of-kilter states.

The three in-kilter operations are as follows. The first is pingAdd(u), where ping
u does not belong to U and (U ∪ {u}, V ) is simple; this operation adds the ping u to
U . The second is pongDrop(v), where pong v belongs to V ; this operation removes the
pong v from V . The third is print(), which prints out a perfect matching of (U, V ).

The three out-of-kilter operations are as follows. The first is pongAdd(v), where
pong v does not belong to V and (U, V ∪{v}) is simple and admits a perfect matching;
this operation adds the pong v to V . The second is pingDrop(u), where ping u belongs
to U and (U \ {u}, V ) admits a perfect matching; this operation removes the ping u
from U . The third is pingDrop(), which takes no arguments; this operation removes
from U the maximum ping u in U such that (U \ {u}, V ) admits a perfect matching.

Notice that the precondition of each of the above operations ensures that the CBG
remains nice. Our goal is to implement the print() operation in linear time, and each of
the other five operations in logarithmic time. The only significant challenge is to imple-
ment the pingDrop() operation efficiently. To do so, we first find it useful to introduce
a few definitions and lemmas related to simple CBGs.

For any simple CBG (U, V ), we define the following auxiliary functions: (1) let
A(U, V ) denote {u.first | u ∈ U} ∪ V ; (2) for any pong v in A(U, V ), let f(U, V, v)
denote the number of pings u in U such that v ≤ u.first minus the number of pongs v′ in
V such that v ≤ v′; (3) let g(U, V ) denote the maximum, over all pongs v in A(U, V ),
of f(U, V, v) (if A(U, V ) is empty, then g(U, V ) is zero). The proof of the following
lemma is straightforward and is omitted.



Lemma 1. For any simple CBG (U, V ), the size of a maximum cardinality matching is
|U | − g(U, V ).

For any simple CBG (U, V ) such that A(U, V ) is nonempty, let us define h(U, V )
as the maximum pong in A(U, V ) such that g(U, V ) = f(U, V, v). The proof of the
next lemma follows easily from Lemma 1.

Lemma 2. For any simple CBG (U, V ) such that |U | > |V |, and any ping u in U , the
size of a maximum cardinality matching of (U, V ) is equal to that of (U \{u}, V ) if and
only if h(U, V ) ≤ u.first.

Lemma 2 leads to the following useful characterization of the set of pings over
which the maximization occurs in the definition of pingDrop().

Lemma 3. For any out-of-kilter nice CBG (U, V ), and any ping u in U , (U \ {u}, V )
admits a perfect matching if and only if h(U, V ) ≤ u.first.

Lemma 3 suggests a two-phase approach for implementing pingDrop(): (1) com-
pute the pong h(U, V ); (2) compute the maximum ping u in U such that h(U, V ) ≤
u.first.

We now discuss how to implement the first phase in logarithmic time. By Lemma 1,
for any out-of-kilter nice CBG (U, V ), we have g(U, V ) = 1, and hence h(U, V ) is the
maximum pong in A(U, V ) such that f(U, V, v) = 1. To implement the first phase, we
maintain an augmented red-black tree with a node for each pong v in A(U, V ); the key
of each node is the associated pong. We augment a node x by maintaining the following
three auxiliary fields: an integer “count” field equal to |{u ∈ U | u.first = v}| − ∆,
where v is the key of node x and ∆ is equal to 1 if v belongs to V , and 0 otherwise; an
integer “sum” field that is equal to the sum of all count fields in the nodes of the subtree
rooted at x; an integer “maximum suffix sum” field that is equal to the maximum,
over all suffixes (including the empty suffix) of the key-ordered sequence of nodes in
the subtree rooted at x, of the sum of the counts in the suffix. It is straightforward to
argue that all of these fields can be maintained in logarithmic time whenever a ping
is added to or removed from U , and whenever a pong is added to or removed from V .
Furthermore, given the augmented red-black tree structure that we have just described, it
is straightforward to determine the maximum pong inA(U, V ) such that f(U, V, v) = 1
in logarithmic time, and hence to implement the first phase in logarithmic time.

To implement the second phase, we maintain a second augmented red-black tree
with a node for each ping in U . The nodes are sorted according to the first-ID ordering,
that is, the key associated with the node for a ping u is (u.first, u.id). We augment each
red-black tree node with a “max” field equal to the maximum ping (with respect to
the last-ID ordering) in the nodes of the corresponding subtree. It is straightforward to
maintain the max fields in logarithmic time whenever a ping is added to or removed
from U . Furthermore, given this tree, and the pong threshold h(U, V ) determined in the
first phase, it is straightforward to implement the second phase in logarithmic time.

As remarked in the preceding paragraphs, it is straightforward to maintain our two
augmented red-black trees in logarithmic time whenever the nice CBG is modified via
an operation that adds or drops a ping or pong. It remains to describe how to implement



the print() operation in linear time. One simple approach is to maintain a third red-black
tree containing the pongs of V . A perfect matching of an in-kilter nice CBG can then
be obtained by matching each ping in the second augmented red-black tree described
above (the one sorted by the first-ID ordering) to the pong of equal rank in the third tree.
In fact, it is not necessary to maintain such a third red-black tree, because we can use
inorder traversals of the first and second red-black trees to produce a sorted list of the
pongs in V in linear time. Thus our data structure for maintaining a dynamic nice CBG
consists of just two augmented red-black trees. (Remark: The implementation of the
print() operation described above does not, in general, produce the greedy matching.
If we wish to produce the greedy matching, we can do so in O(|U | log |U |) time via
a suitable linear sequence of calls to the pongDrop(v) and pingDrop() operations. To
avoid modifying the data structure, we can first create a copy in linear time.)

4 A Hierarchically Greedy Algorithm

In this section we present a hierarchically greedy algorithm for computing a maximum-
weight matching of a given CBG (U, V ). It is convenient to assume that (U, V ) is
proper. In the context of establishing the upper bound of Theorem 1, our assumption
that (U, V ) is proper is made without loss of generality, since we can easily preprocess
(U, V ) inO(|U | log |U |+|V | log |V |) time to obtain an equivalent CBG — with respect
to the maximum-weight matchings — that is proper. The preprocessing phase removes
all pings with degree zero, and for each of the remaining pings u, assigns u.first to the
minimum pong v in V such that u.first ≤ v, and assigns u.last to the maximum pong v
in V such that v ≤ u.last.

Like the greedy algorithm described in Section 1, our hierarchically greedy algo-
rithm is based on the framework of the matroid greedy algorithm. As such, the algorithm
iterates through the pings in decreasing order with respect to the weight-ID ordering.
While the greedy algorithm maintains a specific matching — the greedy matching —
at each iteration, our hierarchically greedy algorithm maintains a representation of a
collection of matchings that includes the greedy matching. We say that an iteration of
the greedy algorithm is successful if it adds a ping to the greedy matching; otherwise,
it is unsuccessful. It turns out that, at any given iteration, all of the matchings in the
collection maintained by the hierarchically greedy algorithm induce the same set of
matched pings and pongs. It follows that an iteration of the hierarchically greedy algo-
rithm successfully inserts the current ping into the set of matched pings if and only if
the corresponding iteration of the greedy algorithm is successful.

It remains to describe how the hierarchically greedy algorithm performs the inser-
tion attempt associated with a general iteration of the matroid greedy algorithm. It is
straightforward to prove that the attempt to insert a ping u in a given iteration is unsuc-
cessful if and only if there exist pongs v and v′ in V such that v ≤ u.first ≤ u.last ≤ v′

and the number of pings u′ previously successfully inserted for which v ≤ u.first ≤
u.last ≤ v′ is equal to the number of pongs in V that belong to the interval [v, v′]. We
refer to such an interval of pongs [v, v′] as a tight interval, and we say that a pong in
V is tight if it belongs to some tight interval. Initially, none of the pongs in V are tight,
but as more pings are successfully inserted, certain pongs become (and remain) tight.



Our hierarchically greedy algorithm maintains a conservative estimate (i.e., a sub-
set) of the current set of tight pongs in V . The pongs associated with this estimate are
said to be marked tight. Once a pong is marked tight, it continues to be marked tight
thereafter. When we attempt to insert a ping u, we first determine whether all of the
pongs v in V such that u.first ≤ v ≤ u.last are marked tight. If so, we conclude that
the insertion is unsuccessful, and proceed to the next iteration. We call such an unsuc-
cessful insertion good because it is relatively inexpensive to process; other unsuccessful
insertions are said to be bad.

4.1 An Augmented Binary Search Tree

Our hierarchical greedy algorithm makes use of an augmented BST with |V | nodes,
one for each pong in V . The key of each node α in the augmented BST, which is
denoted α.key, is the associated pong. Since V is not updated through the course of the
algorithm, the structure of the augmented BST is static. In analyzing the performance
of the algorithm, we assume only that the augmented BST has depth O(log |V |). We
maintain several additional fields for each node α in the augmented BST: α.left, which
is a pointer to the left child of α (α.left = 0 if there is no left child); α.right, which is a
pointer to the right child of α (α.right = 0 if there is no right child); α.parent, which is
a pointer to the parent of α (α.parent = 0 if α is the root); α.keyMin, which is equal to
the minimum, over all nodes β in the subtree rooted at α, of β.key; α.size, which is equal
to the total number of nodes in the subtree rooted at α; α.occupant, which is of type
“pointer to node”, and which either points to some ancestor of α, or takes on one of two
special values 0 and +∞; α.occupantMax, which is equal to the “maximum”, over all
nodes β in the subtree rooted at α, of β.occupant. In order to make the latter definition
precise, we need to specify how to determine the maximum of two node pointers. We
consider the special pointer value +∞ to be the highest possible pointer value, and the
special pointer value 0 to be the lowest possible pointer value. To compare two pointers
to actual nodes α and β, we instead compare α.size with β.size, breaking ties arbitrarily.

Each node of the augmented BST also contains a nice CBG that is represented by
two augmented red-black trees as discussed in Section 3. These nice CBGs are such
that the total size of the augmented BST remains linear throughout.

As indicated earlier, the structure of the augmented BST is static. All occupant
fields (and hence also the occupantMax fields) are initialized to +∞ to indicate that
all of the pongs are unmatched. The nice CBG associated with each node is initialized
to the empty CBG. After initialization, the only attributes of a node that are subject to
modification are the occupant and occupantMax fields, and the associated nice CBG.

4.2 Key Invariant

Due to space limitations, our proof of correctness is not included in this extended ab-
stract. Instead we simply state a key invariant of the data structure, which holds in any
quiescent state, that is, before and after any insertion attempt. The invariant completely
characterizes the state of the augmented BST in terms of the set of pongs in V that
have been marked tight and the state of the greedy algorithm after the same number of



insertion attempts. To define the invariant, we consider executing the greedy and hierar-
chically greedy algorithms side by side, one insertion attempt at a time. In any quiescent
state, we define a mapping from the edges of the greedy matching to the nodes of the
augmented BST as follows: Map edge (u, v) to the LCA of the node with key v and
the node with key u.last. We claim that the set of pings (resp., pongs) of the nice CBG
associated with any node α is exactly the set of ping (resp., pong) endpoints of the
edges of the greedy matching that are mapped to node α. The preceding claim charac-
terizes the set of |V | nice CBGs associated with the nodes of our augmented BST in this
quiescent state. It remains only to characterize the values of the occupant fields, since
the occupant values determine the occupantMax values, and all of the other augmented
BST fields are static. For any pong v in V , let α denote the augmented BST node with
α.key = v. If pong v is unmatched in the greedy matching, then α.occupant = +∞. If
pong v is matched in the greedy matching and is marked tight, then α.occupant = 0. If
v is matched to ping u in the greedy matching and is not marked tight, then α.occupant
is a pointer to the augmented BST node to which edge (u, v) is mapped, i.e., to the LCA
of the node with key v and the node with key u.last.

The aforementioned invariant asserts a close correspondence between the successive
quiescent states of the greedy and hierarchically greedy algorithms. The main idea un-
derlying our full proof of correctness is to extend this correspondence to non-quiescent
states. We do so by starting with the greedy algorithm and transforming it into the
hierarchically greedy algorithm via a sequence of code transformations. A suitable cor-
respondence is established between each pair of successive algorithms in this sequence.

4.3 Methods

In this section we describe the methods supported by the node object of the augmented
BST introduced in Section 4.1.

The print method is invoked on the root node at the end of the hierarchically greedy
algorithm in order to output a maximum-weight matching. When invoked on the root
node, the print method traverses each node α of the augmented BST, and invokes the
print operation of Section 3 on the nice CBG associated with α. Each of these |V |
print operations produces a piece of the overall output matching. The invariant stated
in Section 4.2 ensures that the nice CBG associated with any augmented BST node is
in-kilter in any quiescent state, and hence the nice CBG print operation is applicable in
any such state. The overall running time of the print method is O(|U | + |V |). (If we
wish to produce the greedy matching, then we need to print the greedy matching of each
nice CBG; by the analysis of the print operation in Section 3, this increases the running
time by an O(log k) factor, where k ≤ min{|U |, |V } denotes the maximum number of
pings/pongs in any of the nice CBGs.)

The second major node method is insert. Pseudocode for the insert method is pro-
vided below. Each of the |U | insertion attempts performed by the hierarchically greedy
algorithm corresponds to an invocation of this method at the root of the augmented BST.
The lone argument of the insert method is the ping associated with the current insertion
attempt. The insert method is defined in terms of three other node methods: add, tight,
and tighten. We discuss each of these three methods below.



insert(Ping u)
Pong v := u.first
if tight(v, u.last) = 0 then

Node ∗p := add(u, v)
if p 6= 0 then

tighten(v, p→key)

The tight method takes two pong arguments v and v′, and returns a boolean value
indicating whether every pong v′′ in V such that v ≤ v′′ ≤ v′ has been marked tight. By
exploiting the occupantMax field of the augmented BST, this method is easy to imple-
ment in O(log |V |) time. But to establish our best time bound for left-weighted convex
bipartite matching, we need a more efficient implementation of the tight method, so
we maintain a separate union-find data structure [14]. The idea is to break the sorted
sequence of pongs in V into maximal contiguous subsequences of pongs in which ei-
ther: (1) all of the pongs in a subsequence have been marked tight, or (2) none of the
pongs in a subsequence have been marked tight. Each such subsequence corresponds
to a single set in our union-find data structure. Along with each set, we store a bit in-
dicating whether the pongs in the set have been marked tight. The roots of the sets are
linked together in a doubly-linked list, which is kept in sorted order based on the pong
values. To implement the tight method, we simply look up the two pong arguments in
the union-find data structure to determine whether they both belong to the same set,
and if so, whether that set consists of pongs that have been marked tight. In the fore-
going pseudocode for the insert method, we use a call to the tight method to determine
whether to immediately reject a given insertion attempt.

The tighten method takes two pong arguments v and v′. For every pong v′′ in V
such that v ≤ v′′ ≤ v′, this method marks v′′ tight by ensuring that the occupant field
in the node with key v′′ is equal to zero (i.e., if it was not already zero, this method
sets it to zero), and makes any necessary adjustments to the occupantMax fields. This
method also performs corresponding unions to the union-find data structure mentioned
in the preceding paragraph. (The sorted doubly-linked list of roots in the union-find
data structure enables us to perform these union operations efficiently.) By exploiting
the occupantMax field (i.e., there is no need for this method to descend into a subtree
rooted at a node with occupantMax field equal to zero), we can easily execute an invo-
cation of the tighten method in O((k + 1) log |V |) time, where k denotes the number
of nonzero occupant fields that are set to zero as a result of the invocation. In the above
pseudocode for the insert method, we invoke the tighten method on the root node of the
augmented BST to update our data structures after a bad unsuccessful insertion attempt.
Accordingly, the quantity k in the preceding expression is guaranteed to be positive on
any invocation of the tighten method. Furthermore, once we set the occupant field of
some node to zero in tighten, it remains zero thereafter. It follows from the foregoing
remarks that the total cost of all invocations of the tighten method is O(|V | log |V |).

The pseudocode for the add method is given below. If the insertion attempt as-
sociated with the add invocation is successful, add returns 0. Otherwise, add indicates
failure by returning a pointer to a node in the augmented BST; this pointer is used to de-
termine the second pong argument of the subsequent invocation of the tighten method.
Recall that each augmented BST node has an associated nice CBG. In the pseudocode



for the add method, the calls to pingAdd(u) and pingDrop(u) act on the associated nice
CBG. The same holds for the calls to pongAdd(v), pingDrop(), and pingAdd(u) appear-
ing in the pseudocode for the resolve method below, and for the calls to pongDrop(v)
and pongAdd(v) appearing in the pseudocode for the drop method below. Our proof
of correctness establishes that each call acting on the associated nice CBG satisfies the
required precondition specified in Section 3. The add method is defined in terms of the
node method resolve, which we discuss next.

Node ∗add(Ping u, Pong v)
if occupantMax = 0 then

return this
else if v > key then

return right→add(u, v)
else if u.last < key then

return left→add(u, v)
pingAdd(u)
p := resolve(v)
if p 6= 0 then

pingDrop(u)
return p

The pseudocode for the resolve method is given below. Like the add method, resolve
returns 0 on success, and a pointer to a node on failure. The resolve method is defined
in terms of the node methods add, drop, occupy, and search. We have already defined
the add method; drop, occupy, and search are defined below.

Node ∗resolve(Pong v)
Node ∗p, ∗q := search(v)
if q 6= 0 then

Pong v := q →key
Node ∗r := q →occupant
p := if r = +∞ then 0 else r →drop(v)
if p = 0 then

pongAdd(v)
occupy(q)

else
Ping u := pingDrop()
p := if key = u.last then this else right→add(u, right→keyMin)
if p 6= 0 then

pingAdd(u)
return p

When the search method is invoked at a node α, it takes as argument a pong v that
is either equal to α.key, or is equal to β.key for some node β in the left subtree of α. The
search method returns a pointer to a node, determined as follows. Let S denote the set
of all nodes β in the subtree rooted at α such that v ≤ β.key ≤ α.key, and β.occupant
is either +∞ or the address of a proper ancestor of α. If S is empty, then 0 is returned.



Otherwise, a pointer to the node β in S minimizing β.key is returned. By making use
of the occupantMax field, it is straightforward to implement the search method in time
proportional to the depth of the subtree rooted at node α.

When the occupy method is invoked at a node α, it takes as argument a nonzero
pointer to a node returned by a just-completed call to the search method at node α. As
such, the argument of the occupy method is a pointer to some β in the subtree rooted
at node α such that β.occupant is either +∞ or the address of a proper ancestor of
α. The occupy method sets β.occupant to point to α, and then updates occupantMax
fields as necessary, starting at β and repeatedly “bubbling up” to the parent until the
occupantMax field is unchanged or we attempt to move to the parent of the root. The
running time is proportional to the depth of the subtree rooted at node α.

The pseudocode for the drop method is given below. Like the add method, drop
returns 0 on success, and a pointer to a node on failure. The drop method is defined in
terms of the resolve method discussed above.

Node ∗drop(Pong v)
pongDrop(v)
Node ∗p := resolve(v)
if p 6= 0 then

pongAdd(v)
return p

5 Analysis

Due to space limitations, we are not able to include our analysis of the running time of
the hierarchically greedy algorithm in this extended abstract. In the full version of the
paper, we prove the following theorem. The proof uses separate arguments to bound the
total cost of the successful, good unsuccessful, and bad unsuccessful insertions.

Theorem 1. The hierarchically greedy algorithm of Section 4 computes a maximum-
weight matching of a given CBG (U, V ) in O(|U | log |U | + |V | log2 |V |) time using
O(|U |+ |V |) space.

With some extra preprocessing work, we can further improve the running time of
the algorithm of Section 4. By employing a preprocessing phase based on the O(|U |)-
time unweighted convex bipartite matching algorithm of Steiner and Yeomans [13],
the O(|V | log2 |V |) term can be improved to O(k log2 k), where k ≤ min{|U |, |V |}
denotes the size of a maximum-cardinality matching. The following theorem can then
be obtained via an O(|U | + k log2 k)-time preprocessing phase that discards all but
O(k log k) of the pings in U , while ensuring that we can still produce a maximum-
weight matching using the remaining pings. The complete details of the two prepro-
cessing phases are nontrivial and are provided in the full paper.

Theorem 2. A maximum-weight matching of a proper CBG (U, V ) can be computed
in O(|U |+ k log2 k) time and O(|U |+ |V |) space, where k ≤ min{|U |, |V |} denotes
the size of a maximum-cardinality matching.

Notice that in order to achieve the time bound of Theorem 2 we need to assume —
as in the work of Steiner and Yeomans [13] — that the input CBG (U, V ) is proper.



6 Concluding Remarks

Recently, Brodal et al. [2] have designed a data structure based on the Dekel-Sahni algo-
rithm for the problem of maintaining an unweighted maximum matching in a dynamic
convex bipartite graph. It allows for vertices to be inserted or deleted from either U or
V inO(log2 |U |) amortized time. The interface supported by the data structure includes
a constant-time “status query” that can be used to determine whether a given vertex is
in the current maximum matching. Also, a “pair query” is provided that takes as argu-
ment a matched vertex and returns the current match of that vertex. The amortized cost
of a pair query is shown to be O(

√
|U | log2 |U |) and Ω(

√
|U |). We plan to investigate

whether the techniques of the present paper can be used to obtain improved bounds for
some of the dynamic operations considered in [2].
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