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ABSTRACT
We present a dynamic unit-demand auction that supports ar-
bitrary bid revision. Each round of the dynamic auction takes
a tentative allocation and pricing as part of the input, and al-
lows each bidder — including a tentatively allocated bidder —
to submit an arbitrary unit-demand bid. We establish strong
properties of the dynamic auction related to truthfulness and
efficiency. Using a certain privacy preservation property of
each round of the auction, we show that the overall dynamic
auction is highly resistant to shilling. We present a fast al-
gorithm for implementing the proposed auction. Using this
algorithm, the amortized cost of processing each bidding op-
eration is upper bounded by the complexity of solving a single-
source shortest paths problem on a graph with nonnegative
edge weights and a node for each item in the auction. We
propose a dynamic price adjustment scheme that discourages
sniping by providing incentives to bid early in the auction.

1. INTRODUCTION
Consider the following concrete example of a real-world auc-
tion scenario. The developer of a new high-rise condominium
project wishes to sell all of its units to the public. In this set-
ting, each bidding agent may assign a different value to each
unit, depending on factors such as floor plan, elevation, and
view. An agent in this auction is said to have unit-demand
preference if the agent is seeking to purchase at most one unit.
In a unit-demand auction, the bid of an agent takes the form
of a unit-demand preference function: The agent specifies an
offer for each of a subset of items, with the understanding
that the bid can win at most one item. Typical online auc-
tion houses do not support such unit-demand bids. Instead, if
many items are to be sold, each is sold in a separate auction.
The resulting sequence of single-item auctions forces an agent
with unit-demand preferences to guess whether or not to bid
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on each successive item, since the agent does not know the
eventual selling prices of the items. This guesswork degrades
the efficiency of the allocation of items to agents, where the ef-
ficiency of an allocation is defined as the sum, over all items v,
of the value assigned to v by the agent to which v is allocated.
The main reason to contemplate selling many items within a
single unit-demand auction, or within any form of combinato-
rial auction, is to reduce the need for such guesswork, thereby
enhancing efficiency. By improving efficiency, one has the po-
tential to improve the quality of the outcome for both buyers
and sellers alike.

Unit-demand auctions are well understood in the standard sealed-
bid framework. In this context, the well-known Vickrey-Clarke-
Groves (VCG) [17, 4, 7] mechanism yields a truthful auction
that produces an efficient allocation and envy-free pricing [18].
However, the majority of auction sites, including the popular
auction site, eBay, are dynamic. In a dynamic auction, bidding
takes place in multiple rounds. In each round, new bid data
(bid revision requests and new bids) is received, and an update
rule is applied to adjust the tentative outcome (allocation and
pricing). The tentative outcome is made public at the end of
each round. This dynamic price feedback enables agents to
concentrate their value discovery efforts on the most relevant
items.

Unit-demand bids are much more expressive than the tradi-
tional single item bids and bid formulation is correspondingly
more complex. Accordingly, there is a significant chance that
a tentatively allocated agent may wish to revise one or more
bid components. If a unit-demand auction imposes undue con-
straints on bid revision, or if the semantics of bid revision in-
troduce additional strategic considerations, then agents may
be reluctant to submit unit-demand bids or may only choose to
submit bids in the last round of the auction. Such an artificial
reduction in the number of bids directly undercuts the main
value propositions of dynamic auctions, namely value discov-
ery and improved efficiency.

In this paper, we specify rules for a dynamic unit-demand auc-
tion that supports arbitrary bid revision. The reader will note
that each round of a dynamic auction is essentially a sealed-
bid auction. A guiding principle that we follow in the design
of our auction is to use the same sealed-bid auction to resolve
each round of the dynamic auction. This guideline is moti-
vated by simplicity of design and ensures that trivial solutions
are not considered, e.g, an auction that postpones all of its



processing to the last round. In order to motivate the design of
our auction, we analyze the special case of our auction setting
for a single item. In what follows, we discuss the design of a
dynamic single-item auction supporting arbitrary bid revision.
As a natural first approach, we consider using the well-known
Vickrey auction to resolve each round. However, it is easy to
see that such a dynamic auction discards information on the
tentative outcome of each round and is essentially equivalent
to running the Vickrey auction exactly once in the last round,
after all of the bids have been received. Thus, this approach
destroys value discovery, a key feature of dynamic auctions.

Next we consider resolving each round of the dynamic single-
item auction in the style of the California auction [16] for-
mulated by Steiglitz. The California auction is a dynamic
single-item auction that in each round, allocates the item to
the highest bidding agent and posts the second highest bid seen
up to that round as the tentative price of the item. The Cali-
fornia auction is efficient, satisfies envy-freedom, and retains
straightforward bidding in an ex-post Nash equilibrium. The
eBay auction is an example of the California auction. We note
that each round of the California auction can be viewed as an
instance of the Vickrey auction with a reserve price, where in
each round, the reserve price of the item is set equal to the ten-
tative price of the item from the previous round. In order to
support arbitrary bid revision, in each round, we associate the
item with the tentatively allocated agent of the previous round
as a reserve agent: if every agent bids less than the tentative
price of the item in a round, then the item remains allocated to
the reserve agent in that round.

It is straightforward to see that when arbitrary bid revision is
allowed, the California auction ceases to be efficient. Addi-
tionally, truthful bidding is no longer an ex-post Nash equilib-
rium of the auction. For example, consider an instance of the
California auction with an item v and agents u0 and u1. Agent
u0 values item v at 20 units in round i and at 10 units in a later
round j. Agent u1 values item v at 19 units in round i and at
20 units in round j. If agent u1 bids truthfully, then agent u1

wins item v for 19 units in round j. However, by choosing not
to bid in round i and by submitting a bid of 20 units in round
j, agent u1 stands to win item v for a lower price of 10 units
in round j. Nonetheless, while the overall auction is not truth-
ful, it can be shown that each individual round of the auction
remains truthful.

Sealed-bid auctions exhibit strong truthfulness and efficiency
related properties; yet, the overwhelming majority of online
auctions continue to be dynamic. The popularity of dynamic
auctions suggests that value discovery is one of the most im-
portant requirements of online auctions. As we discussed ear-
lier, value discovery becomes increasingly important with in-
creased bid complexity. From our discussion of the dynamic
single-item setting above, it follows that there is an inherent
tradeoff between flexibility of bid revision and properties such
as truthfulness and efficiency. We find that the strong proper-
ties of truthfulness and efficiency are lost when arbitrary bid-
revisions are introduced even in the restricted single-item case.
We generalize this trade-off to the unit-demand setting in the
design of our proposed dynamic auction.

In keeping with our approach of using the same sealed-bid
auction to resolve each round of the dynamic auction, we seek
to identify a suitable sealed-bid unit-demand auction that gen-
eralizes the California auction to the unit-demand setting. In
our discussion of the California auction, we observed that each
round of the California auction with arbitrary bid revision is
equivalent to an instance of the Vickrey auction where each
item is associated with a reserve price and a reserve agent.
Such a Vickrey auction with reserves can be viewed as a Vick-
rey auction in which the item is associated with a put option
held by the item’s seller, with the reserve agent as the target of
the put and the reserve price as the strike price of the put. The
put option of the item gives the holder of the put the right to
sell the item to the target of the put at the strike price of the
put, regardless of market conditions.

In a recent work, we presented a sealed-bid unit-demand auc-
tion with put options [10] that generalizes the Vickrey auc-
tion with a put option, to the unit-demand case. In the present
work, we analyze the dynamic variant of the sealed-bid unit-
demand auction with put options. Our proposed dynamic auc-
tion proceeds as follows. Each round of our dynamic auction
is resolved using an instance of the sealed-bid unit-demand
auction with put options. Each item is associated with a put
option held by the item’s seller. In the first round, the target
of each item’s put is the seller of the item and the strike price
is the reserve price of the item. In each subsequent round, the
target and strike price of an item’s put are given by the tenta-
tively allocated agent and the tentative price of the item from
the previous round.

Since each round of our dynamic auction is resolved using
the sealed-bid unit-demand auction with put options, the out-
come of each round satisfies all of the equilibrium properties
associated with the sealed-bid auction (see Section 4.1). For
example, like the sealed-bid auction, each round of our dy-
namic auction is truthful. In the technical body of the paper,
we establish various additional properties of our dynamic auc-
tion that hold over multiple rounds of the auction. In the de-
scription of our auction, we resolve each round using the same
sealed-bid auction. However, the technical claims in this paper
hold more generally for any dynamic auction in which each
round is resolved using any sealed-bid auction that satisfies
certain subsets of the equilibrium properties detailed in Sec-
tion 4.1.

With regard to efficiency, recall that in the absence of bid revi-
sion, the California auction produces an efficient allocation in
each round. In the absence of bid revision, our dynamic auc-
tion mimics the behavior of the California auction, and hence
achieves the same efficiency guarantee. When tentatively al-
located agents are allowed to revise their bids in an arbitrary
manner, such an efficiency guarantee cannot be achieved with-
out sacrificing other key properties. Since we do not wish
to sacrifice these properties, we instead achieve the follow-
ing relaxed form of efficiency achieved by the sealed-bid unit-
demand auction with put options — while the current alloca-
tion need not be efficient with respect to the current revision of
each bid, it is guaranteed to be efficient with respect to a suit-
able combination of previous and current revisions. We derive
additional efficiency related properties pertaining to multiple



rounds of our auction. We show that if an agent is envy-free
in a round of the auction, then for any sequence of subsequent
rounds in which the agent does not submit a bid revision, the
agent continues to remain envy-free (see Theorem 5.1). We
also show that for any sequence of rounds in which an agent is
not envy-free and does not submit a bid revision, the auction
can only make progress towards achieving efficiency with re-
spect to the most recent bid revision (see Theorem 5.2). We be-
lieve that our efficiency-related guarantees are essentially the
strongest that can be achieved without sacrificing other prop-
erties.

An important consideration in the design on a dynamic auc-
tion is its vulnerability to “shill” bidding. If the seller of an
item can deduce the maximum price that the agent who is ten-
tatively allocated to the item is willing to pay for the item,
then the seller can extract this price without forfeiting sale of
the item by submitting a shill offer just below the agent’s of-
fer. Dynamic auctions are known to be particularly susceptible
to shill bidding [16]. Thus, a goal of our dynamic auction is
to ensure bid privacy for tentatively allocated agents. We es-
tablish bid privacy of an agent u in our dynamic auction with
respect to the grand coalition of all agents in the auction ex-
cept agent u. We assume that in each round of our auction, the
grand coalition learns the matching and allocation published
in the round, the bid of every agent in the round except the bid
of agent u, and whether agent u submitted a bid in the round.
We show that our dynamic auction is resistant to shilling by
such a grand coalition of agents. Specifically, we show that
for any sequence of rounds in which agent u does not submit
a bid revision, the grand coalition of agents cannot shill agent
u by more than one unit without risking forfeiture of sale in
one of the rounds (see Theorem 5.3). Since the running time
of our auction is independent of the monetary units used, each
unit can be considered to be as low as one cent, thus making
our auction highly resistant to shilling.

With respect to scalability, our fast implementation of the pro-
posed dynamic auction (see Section 5.4) processes each bid-
ding operation (i.e., new bid or bid revision) using an amor-
tized constant number of Hungarian [11] augmentations, thereby
matching the asymptotic complexity associated with the sealed-
bid auction, which uses a single augmentation to process each
new bid. The worst-case time complexity of such an augmen-
tation is upper bounded by the cost of running a single-source
shortest paths computation on a graph where the number of
nodes is proportional to the number of items, and where the
number of edges is proportional to the total number of “active”
bid components of the tentatively allocated agents. (A compo-
nent of a unit-demand bid is considered active if the associated
offer is at least the current price of the associated item.)

In supporting arbitrary bid revision in the unit-demand setting,
our dynamic auction successfully achieves the properties that
the California auction achieves with arbitrary revision. For any
bid revision operation, our dynamic auction immediately ad-
mits a closest approximation to the revised bid, and as prices
change over rounds, our auction continually admits closer and
closer approximations to the revised bid. An important feature
of our auction is that in the special case where bid revisions
are consistent – such revisions involve raising all components

of the unit-demand bid by the same amount – the outcome of
our auction is equivalent the celebrated VCG outcome. For
the above mentioned reasons, we believe that our proposed
dynamic auction is an appropriate generalization of the Cali-
fornia auction to the unit-demand setting.

An issue of practical concern in dynamic auctions is “snip-
ing”. Sniping refers to agents holding off on submitting bids
until close to the end of the auction. Such late bidding impedes
the value discovery process, thereby degrading efficiency. We
propose a dynamic price adjustment scheme that encourages
agents to bid early in the auction, thus discouraging sniping.
With this proposed price adjustment scheme, our auction con-
tinues to satisfy all of the strong theoretical properties estab-
lished for the basic version of our auction.

The remainder of the paper is organized as follows. Section 2
discusses related work. Section 3 provides a foundation for the
technical presentation to follow. Section 4 reviews the equi-
librium properties of the sealed-bid unit-demand auction with
put options. Section 5 presents our proposed dynamic auction,
establishes various properties of the auction related to truthful-
ness, efficiency, and shill-resistance, and discusses a fast im-
plementation. Section 6 discusses a dynamic price adjustment
scheme that discourages sniping. Section 7 discusses some
extensions and recommendations for the auction.

2. RELATED WORK
Demange et al. [6] present two dynamic unit-demand auc-
tions: an “exact” auction, which we refer to as DGS-exact,
and an “approximate” auction, which we refer to as DGS-
approximate. In each round, the DGS-exact auction elicits the
demand (i.e., set of preferred items at the current prices) of
each agent. If there is an overdemanded set of items, a mini-
mal overdemanded set is found, and the prices of all items in
the set are incremented by one. If no overdemanded set can be
found, the DGS-exact auction terminates and each item is allo-
cated to an agent who demands it. Observe that the DGS-exact
auction implicitly supports a limited form of bid revision: An
agent is free to revise its unit-demand bid as long as the de-
mands specified in all preceding rounds remain consistent with
the revision.

Recognizing the highly restrictive nature of the form of bid
revision permitted by the DGS-exact auction, Demange et al.
propose the DGS-approximate auction. Like DGS-exact, DGS-
approximate is an ascending-price auction. (We remark that
Mishra and Parkes [13] describe exact and approximate de-
scending price auctions corresponding to DGS-exact and DGS-
approximate.) Agents that are not tentatively allocated are
consulted in round-robin order and given the opportunity to ei-
ther select an item, or pass. If an unallocated agent u selects an
item v, the tentative price of item v is increased by a parame-
ter δ, and the tentative allocation is updated to reflect that item
v is allocated to agent u. The DGS-approximate algorithm
terminates when all of the unallocated agents pass. The DGS-
approximate auction has several shortcomings in comparison
with our dynamic unit-demand auction: the auctioneer is re-
quired to specify a value for the parameter δ; the outcome is
guaranteed to be approximately efficient/truthful, even in the
absence of bid revision; there is a tradeoff between the quality



of the approximation and the running time of the algorithm;
and the bid revision framework is restrictive, since it does not
allow for trading of items between tentatively allocated agents.

Gul and Stacchetti [8] present a dynamic auction that gener-
alizes the DGS-exact auction for the setting in which agents
demand bundles of items. Gul and Stacchetti show that their
auction converges to the smallest Walrasian prices, and that
their auction is strategy-proof if the smallest Walrasian prices
correspond to the VCG payments. Gul and Stacchetti’s auc-
tion, like the DGS-exact auction, supports a limited form of
bid revision: An agent is free to revise its bid on a bundle as
long as the demands on the bundle specified in all preceding
rounds remain consistent with the revision.

General combinatorial auctions support more complex prefer-
ences than unit-demand preferences, such as preferences for
bundles of items. Unfortunately, for many combinatorial auc-
tions, the problem of finding an efficient allocation is NP-
hard. The computational intractability of general combina-
torial auctions motivates the study of specialized combinato-
rial auctions. Rothkopf et al. discuss special cases (includ-
ing unit-demand) of combinatorial auctions where the problem
of finding an efficient allocation can be solved in polynomial
time [14]. Various generalizations of unit-demand have been
considered in the literature, including recent work on dynamic
auctions for homogeneous [1, 3] and heterogeneous [2, 5, 12]
commodities.

3. PRELIMINARIES
In formulating our problem, we make use of some terminology
from our recent work on the sealed-bid unit-demand auction
with put options [10]. In this section, we review definitions
and notation from this work that is relevant to the present pa-
per.

We introduce the notions of bid-graphs and configurations.
We use bid-graphs and configurations to model the inputs and
outputs of our auction.

3.1 Agents and Items
We refer to the bidders in our auction as agents. In order to
break ties among agents, we identify each agent with a binary
string identifier. We define the maximum over an empty set
of agents as the empty agent ε. An item v in our auction is
a pair where the first component is a binary string identifier,
denoted id(v), and the second component is an integer lower
bound on the price of v, denoted min(v). We allow the price
of an item in our auction to be negative in order to support
procurement-type auctions.

3.2 Bid-Graphs
A bid-graph encapsulates a set of items and a set of agents
having unit-demand bids on the items. Formally, a bid-graph
is an edge-weighted complete bipartite graph G = (U, V,w),
where U is a set of agents, V is a set of items, w is a function
from the set U × V to the set of integers, and the following
conditions are satisfied: (1) the cardinality of U is at least the
cardinality of V ; (2) the empty agent ε is not an element of
U ; (3) for any pair of distinct items v and v′ in V , we have
id(v) 6= id(v′).

3.3 Configurations
A configuration encapsulates a bid-graph along with an as-
sociated outcome (allocation and pricing of the items in the
bid-graph).

A configuration χ is a triple (G,M,Φ), where G = (U, V,w)
is a bid-graph, M is a maximum cardinality matching (MCM)
of G, and Φ is a potential function that maps each item v in V
to an integer Φ(v) such that Φ(v) ≥ min(v). In the definitions
that follow, let χ = (G,M,Φ) be a configuration where bid-
graph G = (U, V,w).

The function agents(χ) is the set U and the function items(χ)
is the set V . For any item v in V , we define potential(χ, v)
as Φ(v). We define matched(χ) as the subset of agents in U
that are matched inM , and we define unmatched(χ) as the set
U \ matched(χ). For any item v in V , we define match(χ, v)
as the agent u in U such that the edge (u, v) belongs to M .
For any agent u in U , we define gap(χ, u) as w(u, v)−Φ(v)
if match(χ, v) = u, and as zero otherwise.

We now characterize a suitable directed graph on χ and formu-
late a reachability condition on this directed graph; we use this
reachability condition in describing the solution concept of
the sealed-bid unit-demand auction in Section 4.1. We define
digraph(χ) as the directed graph (U ∪ V,A), where A is the
set of arcs that includes for each edge (u, v) inU×V such that
w(u, v)−Φ(v) ≥ 0 and w(u, v)−Φ(v) ≥ w(u, v′)−Φ(v′)
for every item v′ in V −v: (1) an arc (v, u) if edge (u, v) is in
M ; (2) an arc (u, v) if edge (u, v) is not in M . For any agent
u in unmatched(χ), we define items(χ, u) as the set of items
v in V such that there exists a directed path from agent u to
item v in digraph(χ). In the terminology of the well-known
Hungarian algorithm [11] for weighted bipartite matching, the
set items(χ, u) is the set of items reachable from agent u in
the Hungarian tree rooted at u.

We say that an agent u inU satisfies envy-freedom if gap(χ, u)
is nonnegative and gap(χ, u) ≥ w(u, v)− Φ(v) for all items
v in V . We say χ is Walrasian if every agent u in U satisfies
envy-freedom.

We say configuration χ is semi-Walrasian if for every agent
u in unmatched(χ) and every item v in items(χ, u), the agent
match(χ, v) satisfies envy-freedom. In the terminology of the
Hungarian algorithm, this requirement may be stated more
concisely as follows: If an agent u belongs to the Hungar-
ian tree rooted at some non-allocated agent, then u satisfies
envy-freedom.

We use configurations to represent both the inputs and out-
puts of each round of the dynamic auction. If configuration
(G,M,Φ) where G = (U, V,w) is the output of a general
round i of the auction, then the input of round i + 1 is a
configuration (G′,M,Φ) where G′ is a bid-graph of the form
(U ′, V, w′).

4. SEALED-BID UNIT-DEMAND AUCTION
WITH PUT OPTIONS

In this section, we review the solution concept of the sealed-
bid unit-demand auction with put options [10]. We informally



motivate the solution concept as well as provide a formal spec-
ification in Section 4.1. The properties of the sealed-bid auc-
tion detailed in this section are used to establish strong prop-
erties of the proposed dynamic auction in Section 5.

For the classic sealed-bid unit-demand auction, the VCG mech-
anism returns a Walrasian solution where the pricing is given
by the unique minimum price vector over all Walrasian so-
lutions. For the sealed-bid unit-demand auction with put op-
tions, only a certain subset of the agents are required to sat-
isfy envy-freedom. Specifically, the outcome is required to be
semi-Walrasian (see property 1 in Section 4.1).

A semi-Walrasian configuration χ induces a partition of the
items into two sets: the set of items that belong to items(χ, u)
for some agent u in unmatched(χ), and the remaining items.
The items in the former set are said to be priced at market,
and the remaining items are said to be priced above market.
For an item v that is priced at market, any positive decrease
in the price of v (while leaving the prices of all other items
unchanged) yields a solution that is no longer semi-Walrasian.
Thus, for an item that is priced at market, the associated put
need not be exercised in order to justify the price. For such
an item v, the price is required to be at least the strike price
(see property 2 in Section 4.1); otherwise, the seller of item
v would prefer to exercise the put associated with v. For an
item that is priced above market, the price can only be jus-
tified via exercise of the associated put; for such an item we
require the price to be equal to the strike price (see property 3
in Section 4.1).

The set of items V ′ priced above market are required to be
purchased by the set of agents U ′ who are targets of the asso-
ciated puts (see property 4(a) in Section 4.1); the motivation
for this requirement is that the items in V ′ are too expensive to
be of interest to any of the remaining agents. The problem of
determining a suitable allocation of V ′ to U ′ may be viewed
as an instance of the house allocation problem [15]; accord-
ingly, standard desiderata is enforced related to envy-freedom
(see property 4(b) in Section 4.1) and Pareto-efficiency (see
property 5 in Section 4.1).

4.1 Solution concept
Given a configuration χ0 = (G,M0,Φ0) as input where G =
(U, V,w), the sealed-bid unit-demand auction with put options
is a truthful auction whose outcome is a configuration χ =
(G,M,Φ) satisfying the following conditions which we refer
to as properties 1 through 5 for the remainder of this paper:

1. The configuration χ is semi-Walrasian.

2. For any item v in V that is priced at market, Φ(v) ≥
Φ0(v).

3. For any item v in V that is priced above market, Φ(v) =
Φ0(v).

4. Let V ′ denote the set of all items in V that are priced
above market. Then there is a permutation π of V ′ such
that the following conditions hold.

(a) For any item v in V ′, match(χ, π(v)) is equal to
match(χ0, v).

(b) For any item v in V ′ having match(χ0, v) = u,
gap(χ, u) ≥ gap(χ0, u).

5. For any configuration χ′ = (G,M ′,Φ), if there exists
an agent u in U such that gap(χ, u) < gap(χ′, u), then
there exists an agent u′ in U such that: (strong version)
gap(χ′, u′) < gap(χ, u′); (weak version) gap(χ′, u′) ≤
gap(χ, u′) and u′ is matched differently in M and M ′.

Note that above conditions are stated in terms of an agent’s gap
rather than the utility. For a unit-demand auction where agents
bid truthfully, the gap of an agent is equal to its utility, and
(the weak version of) Condition 5 corresponds to a solution
in the (weak) core. For a truthful auction, a solution in the
core satisfies Pareto-efficiency. Our reference to the (weak)
core is in the sense defined by Jaramillo and Manjunath [9]; a
solution is said to be in the weak core if no subset of agents can
exchange their allocated items amongst themselves such that
every agent in the subset experiences a strict improvement in
utility.

4.1.1 Privacy-preservation
Shill bidding refers to sellers submitting bids on their items
with the intent of artificially driving up the item prices. A
sealed-bid auction is not vulnerable to shill bidding as each
agent submits a single concealed bid and the outcome is com-
puted in a single shot. However, shill bidding is known to be
prevalent in dynamic auctions. We identify an additional de-
sired property of the sealed-bid auction that is concerned with
preserving the privacy of an agent’s bid in the auction. We re-
fer to the following privacy preserving property as property 6
for the remainder of this paper:

6. Let v be an item priced at market and let u = match(χ, v).
For any integer k such that gap(shift(χ, u, k), u) ≥ 1,
if shift(χ0, u, k) is the input configuration of the round,
then the output configuration of the round is given by
shift(χ, u, k).

Property 6 follows from [10, Lemmas 5.28 and 5.29]. In sec-
tion 5.3.3, we use property 6 to show that our proposed dy-
namic auction is highly resistant to shilling.

4.2 Fast implementation
In this section, we briefly review the time bounds of a fast im-
plementation of the sealed-bid unit-demand auction with put
options(we refer the reader to [10, Section 5.7] for additional
details). In Section 5.4, we use these results to establish a fast
amortized time bound for our proposed dynamic auction.

The sealed-bid auction proceeds in two phases. The first phase
of the auction corresponds to a proxy-version of the approxi-
mate auction proposed by Demange, Gale, and Sotomayor [6].
We say a bid-component is “active” if it is at least equal to the
price of the associated item. In the first phase, the bid of each
unallocated agent can be processed in time proportional to the
time required to solve a single-source shortest paths problem
on the active subgraph of the associated bid-graph. Further-
more, the total number of such SSSP computations in any ex-
ecution of the auction is at most the total number of agents



in the auction. The second phase of the auction corresponds
to resolving a suitably defined instance of the House Alloca-
tion Problem [15] using either the TTC algorithm [15] or the
TC≺ algorithm [9]. The second phase can be implemented in
linear time in the size of the active subgraph using the TTC
algorithm, and in polynomial time using the TC≺ algorithm.

5. DYNAMIC AUCTION
In this section, we present our proposed dynamic unit-demand
auction supporting bid revision. The dynamic auction pro-
ceeds in rounds and a single application of the sealed-bid unit-
demand auction with put options [10] is used to update the ten-
tative allocation and pricing in each round. The output of the
last round determines the final allocation and pricing. Below
we give an informal description of the input to each applica-
tion of the sealed-bud auction.

At the beginning of the first round, the tentative pricing is
given by the starting prices of the items. Each item v is ten-
tatively allocated to a “dummy agent” for item v whose bid is
a single offer on v equal to the reserve price of v. There may
be other (non-dummy) agents present in the first round, each
of whom has an associated unit-demand bid, which may be
arbitrary.

At the beginning of any non-first round, the tentative allocation
and pricing is given by the solution to the application of the
sealed-bid auction associated with the previous round. The set
of agents appearing in the round is equal to the union of the
following two sets: (1) agents that were tentatively allocated
at the end of the previous round; (2) (non-dummy) agents that
were not tentatively allocated at the end of the previous round,
and are submitting a new unit-demand bid in the current round.
For each agent u in set (1), the associated unit-demand bid
in the current round is determined as follows: if u submits a
revised bid in this round, then this revised bid is taken to be the
bid of u; otherwise, the bid of u is taken to be the same as in
the previous round. We do not allow a dummy agent to revise
its bid, since the bid of a dummy agent is merely intended to
model the fixed reserve price of the seller.

In Section 5.1, we provide a formal description of the dynamic
auction. In Section 5.3, we discuss properties of the dynamic
auction related to truthfulness, efficiency, and shill-resistance.
In Section 5.4, we discuss an implementation of the dynamic
auction with a fast amortized time bound for processing each
bidding operation.

5.1 Formal description
The input to the first round of the dynamic auction is a config-
uration χ satisfying the following conditions: (1) for any item
v is items(χ), the integer min(v) is equal to the seller-specified
starting price of item v; (2) there exists exactly |items(χ)|
agents in agents(χ) that are designated as dummy agents, and
for any dummy agent u and any non-dummy agent u′ in the set
agents(χ), we have u < u′; (3) for any item v in items(χ),
there is a dummy agent u in agents(χ) such that w(u, v) is
equal to the seller-specified reserve price of v (which is re-
quired to be at least the starting price of v), match(χ, v) = u,
and w(u, v′) = min(v′)− 1 for any item v′ in items(χ)− v.

Each round of the dynamic auction is resolved using the sealed-
bid unit-demand auction with put options [10]. We now de-
scribe the input of a general non-first round of the auction. Let
χ = (G,M,Φ) where G = (U, V,w) be the output of round
i − 1 of the auction. The input to round i is a configuration
χ′ of the form (G′,M,Φ) where G′ = (U ′, V, w′) satisfying
the following conditions: (1) U does not include an agent u
in unmatched(χ) if u is either a dummy agent or if u did not
submit a bid in round i, (2) For each item v in V and for each
agent u that is either a dummy agent or is in matched(χ) and
did not submit a bid in round i, w′(u, v) = w(u, v).

5.2 Auxiliary definitions
A dynamic unit-demand auction D is a sequence of sealed-
bid unit-demand auctions where each round of the dynamic
auction is resolved using the corresponding sealed-bid auction
in the sequence.

For any execution of a dynamic unit-demand auction, we have
an associated history of bids that specifies the bids received in
each round. We define a bid-historyH as a sequence of sets of
bids where each set includes a unit-demand bid for each agent
in the auction. For any bid-history H , we define length(H) as
the length of the sequence H . For any bid-history H and any
nonnegative integer i ≤ length(H), we define prefix(H, i) as
the prefix of H of length i. For any bid-history H , we define
prefix(H) as prefix(H, length(H)−1). For any bid-historyH
and any agent u, we define bid(H,u) as the bid of agent u in
the last set of bids of sequence H . For any bid-history H , any
agent u, and any bid β, we define subst(H,u, β) as the history
H ′ obtained by substituting bid(H,u) with β.

For any dynamic unit-demand auction D and any bid-history
H , we define config(D,H) as the output configuration ob-
tained by running auction D on bid-history H . It follows that
for any dynamic unit-demand auction D and any bid-history
H , the input and output configurations of each round of auc-
tion D can be deduced for the sequence of bids in H .

For any configuration χ = (G,M,Φ) where G = (U, V,w),
and any agent u in U , we define envy-free(χ, u) to hold if
gap(χ, u) ≥ 0 and gap(χ, u) ≥ w(u, v) for any item v in V .
For any configuration χ = (G,M,Φ) and any agent u such
that ¬envy-free(χ, u), we define admissible(χ, u) as the set of
all bids β in bids(G) such that envy-free(subst(χ, u, β), u).

For any bid-history H and any agent u, we say submit(H,u)
holds if bid(H,u) 6= bid(prefix(H), u).

5.3 Properties
Recall that a dynamic auction is essentially a sequence of sealed-
bid auctions. We say a dynamic unit-demand auction satis-
fies property 1 if each round of the dynamic auction satisfies
property 1 of Section 4.1. We define what it means for a
dynamic unit-demand auction to satisfy properties 2, 3, 4, 5,
and 6 similarly. In this section, we establish properties of
any dynamic unit-demand auction that satisfies certain sub-
sets of properties 1 through 6. Theorems 5.1 and 5.2 establish
efficiency-related properties of the dynamic auction and are
discussed in Section 5.3.2. Theorem 5.3 establishes a certain
shill-resistant property of the dynamic auction and is discussed



in Section 5.3.3.

5.3.1 Truthfulness
As we have previously noted in Section 4.1, the sealed-bid
unit-demand auction with put options is truthful. Since each
round of the dynamic auction is resolved using this sealed-bid
auction, it follows that each round of the dynamic auction is
truthful.

5.3.2 Efficiency
Each round of the dynamic auction implements the solution
concept of Section 4.1. Thus, it follows from property 6 that
each round of the dynamic auction produces an outcome that
is either (strong version) Pareto-efficient, or (weak version)
contained in the weak core.

In Theorems 5.1 and 5.2, we establish efficiency-related prop-
erties that hold over multiple rounds of the dynamic auction.
We now informally motivate the claims of Theorems 5.1 and 5.2.

Theorem 5.1 establishes that if an agent u is envy-free in a
round, then agent u remains envy-free in each subsequent round
in which u does not submit a bid.

Consider an agent u who is tentatively allocated to an item v.
Assume that agent u submits a bid revision request in round
i of the auction, thereby expressing a desire to be allocated to
some item v′ different from v. After round i, agent u may not
be envy-free; informally, this means that the revised bid of u
is not fully respected by the auction. Theorem 5.2 establishes
that in each round subsequent to round i in which u does not
submit a bid revision request and remains allocated to the same
item, the dynamic auction makes progress towards respecting
the revised bid submitted by u in round i. Specifically, with
each successive round, the revised bid of u can only find bet-
ter and better approximations in the growing set of admissible
bids.

LEMMA 5.1. For any dynamic unit-demand auctionD that
satisfies properties 1 and 3, any agent u in auctionD, and any
bid-historyH , if u belongs to unmatched(config(D, prefix(H))),
then we have envy-free(config(D,H), u).

PROOF. Let configuration χ = config(D, prefix(H)) and
let configuration χ′ = config(D,H). By property 1 of auc-
tion D, configuration χ′ is semi-Walrasian. If u belongs to
unmatched(χ′), then by the definition of semi-Walrasian con-
figurations, we have envy-free(χ′, u). We now consider the
case where u belongs to matched(χ′). Let v be the item such
that match(χ′, v) = u. Suppose ¬envy-free(χ′, u); then by
the definition of semi-Walrasian configurations and the defi-
nition of items that are priced above market, item v is priced
above market. By property 4(a) of auction D, if v is priced
above market, then agent u belongs to matched(χ), a contra-
diction. Thus, envy-free(χ′, u).

LEMMA 5.2. For any dynamic unit-demand auctionD that
satisfies properties 1, 2, 3, and 4, any bid-history H , and
any agent u such that envy-free(config(D, prefix(H)), u), if
¬submit(H,u), then envy-free(config(D,H), u).

PROOF. Let configuration χ = config(D, prefix(H)) and
let configuration χ′ = config(D,H). If agent u belongs to
unmatched(χ), then the result follows from Lemma 5.1. We
now focus on the case where u belongs to matched(χ). By
property 1 of auction D, configurations χ and χ′ are semi-
Walrasian. Suppose ¬envy-free(χ′, u); then by the definition
of semi-Walrasian configurations, u belongs to matched(χ′).
Let v and v′ be the items in auctionD such that match(χ, v) =
u = match(χ′, v′). By the definition of semi-Walrasian con-
figurations and the definition of items that are priced above
market, item v′ is priced above market. By property 4(a), v
is also priced above market. By property 4(b), gap(χ′, u) ≥
gap(χ, u) and by property 3, potential(χ, v′) = potential(χ′, v′)
and potential(χ, v) = potential(χ′, v). Since envy-free(χ, u),
it follows that gap(χ′, u) = gap(χ, u). Finally, by proper-
ties 2 and 3, potential(χ, v′′) ≥ potential(χ′, v′′) for any item
v′′ in items(χ) \ {v, v′}. It follows that envy-free(χ′, u), a
contradiction. Thus, envy-free(χ′, u).

LEMMA 5.3. For any dynamic unit-demand auctionD that
satisfies properties 1, 2, and 3, any bid-history H , and any
agent u such that¬envy-free(config(D,H), u), if u is matched
to the same item v in configurations config(D, prefix(H)) and
config(D,H), then admissible(config(D, prefix(H)), u) is a
subset of admissible(config(D,H), u).

PROOF. Let configuration χ = config(D, prefix(H)) and
let configuration χ′ = config(D,H). By property 1 of auction
D, configurations χ and χ′ are semi-Walrasian. Let β be any
bid in admissible(χ, u); by definition, β(v)−potential(χ, v) ≥
β(v′) − potential(χ, v′) for any item v′ in items(χ). Since
¬envy-free(χ′, u) and χ′ is semi-Walrasian, by the definition
of items that are priced above market, item v is priced above
market. By properties 2 and 3, potential(χ, v) = potential(χ′, v)
and potential(χ, v′) ≤ potential(χ′, v′) for any item v′ in
items(χ)−v. It follows that, β(v)−potential(χ′, v) ≥ β(v′)−
potential(χ′, v′) for any item v′ in items(χ′). Thus, β is in
admissible(χ′, u).

Theorems 5.1 and 5.2 follow directly by induction on Lem-
mas 5.2 and 5.3 respectively.

THEOREM 5.1. For any dynamic unit-demand auction D
that satisfies properties 1, 2, 3, and 4, any bid-history H ,
any prefix H ′ of bid-history H , and any agent u such that
envy-free(config(D,H ′), u), if ¬submit(prefix(H, j), u) for
length(H ′) < j ≤ length(H), then envy-free(config(D,H), u).

THEOREM 5.2. Let D be a dynamic unit-demand auction
that satisfies properties 1, 2, and 3, letH be a bid-history, and
let H ′ be a prefix of H . Let u be an agent in D such that
¬envy-free(config(D,H), u) and let v be the item such that
match(config(D,H), v) = u. For each j where length(H ′) <
j ≤ length(H), if match(config(D, prefix(H, j)), v) = u and
¬submit(prefix(H, j), u), then

admissible(config(D,H ′), u) ⊆ admissible(config(D,H), u).

5.3.3 Shill-resistance



If the seller of an item in a dynamic auction has access to the
maximum price that an agent who is tentatively allocated to
the item is willing to pay for the item, then the seller can ex-
tract this price by submitting a shill offer just below the agent’s
offer. Thus, a goal of the dynamic auction is to ensure bid pri-
vacy for tentatively allocated agents. Below we formalize what
it means for an agent to be shilled by ∆ units for some non-
negative integer ∆. In Theorem 5.3, we establish that no agent
in the proposed dynamic auction can be shilled by more than
one unit. A consequence of this shill-resistant property is that
no seller can artificially raise the price of an item by more than
one unit without risking forfeiture of sale. The running time
of our auction is independent of the monetary units used; thus
each unit can be considered to be as low as one cent, making
our auction highly resistant to shilling.

We establish bid privacy of an agent u in the auction with re-
spect to the grand coalition of all agents in the auction except
agent u. For any dynamic unit-demand auction D and any
agent u, we define coalition(D,u) as the set of all agents inD
except agent u. The agents in coalition(D,u) are assumed to
learn the following in each round of auctionD: (1) the bids of
all agents except agent u, (2) whether agent u submitted a bid
in the round, (3) the shape (relative differences between of-
fers) of agent u’s bid, and (3) the pricing and allocation at the
end of the round. Assumption (1) ensures that our dynamic
auction preserves the privacy of agent u even when all of the
other agents conspire against u. Assumptions (2) and (3) en-
sure that our notion of privacy does not merely exploit the fact
that agent u is allowed to submit a bid revision in every round.
Assumption (4) is natural since the dynamic auction publishes
the tentative outcome in every round.

For any dynamic unit-demand auction D, any bid-history H ,
and any agent u in auction D, we define possible(D,H, u)
as the set of all bids β such that config(D, subst(H,u, β)) =
subst(config(D,H), u, β). The set possible(D,H, u) corre-
sponds to the set of possible bids of agent u at the end of the
auction that can be deduced by the agents in coalition(D,u).
For any dynamic unit-demand auction D, any bid-history H ,
any agent u in D, and any bid β in possible(D,H, u), we de-
fine possible(D,H, u, β) as the set of all integers z such that
shift(β, z) belongs to possible(D,H, u).

For any dynamic unit-demand auction D, any bid-history H ,
and any agent u, we define risk(D,H, u) to hold if agent u
belongs to the set matched(config(D, prefix(H))) and there
exists a bid β in possible(D, prefix(H), u) such that u belongs
to unmatched(config(D, subst(H,u, β))).

For any dynamic unit-demand auction D, any bid-history H ,
and any agent u, we say u is shilled out of ∆ units if ∆ is the
maximum integer such that there exists integers i and j > i
that satisfy the following conditions:

• Agent u belongs to matched(config(D, prefix(H, j)))

• ¬submit(prefix(H, k), u) for each integer k where i <
k ≤ j

• ¬risk(D, prefix(H, k), u) for each integer k where i <
k ≤ j

• gap(config(D, prefix(H, i)), u) is greater than or equal
to gap(config(D, prefix(H, j)), u) + ∆.

LEMMA 5.4. For any dynamic unit-demand auctionD that
satisfies property 1, 2, 3, and 4, any bid-historyH , any agent u
in matched(config(D,H)), and any bid β in possible(D,H, u),
either envy-free(config(D,H), u), or shift(β, z) belongs to
possible(D,H, u) for any integer z.

PROOF. We use induction on the round number i of the
auction. For the base case, we consider i = 1, the first round
of the auction. By definition, u is unmatched in the input con-
figuration of the first round. By Lemma 5.1, it follows that
envy-free(config(D, prefix(H, 1)), u).

For the induction step, we consider the case where i > 1.
By the induction hypothesis, the lemma holds for all 1 ≤
j < i. Let χ = config(D, prefix(H, i − 1)) and let χ′ =
config(D, prefix(H, i)). If u belongs to unmatched(χ), then
by Lemma 5.1, we have envy-free(χ′, u). We now consider
the case where u belongs to matched(χ). Let v be the item
such that match(χ, v) = u. We consider the following sub-
cases:

• envy-free(χ, u)

If ¬submit(prefix(H, i−1), u), then by Lemma 5.2, we
have envy-free(χ′, u). We now consider the case where
submit(prefix(H, i− 1), u).

First, we consider the case where v does not belong to
items(χ′, u′) for any agent u′ in unmatched(χ′), then
by using property 1 of auction D and the definition of
items that are priced above market, item v is priced above
market. By property 3 of auction D, potential(χ, v) =
potential(χ′, v). Since potential(χ, v) = potential(χ′, v)
and the bid β submitted by u could be arbitrary, it follos
that for any integer z, the bid shift(β, z) is contained in
the set possible(D, prefix(H, i), u).

Next, we consider the case where item v belongs to
items(χ′, u′) for some agent u′ in unmatched(χ′). In
this case, by property 1 of auction D, configuration χ′

is semi-Walrasian, and by the semi-Walrasian property,
we have envy-free(χ′, u).

• For any integer z, the bid shift(β, z) is an element of
possible(D, prefix(H, i− 1), u).

First, we consider the case where v does not belong
to items(χ′, u′) for any agent u′ in unmatched(χ′). In
this case, by property 1 of auction D, configuration χ′

is semi-Walrasian, and by definition of items that are
priced above market, item v is priced above market.
By property 3 of auction D, we have potential(χ, v) =
potential(χ′, v). Since potential(χ, v) = potential(χ′, v)
and for any integer z, shift(β, z) is contained in the set
possible(D, prefix(H, i − 1), u), it follows that for any
integer z, shift(β, z) is in possible(D, prefix(H, i), u).

Next, we consider the case where v is in items(χ′, u′)
for some agent u′ in unmatched(χ′). In this case, by
property 1 of auction D, χ′ is semi-Walrasian, and by
the semi-Walrasian property of configurationχ′, we have
envy-free(χ′, u).



LEMMA 5.5. For any dynamic unit-demand auctionD that
satisfies properties 1 and 6, any bid-history H , any agent u in
matched(config(D,H)), and any bid β in possible(D,H, u),
if envy-free(config(D,H), u), then there exists a smallest in-
teger z0 such that for any integer z ≥ z0, shift(β, z) belongs
to possible(D,H, u), and either (a) any nonnegative integer
is a possible value of gap(config(D,H), u), or (b) any posi-
tive integer is a possible value of gap(config(D,H), u).

PROOF. Let configuration χ = config(D,H) and let v
be the item in auction D such that match(χ, v) = u. Since
envy-free(χ, u), we have gap(χ, u) ≥ 0. It follows that there
exists a maximum integer z′ such that, gap(shift(χ, u, z), u) <
0 for any integer z < z′. By property 1 of auction D, χ
is semi-Walrasian; since envy-free(χ, u), by definition, v is
priced at market. By property 6 of auction D, for any inte-
ger z > z′, the bid shift(β, z) belongs to possible(D,H, u).
Let H ′ = subst(H,u, shift(β, z′)). By definition, we have
gap(shift(χ, u, z′), u) = 0; thus, if envy-free(config(D,H ′), u),
then z0 = z′ and any nonnegative integer is a possible value
of gap(χ, u); otherwise, z0 = z′ + 1 and any positive integer
is a possible value of gap(χ, u).

LEMMA 5.6. For any dynamic unit-demand auctionD that
satisfies properties 1, 2, 3, 4, and 6, any bid-history H , and
any agent u in matched(config(D,H)), if ¬submit(H,u) and
¬risk(D,H, u), then for any bid β in possible(D,H, u), we
have possible(D,H, u, β) = possible(D, prefix(H), u, β).

PROOF. Let configuration χ = config(D, prefix(H)) and
let configuration χ′ = config(D,H). Let v be the item in
auction D such that match(χ′, v) = u. Since β belongs to
possible(D,H, u) and ¬submit(H,u), it follows from prop-
erties 2 and 3 of auction D, that β is contained in the set
possible(D, prefix(H), u). By Lemma 5.4, we know that ei-
ther envy-free(config(D, prefix(H)), u), or shift(β, z) belongs
to possible(D, prefix(H), u) for any integer z. We consider
the following cases:

• envy-free(χ, u)

By Lemma 5.2, we have envy-free(χ′, u). It follows
from Lemma 5.5 that the possible values for gap(χ′, u)
deduced by coalition(D,u) either include (a) all non-
negative integers or, (b) all integers greater than 0. Since
envy-free(χ, u), by Lemma 5.5, there exists a small-
est integer k in in possible(D, prefix(H), u, β). Since
¬risk(D,H, u) and¬submit(H,u), it follows that k be-
longs to possible(D,H, u, β). By Lemma 5.5, we know
that every integer z > k is in possible(D,H, u, β).
Thus, possible(D, prefix(H), u) ⊆ possible(D,H, u).
Since ¬submit(H,u), by properties 2 and 3 of auction
D, possible(D,H, u) ⊆ possible(D, prefix(H), u). Thus,
possible(D,H, u) = possible(D, prefix(H), u).

• shift(β, z) belongs to possible(D, prefix(H), u) for any
integer z

By property 1 of auction D, configuration χ is semi-
Walrasian. Since ¬risk(D,H, u), item v does not be-
long to items(χ, u′) for any agent u′ in unmatched(χ).
By the semi-Walrasian property of configuration χ, item

v is priced above market, and by property 4(a) of auction
D, u belongs to matched(χ). Let v′ be the item such
that match(χ, v′) = u. By properties 2 and 3 of auction
D, potential(χ, v) = potential(χ′, v), potential(χ, v′) =
potential(χ′, v′), and potential(χ, v′′) ≥ potential(χ′, v′′)
for any item v′′ in items(χ) \ {v, v′}. Thus, we have
possible(D, prefix(H), u) ⊆ possible(D,H, u). Since
¬submit(H,u), by properties 2 and 3 of auction D, we
have possible(D,H, u) ⊆ possible(D, prefix(H), u).
Thus, possible(D,H, u) = possible(D, prefix(H), u).

THEOREM 5.3. For any dynamic unit-demand auction D
that satisfies properties 1, 2, 3, 4, and 6, and any bid-history
H , no agent in auctionD can be shilled by more than one unit.

PROOF. Suppose there exists an agent u who is shilled by
∆ > 1 in an execution of auction D with bid-history H .
Then, by definition, there exists integer i and j, where j >
im such that the following conditions hold: (1) u belongs to
matched(config(D, prefix(H, j))), (2)¬submit(prefix(H, k), u)
holds for each integer k where i < k ≤ j, (3) for each integer
k where i < k ≤ j, we have ¬risk(D, prefix(H, k), u), and
(4) gap(config(D, prefix(H, i)), u) is greater than or equal to
gap(config(D, prefix(H, j)), u) + ∆.

Let χ = config(D, prefix(H, i)). If ¬envy-free(χ, u) then β
can be arbitrary, and any integer is a possible value of gap(χ, u).
If envy-free(χ, u), then by Lemma 5.5, the possible values
of gap(χ, u) either includes (a) all nonnegative integers, or
(b) all integers greater than 0. When zero is a possible value
for gap(χ, u), it is easy to see that u cannot be shilled even
by a single unit without coalition(D,u) risking forfeiture of
sale. We now consider the case where envy-free(χ, u) holds
and any positive integer is a possible value of gap(χ, u). By
Lemma 5.6, we know that possible(D, prefix(H, k), u, β) =
possible(D, prefix(H, k + 1), u, β) for i ≤ k < j. Thus, if
u is shilled by one unit in a round k where i < k ≤ j, then
zero is a possible value of gap(config(D, prefix(H, l)), u) for
k < l ≤ j and u cannot be shilled further, a contradiction.
Thus, u cannot be shilled by more than a unit.

5.4 Scalability
In this section, we briefly sketch the details of a fast implemen-
tation of the dynamic auction. In each round of the dynamic
auction, new bid data (i.e., bid revision requests from tenta-
tively allocated agents, and bids from unallocated agents) is
received and the tentative allocation and pricing is updated us-
ing an instance of the sealed-bid unit-demand auction with put
options [10]. Recall from Section 4.2 that in the first round
of the sealed-bid auction, the bid of each unallocated agent
can be processed in time proportional to the time required to
solve a single-source shortest paths (SSSP) problem on the ac-
tive subgraph of the associated bid-graph. At the start of a
round, one or more tentatively allocated agents are not envy-
free. If a tentatively allocated agent u who is not envy-free
becomes unallocated in the round, then u is added to the set
of unallocated agents whose bids are yet to be processed. For
each such agent u, the number of tentatively allocated agents
who are not envy-free decreases by at least one as the only
way a tentatively allocated agent can cease to be envy-free is
by revising its bid. Furthermore, when we use an SSSP com-
putation to process the bid of the now-unallocated agent u,



we can charge the cost of this SSSP computation to the most
recent bid revision of u. Consequently, the total number of
SSSP computations performed across all rounds is at most the
total number of bidding operations (i.e., bid revisions or new
bids) over all rounds. For our fast implementation, we choose
the TTC [15] algorithm to implement the second phase of the
sealed-bid auction used in each round. From Section 4.2, the
TTC algorithm can be implemented in time linear in the size
of the active subgraph.

In summary, it is possible to implement the dynamic auction
in such a way that the amortized cost of each bidding opera-
tion is close to linear in the size of the active subgraph of the
bid-graph, which is at most quadratic in the number of items.
Moreover, in many practical auction settings, the average num-
ber of active bid components of a tentatively allocated agent is
likely to be small, say at most a constant. In such settings, the
number of active bid components is linear in the number of
items, and hence the amortized cost of each bidding operation
is close to linear in the number of items.

6. SNIPING FEES
In this section we describe how to modify our dynamic unit-
demand auction to encourage early bidding, while preserving
all of the theoretical properties established earlier in the paper.
In Section 6.1 we review a standard technique for incorpo-
rating agent-specific adjustments into the selling prices of the
items. In Section 6.2, we generalize this technique to allow
for price adjustments that may increase from one round to the
next. Such dynamic price adjustments are used to discourage
“sniping”, i.e., waiting until close to the end of the auction to
submit a bid. Sniping diminishes agents’ ability to focus value
discovery efforts on the most relevant items, thereby increas-
ing participation costs and degrading efficiency.

6.1 Static Price Adjustments
At the conclusion of a typical single-item online auction, the
item is shipped to the winning agent. The winning agent pays
the auction price plus shipping costs. The cost of shipping is
agent-specific, in general, because it may vary depending on
the shipping address. The cost of shipping is typically made
available to the agents during the auction (e.g., via a ship-
ping calculator). Viewed more abstractly, the seller publishes
a static function adjustment(u) as part of the auction listing,
and if agent u wins the auction, then agent u pays the auction
price plus adjustment(u).

Such an abstraction is also useful for selling an item with mul-
tiple “variants”. For example, consider a computer that can
be sold with or without a monitor. The auction listing for the
computer might specify an additional charge for the optional
monitor. Such variant-related charges might be agent-specific
(e.g., due to the cost of shipping the monitor), and in gen-
eral might be positive or negative. The auction listing of the
seller provides the necessary information (e.g., shipping cal-
culator, fixed price adjustments for different variants) to al-
low each agent u to determine the relevant price adjustment
adjustment(u) to be paid in the event that agent uwins the auc-
tion. We view the adjustment as a function of the agent only,
as opposed to the agent and variant, because the agent selects
the relevant variant based on the published cost adjustments.

In this sense, the problem of supporting multiple variants of an
item is reduced to the single-variant case.

The framework discussed above generalizes immediately to
the unit-demand setting, where we have a static price adjust-
ment function adjustment(u, v) that specifies the amount to
be added to the auction price to determine the total price paid
by agent u for item v. It is natural to ask whether the theo-
retical properties established for our auction continue to hold
in the presence of such an adjustment function. Apart from
the price adjustment performed at the end of the auction, the
computations performed by our auction depend only on the
non-adjusted bids. Consequently, it is straightforward to argue
that all of the theoretical properties established for our auction
continue to hold with respect to the non-adjusted bids/prices.
(Regarding our claim that each individual round of our auc-
tion is truthful, we point out that a non-adjusted bid of agent
u is truthful if the corresponding adjusted bid is equal to the
truthful preferences of agent u.)

6.2 Dynamic Price Adjustments
The static price adjustment framework discussed in Section 6.1
reflects standard practice in single-item auctions, and gener-
alizes straightforwardly to the unit-demand setting. We now
introduce a variation of this framework in which there is a
separate price adjustment function adjustmenti for each round
i of the auction. We require that the choice of the function
adjustmenti is determined by the public component of the bid-
ding history up to the start of round i, and that for any agent
u, item v, and rounds i and j such that i < j, we have
adjustmenti(u, v) ≤ adjustmentj(u, v).

When an agent u wins an item v, agent u pays the auction
price plus adjustmenti(u, v), where i is the index of the earli-
est round such that for all rounds with index at least i, the out-
put configuration χ = (G,M,Φ) satisfies w(u, v)− Φ(v) ≥
min(0, gap(χ, u)). Roughly speaking, the latter condition checks
whether agent u’s unit-demand bid still has the possibility of
winning item v in a later round, even if it is left unchanged.

Reasoning as in the case of a static price adjustment function
discussed in Section 6.1, it is straightforward to argue that our
dynamic price adjustment scheme continues to enjoy all of the
theoretical properties established in earlier sections of the pa-
per. In this regard, we remark that our requirement that func-
tion adjustmenti is determined by the public component of the
bidding history up to the start of round i ensures that the shill-
resistance of the auction is preserved. (In the absence of this
requirement, the choice of the function adjustmenti could re-
veal private information related to the bids of the tentatively
allocated agents.) The scalability of our auction is unaffected
since it is easy to compute the price adjustments to be applied
at the end of the auction. Indeed, we can compute tentative
price adjustments at the end of each round without increasing
the asymptotic complexity of processing a round.

The requirement that adjustmenti(u, v) is nondecreasing in i
is motivated by our desire to encourage early bidding in the
auction. Suppose agent u wins item v, and our price adjust-
ment rule prescribes that agent u pays the auction price plus
adjustmenti(u, v). We view the nonnegative value obtained by



subtracting adjustment1(u, v) from adjustmenti(u, v) as the
“sniping fee” incurred by agent u for not bidding earlier. (Re-
mark: The term “sniping” is often used narrowly to refer to
submitting a bid in the last few seconds of an auction. Here we
use the term more broadly, since our sniping fee structure can
be multi-tiered to discriminate between bids submitted with
arbitrarily varying amounts of time remaining in the auction.)

We now describe a simple but practically important use case
of the dynamic price adjustment framework introduced above.
Consider a unit-demand auction in which the listing of each
item v specifies — at the outset of the auction — the value of
adjustmenti(u, v) for all agents u and rounds i. For i = 1,
these values can be used to model shipping costs and item
variants as discussed in Section 6.1. The sniping fee appli-
cable to bids submitted in the first round is zero. For any
agent u and round i > 1, the quantity adjustmenti(u, v) −
adjustmenti−1(u, v) models the nonnegative change in snip-
ing fee from round i − 1 to round i. A potential drawback
of this scheme is that the sniping fees for an item v accumu-
late even while the item remains tentatively allocated to the
dummy agent for item v (because the reserve price has not
been reached). It may be preferable for the seller of item v to
specify how sniping fees are to grow once the reserve price has
been met. Such a more complex sniping fee schedule — which
has a nontrivial dependence on the bidding history — still falls
well within the general dynamic price adjustment framework
introduced above.

We now discuss considerations associated with the design of
a suitable sniping fee schedule for a given item in the auction.
For the sake of concreteness, we pursue this discussion in the
context of a specific popular online auction format: A contin-
uous auction with a fixed one-week duration. (In a continuous
auction, the tentative pricing and allocation is updated imme-
diately once a bidding operation is received. Equivalently, we
can imagine that each round corresponds to a fixed, infinitesi-
mally small, interval of time.) Similar considerations arise in
the design of sniping fee schedules for other auction formats.

Under one simple sniping fee schedule for a one-week contin-
uous auction, the sniping fee might increase linearly from zero
— at the time when the reserve is met — to a seller-specified
maximum value at the end of the auction. However, such a
schedule is unlikely to be appropriate. Notice, for example,
that the sniping fee would remain virtually constant over the
last hour of the auction. From the perspective of allowing
competing agents to engage in additional value discovery in
response to one’s bid, there is a significant difference between
bidding with ten seconds left in the auction, with one minute
left, with five minutes left, or with an hour left. This observa-
tion leads us to conclude that the sniping fee should increase
more rapidly as the time remaining in the auction diminishes.
For example, it might be reasonable to make the sniping fee
proportional to the logarithm of the ratio of the auction du-
ration to the time remaining. Doing so results in an additive
increase in the sniping fee whenever the time remaining de-
creases geometrically, and a geometric decrease in the time
remaining has a qualitative impact on the ability of agents to
engage in value discovery.

7. DISCUSSION
In our current presentation of the auction, we have assumed
that the set of items for sale in the auction is static. It is
straightforward to modify the auction to allow new items to
be introduced in each round. Further, we have assumed that
all items in the auction have the same expiry time. It is pos-
sible to relax this assumption. For example, we can specify a
separate expiration time for each item in the auction, and allow
unit-demand bidding across items that expire within the same
interval of time (e.g., the same day).

The binary string identifiers associated with agents and items
in our dynamic auction provide fixed total orders over the sets
of agents and items. The properties of our auction continue
to hold even if these total orders are changed from one round
of the auction to the next. We recommend using a single total
order over the items for all rounds of the dynamic auction; for
example, this total order could be derived by sorting a fixed
set of item identifiers. We recommend a slightly more com-
plex scheme for determining the total order over the agents to
be used in each round. First, we recommend that all dummy
agents be ordered lower than all non-dummy agents in every
round; this ensures that an item can be sold to a non-dummy
agent at the starting price. Within the set of dummy agents, we
recommend using the same (arbitrary) fixed total order in all
rounds.

Within the set of non-dummy agents, we recommend using a
dynamic timestamp-based ordering, where the timestamp of
an agent is determined as follows. In the first round, all agents
are assigned the same timestamp. In any non-first round i,
recall that the agents may be partitioned into sets (1) agents
that were tentatively allocated at the end of the previous round;
and (2) (non-dummy) agents that were not tentatively allocated
at the end of the previous round, and are submitting a new unit-
demand bid in the current round. Timestamp i is assigned to
all of the agents in set (2). Each agent u in set (1) is assigned
the minimum timestamp j less than i such that u is allocated
in the solution associated with all applications of the sealed-
bid unit-demand auction with put options in rounds j through
i − 1. Having determined these timestamps, we recommend
ordering any pair of agents u and u′ participating in round i as
follows: if u and u′ have distinct timestamps, then the agent
with the higher timestamp is considered lower; if u and u′ have
equal timestamps, then the order of the agents is determined by
an arbitrary fixed total order. The motivation for the proposed
dynamic timestamp-based scheme is that it breaks ties in favor
of agents who have been allocated longer.

The single-item auction mechanism employed by eBay is es-
sentially a dynamic second-price auction. We have shown how
to generalize this popular auction format to the unit-demand
case, while supporting arbitrary bid revision by tentatively al-
located bidders. Our auction maintains strong properties re-
lated to efficiency, truthfulness, privacy preservation, and scal-
ability. We have implemented our auction in Java and verified
that it is capable of processing large numbers of bidding oper-
ations per second. Such speed is important in practice, since
it is desirable for a dynamic auction to compute and publish
updates to the pricing and allocation in real time.
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