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Abstract

Consider a complete weighted bipartite graph G in which each left vertex u has two real
numbers intercept and slope, each right vertex v has a real number quality, and the weight of
any edge (u, v) is defined as the intercept of u plus the slope of u times the quality of v. Let m
(resp., n) denote the number of left (resp., right) vertices, and assume that m ≥ n. We develop
a fast algorithm for computing a maximum weight matching (MWM) of such a graph. Our
algorithm begins by computing an MWM of the subgraph induced by the n right vertices and
an arbitrary subset of n left vertices; this step is straightforward to perform in O(n log n) time.
The remaining m − n left vertices are then inserted into the graph one at a time, in arbitrary
order. As each left vertex is inserted, the MWM is updated. It is relatively straightforward to
process each such insertion in O(n) time; our main technical contribution is to improve this
time bound to O(

√
n log2 n). This result has an application related to unit-demand auctions. It

is well known that the VCG mechanism yields a suitable solution (allocation and prices) for any
unit-demand auction. The graph G may be viewed as encoding a special kind of unit-demand
auction in which each left vertex u represents a unit-demand bid, each right vertex v represents
an item, and the weight of an edge (u, v) represents the offer of bid u on item v. In this
context, our fast insertion algorithm immediately provides an O(

√
n log2 n)-time algorithm

for updating a VCG allocation when a new bid is received. We show how to generalize the
insertion algorithm to update (an efficient representation of) the VCG prices within the same
time bound.
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1 Introduction
Given an undirected graphG = (V,E), a matching ofG is a subset M of E such that no two edges
inM share an endpoint. IfG is a weighted graph, we define the weight of a matching as the sum of
the weights of its constituent edges. The problem of finding a maximum weight matching (MWM)
of a weighted bipartite graph, also known as the “assignment problem” in operations research, is a
basic and well-studied problem in combinatorial optimization. A classic algorithm for the assign-
ment problem is the Hungarian method [10], which admits an O(|V |3)-time implementation. For
dense graphs with arbitrary edge weights, this time bound remains the fastest known. Fredman
and Tarjan [4] introduce Fibonacci heaps, and by utilizing this data structure to speed up short-
est path computations, they obtain a running time of O(|V |2 log |V |+ |E| · |V |) for the maximum
weight bipartite matching problem. When the edge weights are integers in {0, . . . , N}, Duan and
Su [3] give a scaling algorithm with running time O(|E|

√
|V | logN). In this paper, we consider a

restricted class of complete weighted bipartite graphs where the edge weights have a special struc-
ture. Both unweighted and weighted matching problems in restricted classes of bipartite graphs
have been studied extensively. Gabow and Tarjan [5], Glover [6], Katriel [9], Lipski and Preparata
[12], Steiner and Yeomans [17] study matching problems in convex bipartite graphs, the graphs
in which the right vertices can be ordered in such a way that the neighbors of each left vertex
are consecutive. Plaxton [13] studies vertex-weighted matchings in two-directional orthogonal ray
graphs, which generalize convex bipartite graphs.

In the present paper, we develop a fast algorithm for computing an MWM of a complete
weighted bipartite graph with the following special structure: there are m left vertices, each of
which has two associated real values, a “slope” and an “intercept”; there are n right vertices, each
of which has an associated real “quality”; for each left vertex u and right vertex v, the weight of
edge (u, v) is given by the slope of u times the quality of v plus the intercept of u. Since the
weight of any edge (u, v) is determined by evaluating the linear function specified by u (via the
slope and intercept) on the quality of v, we refer to this problem as bipartite matching with linear
edge weights. Assuming that m ≥ n, we solve this problem in O(m

√
n log2 n) time. We begin

by solving the problem on a subgraph induced by the n right vertices and an arbitrary subset of n
left vertices; this turns out to be easy to accomplish in O(n log n) time via sorting. We then insert
the remaining left vertices one at a time, in arbitrary order. As each left vertex is inserted, we
update the solution in O(

√
n log2 n) time. It is relatively straightforward to process each such in-

sertion in O(n) time, yielding an overall O(mn) time bound. Our algorithm provides a significant
improvement over the latter bound, which is the fastest previous result that we are aware of.

In recent work that is closely related to the current paper, Domaniç and Plaxton [2] present
a fast algorithm for bipartite matching with linear edge weights in the special case where the
qualities of the right vertices form an arithmetic sequence. Assuming that m ≥ n, their algorithm
runs in O(m logm) time. Applying that algorithm to the scheduling domain directly solves the
problem of scheduling unit jobs on a single machine with a common deadline where each job has
a weight and a profit, and the objective is to minimize the sum of the weighted completion times
of the scheduled jobs plus the sum of the profits of the rejected jobs. Domaniç and Plaxton [2]
also provide an extension that preserves the O(m logm) time bound for the special case where
the qualities correspond to the concatenation of two arithmetic sequences. This extension solves a
more general scheduling problem that incorporates weighted tardiness penalties with respect to a
common due date into the objective.
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By removing the technical restrictions on the qualities imposed in [2], the algorithm of the
present paper supports a richer edge weight structure, while continuing to admit a compact graph
representation that uses space linear in the number of vertices. In terms of scheduling, the present
algorithm addresses a broader class of problems than [2]; for example, it can handle symmetric
earliness and tardiness penalties with respect to a common due date, and allows certain time slots
to be marked as unavailable. Below we discuss another motivation for the present work, which is
based on its connection to unit-demand auctions.

In a unit-demand auction of a collection of items, each bidder submits a bid that specifies a
separate offer on each item, which may or may not be equal to the private valuation that the bidder
has for that item [1]. The outcome of the unit-demand auction is a pricing of the items and an
allocation of each bidder to at most one item. In mechanism design, it is known that the VCG
mechanism is the only mechanism for unit-demand auctions that achieves the desired properties of
being efficient, strategyproof, and envy-free [7, 11]. Such an auction can be modeled as a bipartite
graph in which each left vertex represents a bid, each right vertex represents an item, and the weight
of the edge from a bid u to an item v represents the offer of the bid u on item v. Then, a VCG
allocation corresponds to an MWM of such bipartite graph, and the VCG prices correspond to the
dual variables computed by the Hungarian method, i.e., they correspond to the prices having the
minimum sum among the ones that are the solutions to the dual of the linear program that solves
the assignment problem encoding the auction.

The main motivation for our interest in the problem we consider in this paper, given the afore-
mentioned desirable properties of the VCG mechanism, is to find frameworks to encode unit-
demand auctions that are expressive enough to have suitable applications while being restrictive
enough to yield efficient algorithms for finding VCG outcomes. For instance, consider a unit-
demand auction for last-minute vacation packages in which some trusted third party (e.g., TripAd-
visor) assigns a “quality” rating for each package and each bidder formulates a unit-demand bid for
every package by simply declaring a linear function of the qualities of packages, i.e., determining
the intercept and slope of this linear function. Within this context, we can formulate an auction
as a complete weighted bipartite graph in the family that we consider in this paper. In some of
the popular auction sites, e.g., eBay, bidding takes place in multiple rounds. eBay implements a
variant of an English auction to sell a single item; the bids are sealed, but the second highest bid
(plus one small bid increment), which is the amount that the winner pays, is displayed throughout
the auction. We employ a similar approach by accepting the bids one-by-one and by maintaining
an efficient representation of the tentative outcome for the enlarged set of bids. We show that we
can process each bid in Õ(

√
n) time where n denotes the number of items in the auction. More

precisely, we present a data structure that is initialized by the entire set of n items; the bids are
introduced one-by-one in any order; the data structure maintains a compact representation of a
VCG outcome (allocation and prices) for the bids introduced so far and for the entire set of items;
it takes O(

√
n log2 n) time to introduce a bid; it takes O(n) time to print the outcome at any time.

Organization. In Sect. 2, we give the formal definition of the problem and introduce some
useful definitions. In Sect. 3, we present an incremental framework for solving the problem. In
Sect. 4, we present a basic algorithm within the framework of Sect. 3. Built on the concepts
introduced in Sect. 4, we introduce a data structure and present our fast algorithm in Sect. 5. In
Section 6, we extend the incremental framework to compute the VCG prices, and we present the
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algorithm within that framework.

2 Preliminaries
A bid is a triple u = (slope, intercept , id) where slope and intercept are real numbers, and id is
an integer. We use the notation u.slope and u.intercept to refer to the first and second components
of a bid u, respectively. The bids are ordered lexicographically. An item is a pair v = (quality , id)
where quality is a real number and id is an integer. We use the notation v.quality to refer to the
first component of an item v. The items are ordered lexicographically. For any bid u and any item
v, we define w(u, v) as u.intercept + u.slope · v.quality .

For any set of bids U and any set of items V , we define the pair (U, V ) as a unit-demand auction
with linear edge weights (UDALEW). Such an auction represents a unit-demand auction instance
where the set of bids is U , the set of items is V , and each bid u in U offers an amount w(u, v) on
each item v in V .

A UDALEW A = (U, V ) corresponds to a complete weighted bipartite graph G where left
vertices are U , right vertices are V , and the weight of the edge between a left vertex u and a
right vertex v is equal to w(u, v). Hence, for a UDALEW, we use the standard graph theoretic
terminology, alluding to the corresponding graph. The family of all such graphs G corresponds to
the general graph family introduced in [2].

A matching of a UDALEW (U, V ) is a set M of bid-item pairs where each bid (resp., item) in
M belongs to U (resp., V ) and no bid (resp., item) appears more than once in M . The weight of a
matching M , denoted w(M), is defined as the sum, over all bid-item pairs (u, v) in M , of w(u, v).

In this paper, we solve the problem of finding a VCG outcome (allocation and prices) for a
given UDALEW A; a VCG allocation is any MWM of A, and we characterize the VCG prices
in Sect. 6.2. We reduce the problem of finding an MWM to the problem of finding a maximum
weight maximum cardinality matching (MWMCM) as follows: we enlarge the given UDALEW
instance A = (U, V ) by adding |V | dummy bids to U , each with intercept zero and slope zero; we
compute an MWMCM M of the resulting UDALEW A′; we remove from M all bid-item pairs
involving dummy bids.

We conclude this section with some definitions that prove to be useful in the remainder of the
paper. For any totally ordered set S — such as a set of bids, a set of items, or an ordered matching
which we introduce below — we make the following definitions: any integer i is an index in S
if 1 ≤ i ≤ |S|; for any element e in S, we define the index of e in S, denoted index (e, S),
as the position of e in the ascending order of elements in S, where the index of the first (resp.,
last) element, also called the leftmost (resp., rightmost) element, is 1 (resp., |S|); S[i] denotes the
element with index i in S; for any two indices i and j in S such that i ≤ j, S[i : j] denotes the set
{S[i], . . . , S[j]} of size j − i+ 1; for any two integers i and j such that i > j, S[i : j] denotes the
empty set; for any integer i, S[ : i] (resp., S[i : ]) denotes S[1 : i] (resp., S[i : |S|]); a subset S ′ is a
contiguous subset of S if S ′ = S[i : j] for some 1 ≤ i ≤ j ≤ |S|.

For any matching M , we define bids(M) (resp., items(M)) as the set of bids (resp., items)
that participate in M . A matching M is ordered if M is equal to

⋃
1≤i≤|M | {(U [i], V [i])} where

U denotes bids(M) and V denotes items(M). The order of the pairs in an ordered matching is
determined by the order of the bids (equivalently, items) of those pairs.
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3 Incremental Framework
In this section, we present an incremental framework for the problem of finding an MWMCM of
a given UDALEW A = (U, V ). As discussed below, it is a straightforward problem if |U | ≤ |V |.
Thus, the primary focus is on the case where |U | > |V |. We start with a useful definition and a
simple lemma.

For any set of bids U and any set of items V such that |U | = |V |, we define matching(U, V )
as the ordered matching {(U [1], V [1]), . . . , (U [|U |], V [|U |])}.

Lemma 1 below shows how to compute an MWMCM of a UDALEW where the number of
bids is equal to the number of items. The proof follows from the rearrangement inequality [8,
Section 10.2, Theorem 368].

Lemma 1. For any UDALEW A = (U, V ) such that |U | = |V |, matching(U, V ) is an MWMCM
of A.

Corollary 1. For any UDALEW A = (U, V ) such that |U | ≥ |V |, there exists an ordered
MWMCM of A.

If |U | < |V | in a given UDALEW (U, V ), then it is straightforward to reduce the problem
to the case where |U | = |V |. Let U ′ (resp., U ′′) denote the set of the bids in U having negative
(resp., nonnegative) slopes. Then we find an MWMCM M ′ of the UDALEW (U ′, V [ : |U ′|]) and
an MWMCM M ′′ of the UDALEW (U ′′, V [|V | − |U ′′|+ 1 : ]), and we combine M ′ and M ′′ to
obtain an MWMCM of (U, V ).

It remains to consider the problem of finding an MWMCM of a UDALEW (U, V ) where
|U | > |V |. The following is a useful lemma. The proof is straightforward by an augmenting
path argument; see [2, Lemma 7] for the proof of a similar claim.

Lemma 2. Let A = (U, V ) be a UDALEW such that |U | ≥ |V |. Let u be a bid that does not
belong to U . Let M be an MWMCM of A and let U ′ denote bids(M). Then, any MWMCM of the
UDALEW (U ′ + u, V ) is an MWMCM of the UDALEW (U + u, V ).

Lemma 2 shows that the problem of finding an MWMCM of a UDALEW (U, V ) where |U | =
|V | + k reduces to k instances of the problem of finding an MWMCM of a UDALEW where the
number of bids exceeds the number of items by one. Below we establish an efficient incremental
framework for solving the MWMCM problem based on this reduction.

For any ordered matching M and any bid u that does not belong to bids(M), we define
insert(M,u) as the ordered MWMCM M ′ of the UDALEW A = (bids(M) + u, items(M))
such that the bid that is left unassigned by M ′, i.e., (bids(M) +u)\ bids(M ′), is maximum, where
the existence of M ′ is implied by Corollary 1.

We want to devise a data structure that maintains a dynamic ordered matching M . When
the data structure is initialized, it is given an ordered matching M ′, and M is set to M ′; we say
that the data structure has initialization cost T (n) if initialization takes at most T (|M ′|) steps.
Subsequently, the following two operations are supported: the bid insertion operation takes as
input a bid u not in bids(M), and transforms the data structure so that M becomes insert(M,u);
the dump operation returns a list representation of M . We say that the data structure has bid
insertion (resp., dump) cost T (n) if bid insertion (resp., dump) takes at most T (|M |) steps.
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Lemma 3. Let D be an ordered matching data structure with initialization cost f(n), bid insertion
cost g(n), and dump cost h(n). Let A be a UDALEW (U, V ) such that |U | ≥ |V |. Then an
MWMCM of A can be computed in O(f(|V |) + (|U | − |V |) · g(|V |) + h(|V |)) time.

Proof. Let U ′ be a subset of U such that |U ′| = |V |. Let 〈u1, . . . , u|U |−|U ′|〉 be a permutation of
the bids in U \ U ′. For any integer i such that 0 ≤ i ≤ |U | − |U ′|, let Ui denote U ′ ∪ {u1, . . . , ui}.
Remark: U0 = U ′ and U|U |−|U ′| = U . We now show how to use D to find an ordered MWMCM
of the UDALEW A = (U|U |−|U ′|, V ). We initialize D with M0 = matching(U0, V ), which by
Lemma 1 is an ordered MWMCM of the UDALEW (U0, V ). Then we iteratively insert bids
u1, . . . , u|U |−|U ′|. Let Mi denote the ordered matching associated with D after i iterations, 1 ≤
i ≤ |U | − |U ′|. By the definition of bid insertion, Mi is an ordered MWMCM of the UDALEW
(bids(Mi−1) + ui, V ), and thus, is an MWMCM of the UDALEW (Ui, V ) by induction on i and
Lemma 2. Thus, a dump on D after completing all iterations returns an ordered MWMCM of A.
The whole process runs in the required time since we perform one initialization, |U | − |U ′| bid
insertions, and one dump.

In Sect. 4, we give a simple linear-time bid insertion algorithm assuming an array representation
of the ordered matching. Building on the concepts introduced in Sect. 4, Sect. 5 develops an or-
dered matching data structure with initialization cost O(n log2 n), bid insertion cost O(

√
n log2 n),

and dump cost O(n) (Theorem 2). The results of Sect. 5, together with Lemma 3, yield the
O(m

√
n log2 n) MWMCM time bound claimed in Sect. 1.

Looking from an auction perspective, as discussed in Sect. 2, our goal is to compute a VCG
allocation and pricing given a UDALEW. In Sect. 6, we show how to extend the data structure of
Sect. 5 to maintain the VCG prices as each bid is inserted. The asymptotic time complexity of
the operations remain the same; the additional computation for maintaining the VCG prices takes
O(
√
n) time at each bid insertion, where n denotes the size of the matching maintained by the data

structure.

4 A Basic Bid Insertion Algorithm
In this section, we describe a linear-time implementation of insert(M,u) given an array repre-
sentation of the ordered matching. The algorithm described here is not only useful because it
introduces the concepts that the fast algorithm we introduce in Sect. 5 is built on, but also the same
approach is used in certain “block scan” computations of that fast algorithm. We first introduce
two functions that, in a sense evident by their definitions, restrict insert(M,u) into two halves, left
and right, of M split by u.

For any ordered matching M and any bid u that does not belong to bids(M), we define
insertL(M,u) (resp., insertR(M,u)) as the ordered MCM M ′ of the UDALEW A = (bids(M) +
u, items(M)) of maximum weight subject to the condition that the bid that is left unassigned by
M ′, i.e., (bids(M) + u) \ bids(M ′), is less (resp., greater) than u, where the ties are broken by
choosing the MCM that leaves the maximum such bid unassigned; if no such MCM exists, i.e.,
u is less (resp., greater) than every bid in bids(M), then insertL(M,u) (resp., insertR(M,u)) is
defined as M .

The following lemma characterizes insert(M,u) in terms of insertL(M,u) and insertR(M,u);
the proof directly follows from the definitions of insert(M,u), insertL(M,u), and insertR(M,u).
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Lemma 4. Let M be a nonempty ordered matching and let u be a bid that does not belong to
bids(M). Let ML denote insertL(M,u) and let MR denote insertR(M,u). Let W denote the
maximum of w(ML), w(M), and w(MR). Then,

insert(M,u) =


MR if w(MR) = W

M if w(M) = W > w(MR)

ML otherwise.

We now introduce some definitions that are used in Lemma 5 below to characterize insertL(M,u)
and insertR(M,u).

For any ordered matchingM and any two indices i and j inM , we defineM j
i as matching(U−

U [i], V − V [j]), where U denotes bids(M) and V denotes items(M).
Let M be a nonempty ordered matching, let U denote bids(M), and let V denote items(M).

Then we define ∆L(M) as w(M
|M |
1 )− w(M), and we define ∆R(M) as w(M1

|M |)− w(M). It is
straightforward to see that ∆L(M [i : j]) and ∆R(M [i : j]) can be computed for any 1 ≤ i ≤ j ≤
|M | by the recurrences

∆L(M [k − 1 : j]) = ∆L(M [k : j]) + w(U [k], V [k − 1])− w(U [k − 1], V [k − 1]) (L1)
∆R(M [i : k + 1]) = ∆R(M [i : k]) + w(U [k], V [k + 1])− w(U [k + 1], V [k + 1]) (R1)

with base cases ∆L(M [j]) = −w(U [j], V [j]) and ∆R(M [i]) = −w(U [i], V [i]).
Let M be a nonempty ordered matching. Letting W denote max1≤i≤|M | w(M

|M |
i ), we de-

fine ∆∗L(M) as W − w(M), and we define loserL(M) as max
{
i | w(M

|M |
i ) = W

}
. Symmet-

rically, letting W ′ denote max1≤i≤|M | w(M1
i ), we define ∆∗R(M) as W ′ − w(M), and we de-

fine loserR(M) as max {i | w(M1
i ) = W ′}. By Lemma 1 and by the definitions of ∆L(M) and

∆R(M), it is straightforward to see that (∆∗L(M), loserL(M)) = max1≤i≤|M |(∆L(M [i : ]), i)
and (∆∗R(M), loserR(M)) = max1≤i≤|M |(∆R(M [ : i]), i) (the pairs compare lexicographically).
Hence, ∆∗L(M [i : j]), loserL(M [i : j]), ∆∗R(M [i : j]), and loserR(M [i : j]) can be computed for
any 1 ≤ i ≤ j ≤ |M | by the recurrences

(∆∗L(M [k − 1 : j]), loserL(M [k − 1 : j])) =

max{(∆∗L(M [k : j]), loserL(M [k : j]) + 1), (∆L(M [k − 1 : j]), 1)} (L2)

(∆∗R(M [i : k + 1]), loserR(M [i : k + 1])) =

max{(∆∗R(M [i : k]), loserR(M [i : k])), (∆R(M [i : k + 1]), k + 2− i)} (R2)

with base cases ∆∗L(M [j]) = −w(U [j], V [j]), ∆∗R(M [i]) = −w(U [i], V [i]), and loserL(M [j]) =
loserR(M [i]) = 1.

Lemma 5. LetM be a nonempty ordered matching, letU denote bids(M), let V denote items(M),
let u be a bid that does not belong to U , let k denote index (u, U+u), letML denote insertL(M,u),
and let MR denote insertR(M,u). If k > 1, then ML is equal to Mk−1

i + (u, V [k − 1]) and
w(ML) = w(M) + ∆∗L(M [ : k − 1]) + w(u, V [k − 1]) where i denotes loserL(M [ : k − 1]);
otherwise, ML = M . If k ≤ |M |, then MR is equal to Mk

j + (u, V [k]) and w(MR) = w(M) +
∆∗R(M [k : ]) + w(u, V [k]) where j denotes loserR(M [k : ]) + k − 1; otherwise, MR = M .
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Algorithm 1 A linear-time implementation of bid insertion. The difference of the weight of an
MWMCM of the UDALEW A = (bids(M) + u, items(M)) and that of M is equal to δ, and the
maximum bid in bids(M) + u that is unmatched in some MWMCM of A is u∗.

Input: M is an ordered matching and u is a bid that does not belong to bids(M).
Output: insert(M,u).

1: Let U denote bids(M) and let V denote items(M)
2: C ← {(0, u)}
3: k ← index (u, U + u)
4: if k > 1 then
5: for i = k − 1 down to 1 do
6: Compute ∆L(M [i : k − 1]) via (L1)
7: Compute ∆∗L(M [i : k − 1]) and loserL(M [i : k − 1]) via (L2)
8: end for
9: C ← C + (w(u, V [k − 1]) + ∆∗L(M [ : k − 1]), U [i]) where i = loserL(M [ : k − 1])

10: end if
11: if k ≤ |M | then
12: for i = k to |M | do
13: Compute ∆R(M [k : i]) via (R1)
14: Compute ∆∗R(M [k : i]) and loserR(M [k : i]) via (R2)
15: end for
16: C ← C + (w(u, V [k]) + ∆∗R(M [k : ]), U [j]) where j = loserR(M [k : ]) + k − 1
17: end if
18: (δ, u∗)← the lexicographically maximum pair in C
19: return matching(U + u− u∗, V )

Proof. We address the claim regardingML; the claim regardingMR is symmetric. There is nothing
to prove if k = 1, so assume that k > 1. Since both M and ML are ordered, and since each
bid in M that is greater than u is in ML, it is easy to see that M [k : ] = ML[k : ], and thus
w(ML)− w(M) = w(ML[ : k − 1])− w(M [ : k − 1]). Then, since ML is ordered, u is matched
to V [k−1] in ML, and thus ML is equal to Mk−1

i +(u, V [k−1]) for some i < k. The observations
in the preceding two paragraphs and the definitions of ML, ∆∗L, and loserL imply that w(ML) −
w(M) = w(u, V [k − 1]) + ∆∗L(M [ : k − 1]) and the index i in the preceding sentence is equal to
loserL(M [ : k − 1]).

Lemmas 4 and 5, together with (L1), (R1), (L2), and (R2), directly suggest a linear-time com-
putation of insert(M,u), as shown in Algorithm 1. If insertL(M,u) (resp., insertR(M,u)) is
not equal to M , then the algorithm computes the difference w(insertL(M,u)) − w(M) (resp.,
w(insertR(M,u)) − w(M)) and adds a pair at line 9 (resp., line 16) to a set C where the first
component is this difference, and the second component is the bid in bids(M) + u that is left
unassigned by insertL(M,u) (resp., insertR(M,u)). Then by Lemma 4, the algorithm correctly
returns insert(M,u) by choosing the maximum pair of C at line 18.
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5 A Superblock-Based Bid Insertion Algorithm
In this section, we describe an ordered matching data structure based on the concept of a “su-
perblock”, and we show how to use this data structure to obtain a significantly faster bid insertion
algorithm than that presented in Sect. 4. Before beginning our formal presentation in Sect. 5.1, we
provide a high-level overview of the main ideas. A reader interested in only the formal presenta-
tion may proceed to Sect. 5.1 without loss of continuity.

Recall that an ordered matching data structure maintains a dynamic ordered matchingM . Let n
denote |M |. We maintain a partition of the bids ofM into contiguous “groups” of size Θ(`), where
` is a parameter to be optimized later. The time complexity of Alg. 1 is linear because the for loops
starting at lines 5 and 12 process bid-item pairs in M sequentially. Our rough plan is to accelerate
the computations associated with this pair of loops by proceeding group-by-group. We can process
a group in constant time if we are given six “auxiliary values” that depend on the “submatching”
M ′ of M associated with the bids in the group, namely: ∆L(M ′), ∆R(M ′), ∆∗L(M ′), ∆∗R(M ′),
loserL(M ′), and loserR(M ′). The auxiliary values associated with a group can be computed in
Θ(`) time. A natural approach is to precompute these auxiliary values when a group is created or
modified, or when the set of matched items associated with the group is modified. Unfortunately, a
single bid insertion can cause each bid in a contiguous interval of Θ(n) bids to have a new matched
item. For example, if a bid insertion introduces a “low” bid u and deletes a “high” bid u′, then each
bid between u and u′ gets a new matched item one position to the right of its old matched item.
Since a constant fraction of the groups might need to have their auxiliary values recomputed as a
result of a bid insertion, the overall time complexity remains linear.

The preceding discussion suggests that it might be useful to have an efficient way to obtain
the new auxiliary values of a group of bids when the corresponding interval of matched items is
shifted left or right by one position. To this end, we enhance the precomputation associated with
a group of bids as follows: Instead of precomputing only the auxiliary values corresponding to
the group’s current matched interval of items, we precompute the auxiliary values associated with
shifts of 0,±1,±2, . . . ,±Θ(`) positions around the current matched interval. That way, unless a
group of bids is modified (e.g., due to a bid being deleted or inserted) we do not need to redo the
precomputation with the group until it has been shifted Ω(`) times. Since the enhanced precom-
putation computes Θ(`) sets of auxiliary values instead of one set, a naive implementation of the
enhanced precomputation has Θ(`2) time complexity, leading once again to linear worst-case time
complexity for bid insertion. We obtain a faster bid insertion algorithm by showing how to perform
the enhanced precomputation in O(` log2 `) time.

Our O(` log2 `)-time algorithm for performing the enhanced precomputation forms the core of
our fast bid insertion algorithm. Here we briefly mention the main techniques used to perform
the enhanced precomputation efficiently; the reader is referred to Sect. 5.3.1 for further details. A
divide-and-conquer approach is used to compute the auxiliary values associated with the functions
loserL and loserR in O(` log `) time; the correctness of this approach is based on a monotonicity
result (see Lemmas 8 and 9). A convolution-based approach is used to compute the auxiliary
values based on ∆L and ∆R in O(` log `) time (see Lemma 7). The auxiliary values based on
loserL (resp., loserR) are used within a divide-and-conquer framework to compute the auxiliary
values based on ∆∗L (resp., ∆∗R); in the associated recurrence, the overhead term is dominated by
the cost of evaluating the same kind of convolution as in the computation of the auxiliary values
based on ∆L and ∆R. As a result, the overall time complexity for computing the auxiliary values
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based on ∆∗L and ∆∗R is O(` log2 `).
Section 5.1 introduces the concept of a “block”, which is used to represent a group of bids

together with a contiguous interval of items that includes all of the items matched to the group.
Section 5.3.1 presents a block data structure. When a block data structure is “initialized” with a
group of bids and an interval of items, the enhanced precomputation discussed in the preceding
paragraph is performed, and the associated auxiliary values are stored in tables. A handful of
“fields” associated with the block are also initialized; these fields store basic information such as
the number of bids or items in the block. After initialization, the block data structure is read-only:
Whenever a block needs to be altered (e.g., because a bid needs to be inserted/deleted, because the
block needs to be merged with an adjacent block), we destroy the block and create a new one. The
operations supported by a block may be partitioned into three categories: “queries”, “lookups” and
“scans”. Each query runs in constant time and returns the value of a specific field. Each lookup runs
in constant time and uses a table lookup to retrieve one of the precomputed auxiliary values. Each
of the two linear-time scan operations (one leftgoing, one rightgoing) performs a naive emulation
of one of the for loops of Alg. 1; in the context of a given bid insertion, such operations are only
invoked on the block containing the insertion position of the new bid.

Section 5.1 defines the concept of a superblock, which is used to represent an ordered matching
as a sequence of blocks. A superblock-based ordered matching data structure is introduced in
Sect. 5.3.2, where each of the constituent blocks is represented using the block data structure
alluded to in the preceding paragraph. In Sect. 5.3, we simplify the presentation by setting the
parameter ` to Θ(

√
n). For this choice of `, we show that bid insertion can be performed using

O(1) block initializations, O(
√
n) block queries, O(

√
n) block lookups, at most two block scans,

andO(
√
n) additional overhead, resulting in an overall time complexity ofO(

√
n log2 n). In terms

of the parameters ` and n, the approach of Sect. 5.3 can be generalized to perform bid insertion
using O(dn/`2e) block initializations, O(n/`) block queries, O(n/`) block lookups, at most two
block scans, andO(n/`) additional overhead; it is easy to verify that setting ` to Θ(

√
n) minimizes

the overall time complexity.

5.1 Blocks and Superblocks
We define a blockB as a UDALEW (U, V ) where |U | ≤ |V |. For any blockB = (U, V ), we define
shifts(B) as |V |−|U |+1. For any blockB = (U, V ) and any integer t such that 1 ≤ t ≤ shifts(B),
we define matching(B, t) as matching(U, V [t : t+ |U | − 1]).

Let M be a nonempty ordered matching, let U denote bids(M), and let V denote items(M).
Let m be a positive integer, and let 〈a0, . . . , am〉, 〈b1, . . . , bm〉, and 〈c1, . . . , cm〉 be sequences
of integers such that a0 = 0, am = |U |, and 1 ≤ bi ≤ ai−1 + 1 ≤ ai ≤ ci ≤ |U | for
1 ≤ i ≤ m. Let Bi denote the block (U [ai−1 + 1 : ai], V [bi : ci]) for 1 ≤ i ≤ m. Then
the list of blocks S = 〈B1, . . . , Bm〉 is a superblock, and we make the following additional def-
initions: matching(S) denotes M ; size(S) denotes |M |; bids(S) denotes U ; items(S) denotes
V ; shift(S, i) and shift(S,Bi) both denote bi − ai−1 for 1 ≤ i ≤ m; sum(S, i) denotes ai
for 0 ≤ i ≤ m; the leftmost block B1 and the rightmost block Bm are the boundary blocks,
the remaining blocks B2, . . . , Bm−1 are the interior blocks. Remark: For any superblock S,
matching(S) =

⋃
1≤i≤|S|matching(S[i], shift(S, i)).
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5.2 Algorithm 2
We obtain a significantly faster bid insertion algorithm than Alg. 1 by accelerating the computa-
tions associated with the for loops starting at lines 5 and 12. Recall that the first loop computes
∆∗L(M [ : k − 1]) and loserL(M [ : k − 1]), and the second one computes ∆∗R(M [k : ]) and
loserR(M [k : ]). These two loops process a trivial representation of M pair-by-pair using the
recurrences (L1), (R1), (L2), and (R2). We start by generalizing these recurrences; these gen-
eralizations allow us to compute the aforementioned values more efficiently by looping over a
superblock-based representation of the matching block-by-block, instead of pair-by-pair.

Let M denote matching(U, V ), and let i, j, and k be three indices in M such that i ≤ j <
k. Then the following equation generalizes (L1), and it is straightforward to prove by repeated
application of (L1).

∆L(M [i : k]) = ∆L(M [j + 1 : k]) + w(U [j + 1], V [j]) + ∆L(M [i : j]). (L1′)

We also give a generalization of (L2), where the proof follows from the definitions of ∆∗L and
loserL.

(∆∗L(M [i : k]), loserL(M [i : k])) =

max

{
(∆∗L(M [j + 1 : k]), loserL(M [j + 1 : k]) + j + 1− i),
(∆∗L(M [i : j]) + w(U [j + 1], V [j]) + ∆L(M [j + 1 : k]), loserL(M [i : j]))

}
(L2′)

Let M denote matching(U, V ), and let i, j, and k be three indices in M such that i < j ≤ k.
Symmetrically, the following equations generalize (R1) and (R2).

∆R(M [i : k]) = ∆R(M [i : j − 1]) + w(U [j − 1], V [j]) + ∆R(M [j : k]) (R1′)

(∆∗R(M [i : k]), loserR(M [i : k])) =

max

{
(∆∗R(M [i : j − 1]), loserR(M [i : j − 1])),
(∆∗R(M [j : k]) + w(U [j − 1], V [j]) + ∆R(M [i : j − 1]), loserR(M [j : k]) + j − i)

}
(R2′)

We use (L1′) and (L2′) (resp., (R1′) and (R2′)) within a loop that iterates over a superblock-
based representation of the matching block-by-block. In each iteration of the loop, we are able to
evaluate the right-hand side of (L1′) and (L2′) (resp., (R1′) and (R2′)) in constant time because the
terms involving M [j + 1 : k] (resp., M [i : j − 1]) are carried over from the previous iteration, and
the terms involving M [i : j] (resp., M [j : k]) are already stored in precomputed tables associated
with the blocks of the superblock.

The high-level algorithm is given in Alg. 2. The input is a superblock S that represents an or-
dered matching, denoted M (i.e., matching(S) = M ), and a bid u that does not belong to bids(S).
The output is a superblock representing insert(M,u). The unique bid u∗ that is unmatched in
insert(M,u) is identified using the block-based framework alluded to above. After identifying u∗,
if u∗ 6= u, the algorithm invokes a subroutine SWAP(S, u∗, u) which, given a superblock S, a bid
u∗ that belongs to bids(S), and a bid u that does not belong to bids(S), returns a superblock that
represents matching(bids(S) + u− u∗, items(S)). We present our implementation of SWAP and
analyze its time complexity in Sections 5.3.3 and 5.3.4. The correctness of Alg. 2 is established
in Lemma 6, where it is shown that Alg. 2 emulates the behavior of Alg. 1.
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Algorithm 2 A high-level bid insertion algorithm using the superblock-based representation of an
ordered matching.

Input: S is a superblock and u is a bid that does not belong to bids(S).
Output: A superblock S ′ such that matching(S ′) = insert(matching(S), u).

1: Let M denote matching(S), let U denote bids(S), and let V denote items(S)
2: Let S[i] be (Ui, Vi) for 1 ≤ i ≤ |S|
3: σ(i)← sum(S, i) for 0 ≤ i ≤ |S|
4: C ← {(0, u)}
5: `← |{(U ′, V ′) | (U ′, V ′) ∈ S and U ′[1] < u}|
6: k ← if ` < 1 then 1 else index (u, U` + u) + 1 + σ(`− 1)
7: if k > 1 then
8: for i = k − 1 down to σ(`− 1) + 1 do
9: Compute ∆L(M [i : k − 1]) via (L1)

10: Compute ∆∗L(M [i : k − 1]) and loserL(M [i : k − 1]) via (L2)
11: end for
12: for i = `− 1 down to 1 do
13: Compute ∆L(M [σ(i− 1) + 1 : k − 1]) via (L1′)
14: Compute ∆∗L(M [σ(i− 1) + 1 : k − 1]) and loserL(M [σ(i− 1) + 1 : k − 1]) via (L2′)
15: end for
16: C ← C + (w(u, V [k − 1]) + ∆∗L(M [ : k − 1]), U [i]) where i = loserL(M [ : k − 1])
17: end if
18: if k ≤ |M | then
19: for i = k to σ(`) do
20: Compute ∆R(M [k : i]) via (R1)
21: Compute ∆∗R(M [k : i]) and loserR(M [k : i]) via (R2)
22: end for
23: for i = `+ 1 to |S| do
24: Compute ∆R(M [k : σ(i)]) via (R1′)
25: Compute ∆∗R(M [k : σ(i)]) and loserR(M [k : σ(i)]) via (R2′)
26: end for
27: C ← C + (w(u, V [k]) + ∆∗R(M [k : ]), U [j]) where j = loserR(M [k : ]) + k − 1
28: end if
29: (δ, u∗)← the lexicographically maximum pair in C
30: return if u∗ 6= u then SWAP(S, u∗, u) else S

Lemma 6. Algorithm 2 is correct.

Proof. Assume that, given a superblock S, a bid u∗ that belongs to bids(S), and a bid u that does
not belong to bids(S), SWAP(S, u∗, u) correctly returns a superblock that represents matching(bids(S)+
u− u∗, items(S)). Let M denote matching(S), let U denote bids(S), and let V denote items(S),
as in the algorithm. First, the algorithm performs a scan over the blocks to compute an integer
` at line 5 so that each bid in each block S[i] for 1 ≤ i < ` (resp., ` < i ≤ |S|) is less (resp.,
greater) than the new bid u. Then it is easy to see that the integer k computed at line 6 is equal
to index (u, U + u), as in Alg. 1. It remains to show that ∆∗L(M [ : k − 1]), loserL(M [ : k − 1]),
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∆∗R(M [k : ]), and loserR(M [k : ]) are computed correctly so that the set C is populated with the
same pairs as in Alg. 1, and thus Lemma 4 implies that the bid u∗ in bids(M) + u that is left out
by insert(M,u) is correctly identified by choosing the maximum pair of C at line 29, as in Alg. 1,
and that the superblock returned at line 30 represents insert(M,u).

If k > 1 (resp., k ≤ |M |), the algorithm proceeds to emulate the for loop of Alg. 1 that
starts at line 5 (resp., line 12) to compute ∆∗L(M [ : k − 1]) and loserL(M [ : k − 1]) (resp.,
∆∗R(M [k : ]) and loserR(M [k : ])). We first discuss the emulation of the loop of Alg. 1 that
starts at line 5; this emulation is performed by two for loops in Alg. 2. The first loop in Alg. 2,
which starts at line 8, is identical to the loop of Alg. 1, except that it stops when the boundary of the
submatching represented by block S[`] is reached. Thus, by repeated application of (L1) and (L2),
upon completion of this first loop, we have computed ∆L(M ′), ∆∗L(M ′), and loserL(M ′) where
M ′ denotes M [σ(`− 1) + 1 : k − 1]. Then the second for loop, which starts at line 12, resumes
where the first one left off; however, it utilizes the superblock-based representation of the ordered
matching to loop block-by-block. During the iterations of the second loop, for i = ` − 1 down
to 1, (L1′) and (L2′) are invoked by setting i, j, and k in these equations to σ(i − 1) + 1, σ(i),
and k − 1, respectively; thus the submatching M [i : j] in these equations corresponds to the
submatching that the block S[i] represents in S, i.e., matching(S[i], shift(S, i)). During such
an iteration i, for i = ` − 1 down to 1, the terms involving M [i : j] in (L1′) and (L2′), i.e.,
the terms that are equal to ∆L(matching(S[i], shift(S, i))), ∆∗L(matching(S[i], shift(S, i))), and
loserL(matching(S[i], shift(S, i))), are fetched from the precomputed tables associated with the
block S[i]. Note that all the terms in these equations involving M [j + 1 : k] are carried over from
the previous iteration, except for the first iteration, where they are already computed by the first
for loop. Thus, upon completion of these two loops, we have computed ∆∗L(M [ : k − 1]) and
loserL(M [ : k − 1]).

The emulation of the second loop of Alg. 1 (starting at line 12) that computes ∆∗R(M [k : ]) and
loserR(M [k : ]) can be argued symmetrically, where (R1′) and (R2′) are invoked in the for loop
at line 23 by setting i, j, and k in these equations to k, σ(i − 1) + 1, and σ(i), respectively. Then
the submatching M [j : k] in these equations corresponds to the submatching that the block S[i]
represents in S, i.e., matching(S[i], shift(S, i)).

5.3 Fast Implementation of Algorithm 2
In this section, we complete the discussion of our fast bid insertion algorithm by describing two
data structures, giving the implementation details, and analyzing the running time. First, in
Sect. 5.3.1, we present a block data structure that precomputes the auxiliary tables mentioned in
Sect. 5.2 in quasilinear time, thus allowing lines 13, 14, 24, and 25 of Alg. 2 to be performed
in constant time. Then, in Sect. 5.3.2, we introduce a superblock-based ordered matching data
structure that stores the blocks using the block data structure, where the sizes of the blocks are
optimized to balance the cost of SWAP with that of the remaining operations in Alg. 2. Finally, in
Sections 5.3.3 and 5.3.4, we present our efficient implementation of SWAP, which constructs only
a constant number of blocks, and analyze its time complexity.
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5.3.1 Block Data Structure

Let S be a superblock on which a bid insertion is performed, let B be a block in S, and let Mt

denote matching(B, t) for 1 ≤ t ≤ shifts(B). The algorithm may query ∆L(Mt), ∆R(Mt),
∆∗L(Mt), ∆∗R(Mt), loserL(Mt), and loserR(Mt) for t = shift(S,B). IfB is part of the superblocks
for a series of bid insertions, then these queries may be performed for various t values. For a fast
implementation of Alg. 2, instead of individually computing these quantities at query time, we
efficiently precompute them during the construction of the block and store them in the following
six lists. We define ∆L(B) as the list of size shifts(B) such that ∆L(B)[t] is equal to ∆L(Mt)
for 1 ≤ t ≤ shifts(B). We define the lists ∆R(B), ∆∗L(B), ∆∗R(B), loserL(B), and loserR(B)
similarly. The representation of a block B = (U, V ) simply maintains each of the following
explicitly as an array: U , V , ∆L(B), ∆R(B), ∆∗L(B), ∆∗R(B), loserL(B), and loserR(B). In what
follows, we refer to that representation as the block data structure for B. The block data structure
is an integral part of the superblock-based ordered matching data structure which we introduce in
the following section.

The main technical contribution of this paper is that we can compute the aforementioned lists
efficiently as stated in the following theorem.

Theorem 1. The block data structure can be constructed in O(|V | (log shifts(B) + log2 |U |)) time
for any block B = (U, V ).

The proof of Theorem 1 follows directly from Lemmas 7, 10, and 11 below.

Lemma 7. Let B be a block (U, V ). Then ∆L(B) and ∆R(B) can be computed in O(|V | log |U |)
time.

Proof. We address the computation of ∆L(B), the computation of ∆R(B) is symmetric. Let β
denote ∆L(B). We define the following two real-valued functions on the set of integers. Let
x(n) be V [n + 1].quality − V [n + 2].quality , if 0 ≤ n < |V | − 1; 0, otherwise. Let h(n) be
U [|U | − n].slope, if 0 ≤ n < |U | − 1; 0, otherwise. Let y(n) denote the discrete convolution
(x ∗ h)(n) =

∑
m h(m) · x(n−m). Then, for 1 ≤ t ≤ shifts(B),

β[t] =
∑

1<i≤|U |

w(U [i], V [i+ t− 2])−
∑

1≤i≤|U |

w(U [i], V [i+ t− 1])

= −w(U [1], V [t]) +
∑

1<i≤|U |

U [i].slope · (V [i+ t− 2].quality − V [i+ t− 1].quality)

= −w(U [1], V [t]) +
∑

1<i≤|U |

h(|U | − i) · x(i+ t− 3)

= −w(U [1], V [t]) +
∑

0≤m<|U |−1

h(m) · x(|U | −m+ t− 3)

= −w(U [1], V [t]) + y(t+ |U | − 3)

where the convolution y(n) = (x ∗ h)(n) can be computed in O(|V | log |U |) time by comput-
ing Θ(|U |)-size segments of y(n) using fast circular convolution, and concatenating the segments
together [14].

13



The next two lemmas establish a monotonicity result that is used to prove Lemma 10.

Lemma 8. Let B be a block (U, V ) and let α denote loserL(B). Then for any integer t such that
1 ≤ t < shifts(B), α[t] ≥ α[t+ 1].

Proof. For the sake of contradiction, suppose α[t] < α[t + 1] for some t such that 1 ≤ t <
shifts(B). Let M denote matching(B, t) and let M ′ denote matching(B, t + 1). Let i denote
α[t] = loserL(M) and let i′ denote α[t + 1] = loserL(M ′). Since i = loserL(M) < i′, we have
∆L(M [i : ]) > ∆L(M [i′ : ]), which, together with (L1′), implies ∆L(M [i : i′]) > ∆L(M [i′]), and
hence ∑

i<`≤i′
w(U [`], V [`+ t− 2])−

∑
i≤`<i′

w(U [`], V [`+ t− 1]) > 0. (1)

Since i′ = loserL(M ′), we have ∆L(M ′[i : ]) ≤ ∆L(M ′[i′ : ]), which, together with (L1′), implies
∆L(M ′[i : i′]) ≤ ∆L(M ′[i′]), and hence∑

i<`≤i′
w(U [`], V [`+ t− 1])−

∑
i≤`<i′

w(U [`], V [`+ t]) ≤ 0. (2)

Subtracting (1) from (2), we get

0 >
∑
i<`≤i′

[w(U [`], V [`+ t− 1])− w(U [`], V [`+ t− 2])]

−
∑
i≤`<i′

[w(U [`], V [`+ t])− w(U [`], V [`+ t− 1])]

=
∑
i≤`<i′

U [`+ 1].slope · (V [`+ t].quality − V [`+ t− 1].quality)

−
∑
i≤`<i′

U [`].slope · (V [`+ t].quality − V [`+ t− 1].quality)

=
∑
i≤`<i′

(U [`+ 1].slope − U [`].slope)(V [`+ t].quality − V [`+ t− 1].quality),

which contradicts the way that the bids in U and the items in V are ordered.

Lemma 9. Let B be a block (U, V ) and let α denote loserR(B). Then for any integer t such that
1 ≤ t < shifts(B), α[t] ≤ α[t+ 1].

Proof. Symmetric to the proof of Lemma 8.

We now introduce two definitions that return “subblocks” of a block and that are useful in the
proofs of Lemmas 10 and 11 which give divide-and-conquer algorithms.

For any block B = (U, V ) and for any two indices i and i′ such that 1 ≤ i ≤ i′ ≤ |U |, we
define subBids(B, i, i′) as the block B′ such that shifts(B′) = shifts(B) and matching(B′, t) =
Mt[i : i′] for 1 ≤ t ≤ shifts(B), where Mt denotes matching(B, t); it is straightforward to see
that subBids(B, i, i′) = (U [i : i′], V [i : |V | − |U |+ i′]).

For any block B = (U, V ) and for any two integers t and t′ such that 1 ≤ t ≤ t′ ≤
shifts(B), we define subShifts(B, t, t′) as the block B′ such that shifts(B′) = t′ − t + 1 and
matching(B′, t′′) = matching(B, t′′ + t− 1) for 1 ≤ t′′ ≤ shifts(B′); it is straightforward to see
that subShifts(B, t, t′) = (U, V [t : |V | − shifts(B) + t′]).
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Lemma 10. Let B be a block (U, V ). Then loserL(B) and loserR(B) can be computed in
O(|V | log shifts(B)) time.

Proof. We address the computation of loserL(B), which relies on Lemma 8. The computation of
loserR(B) is symmetric, and relies on Lemma 9. We begin by stating a useful claim.

Let M be an ordered matching and let j be an index in M . Then we claim that, loserL(M) ≤
j implies loserL(M) = loserL(M [ : j]); similarly, loserL(M) ≥ j implies loserL(M) =
loserL(M [j : ]) + j − 1. The proof of the claim is immediate from (L2′).

Let α denote loserL(B). We give a divide-and-conquer algorithm that computes α. If |U | = 1,
then α[t] = 1 for any item t and we are done; otherwise, we proceed as follows. Let t∗ denote
dshifts(B)/2e and let m denote α[t∗]. We first compute m in O(|U |) time using (L1) and (L2).
Let B1 denote the block subBids(B, 1,m) and let B2 denote the block subBids(B,m, |U |). Let
α1 denote loserL(B1) and let α2 denote loserL(B2). Then, by Lemma 8 and by the claim of the
preceding paragraph,

α[t] =


α1[t] if t∗ < t ≤ shifts(B)

m if t = t∗

α2[t] +m− 1 if 1 ≤ t < t∗.

Thus, it remains to compute α1[t
∗ + 1 : shifts(B)] and α2[1 : t∗ − 1]. Note that α1[t

∗ + 1 :
shifts(B)] is equal to loserL(B′1) for the block B′1 = subShifts(B1, t

∗ + 1, shifts(B)), so we
compute it recursively. Similarly, α2[1 : t∗ − 1] is equal to loserL(B′2) for the block B′2 =
subShifts(B2, 1, t

∗ − 1), so we compute it recursively.
The overall running time satisfies the recurrence

T (n, s) ≤ T (m, s/2) + T (n−m+ 1, s/2) +O(n+ s),

where n denotes |U | and s denotes shifts(B) for the input block B = (U, V ). Solving this recur-
rence, we obtain the desired running time.

Lemma 11. Let B be a block (U, V ). Then ∆∗L(B) can be computed in O(|V | log2 |U |) time given
loserL(B). Similarly, ∆∗R(B) can be computed within the same time bound given loserR(B).

Proof. We address the computation of ∆∗L(B), which relies on Lemma 8. The computation of
∆∗R(B) is symmetric, and relies on Lemma 9.

Let α denote loserL(B) and let β∗ denote ∆∗L(B). We now give a divide-and-conquer algorithm
that computes β∗. If |U | ≤ 2, then β∗ can be computed trivially in O(shifts(B)) time; otherwise,
we proceed as follows. Let m denote d|U | /2e. Let B1 denote the block subBids(B, 1,m) and let
B2 denote the block subBids(B,m+1, |U |). Let α1 denote loserL(B1) and let β∗1 denote ∆∗L(B1).
Let α2 denote loserL(B2), let β∗2 denote ∆∗L(B2), and let β2 denote ∆L(B2). Lemma 8 and the
claim in the beginning of the proof of Lemma 10 imply that there exists an integer t′ such that
0 ≤ t′ ≤ shifts(B), α[t] = α1[t] for t′ < t ≤ shifts(B), and α[t] = α2[t] + m− 1 for 1 ≤ t ≤ t′;
in what follows let t∗ denote the largest such integer. Then, by (L2′),

β∗[t] =

{
β∗1 [t] + β2[t] + w(U [m+ 1], V [m+ t− 1]) if t∗ < t ≤ shifts(B)

β∗2 [t] if 1 ≤ t ≤ t∗.
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Thus, it remains to compute β∗1 [t∗ + 1 : shifts(B)], β∗2 [1 : t∗], and β2[t∗ + 1 : shifts(B)]. Note that
β∗1 [t∗ + 1 : shifts(B)] is equal to ∆∗L(B′1) for the block B′1 = subShifts(B1, t

∗ + 1, shifts(B)),
so we compute it recursively. Similarly, β∗2 [1 : t∗] is equal to ∆∗L(B′2) for the block B′2 =
subShifts(B2, 1, t

∗), so we compute it recursively. Finally, β2[t∗ + 1 : shifts(B)] is equal to
∆L(B′′2 ) for the block B′′2 = subShifts(B2, t

∗+ 1, shifts(B)), and we compute it in O(|V | log |U |)
time by Lemma 7.

The overall running time satisfies the recurrence

T (n, s) ≤ T (n/2, t) + T (n/2, s− t) +O((n+ s) log n),

where n denotes |U | and s denotes shifts(B) for the input block B = (U, V ). Solving this recur-
rence, we obtain the desired running time.

5.3.2 Superblock-Based Ordered Matching

In this section, we introduce a data structure called a superblock-based ordered matching (SOM).
A SOM represents an ordered matchingM by maintaining a superblock S such that matching(S) =
M , where S is stored as a list of block data structures as described in Sect. 5.3.1.

Theorem 2. The SOM has initialization cost O(n log2 n), bid insertion cost O(
√
n log2 n), and

dump cost O(n).

Theorem 2 states the main result of our paper, and is proved in Sect. 5.3.4. We first briefly
mention key performance-related properties of the SOM that are used for our efficient implemen-
tation of Alg. 2. Throughout the rest of this paragraph, let n denote the size of the matching
represented by the SOM. We group the operations performed during Alg. 2 into three categories:
∆L(M ′′), ∆R(M ′′), ∆∗L(M ′′), ∆∗R(M ′′), loserL(M ′′), and loserR(M ′′) queries for submatchings
M ′′ of M ; the remaining operations performed in lines 1 through 29; the SWAP operation. It is
easy to see that Alg. 2 does not modify the superblock, except during SWAP at line 30. When
SWAP modifies the superblock, existing blocks are not modified; rather, some existing blocks are
deleted, and some newly constructed blocks are inserted. Since the SOM stores the superblock
as a list of block data structures as described in Sect. 5.3.1, all the values in the auxiliary tables
∆L(B), ∆R(B), ∆∗L(B), ∆∗R(B), loserL(B), and loserR(B) are available for each block B. Thus,
the queries for ∆L(M ′′), ∆R(M ′′), ∆∗L(M ′′), ∆∗R(M ′′), loserL(M ′′), and loserR(M ′′) for each
1 ≤ i ≤ |S| can be answered in constant time, where M ′′ denotes matching(S[i], shift(S, i)).
It is easy to see by inspecting the code of Alg. 2 that the number of such queries is proportional
to the number of blocks in the superblock. Furthermore, the running time of all the remaining
operations performed in lines 1 through 29 is proportional to the maximum of (1) the number of
blocks in the superblock, and (2) the maximum number of bids in any single block. We define the
blocks in a SOM so that each block has Θ(

√
n) bids and Θ(

√
n) items, yielding a Θ(

√
n)-time

implementation of lines 1 through 29, and so that SWAP can be implemented by constructing at
most a constant number of blocks. Later in this section, we formally define the SOM, and we
introduce two invariants that are related to these requirements. Then in Sections. 5.3.3 and 5.3.4,
we present a detailed O(

√
n log2 n)-time implementation of SWAP for the SOM that constructs at

most a constant number of blocks. We begin with some useful definitions.
For any non-empty ordered matching M , we define slice(M) as d

√
ne where n denotes |M |,

and we find it convenient to overload slice so that slice(S) denotes slice(matching(S)).
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Let S be a superblock and let B be a block that belongs to S. Then we define time(S,B) as
min(shift(S,B), shifts(B)− shift(S,B)+1). Observe that matching(B, t) is well-defined for all
t such that shift(S,B)− time(S,B) < t < shift(S,B) + time(S,B).

We now introduce two invariants that we maintain regarding the performance-related concerns
mentioned above. The first invariant ensures that the number of bids in each block is at least

√
n

and less than 2 d
√
ne, thus there are at most

√
n blocks, where n denotes size(S). The second

invariant ensures that there are not too many blocks B in the superblock S whose time time(S,B)
is low, thus SWAP does not require more than a constant number of block constructions. We now
formally define these two invariants.

For any superblock S, we define the predicate P(S) to hold if for each block (U, V ) in S,
slice(S) ≤ |U | < 2 · slice(S).

For any superblock S, we define the predicate Q(S) to hold if for any ` such that 1 ≤ ` ≤
slice(S), there are at most ` interior blocks B of S such that time(S,B) ≤ `.

We say that a superblock S is nice if P(S) ∧Q(S).
We say that an ordered matching data structure D is a superblock-based ordered matching

(SOM) if it represents an ordered matching M by maintaining a nice superblock S such that
matching(S) = M , and the superblock S is stored as a list of block data structures that are
described earlier in Sect. 5.3.1.

5.3.3 Block-Level Operations

Having defined the SOM, it remains to show how to implement SWAP efficiently on the SOM.
We describe SWAP by means of four kinds of block-level operations: refresh, split , merge, and
exchange. As stated earlier, the primary goal of SWAP is to update the matching, and exchange
establishes that. The other three operations, refresh, split , and merge, do not alter the matching;
the purpose of these operations is to maintain the two invariants defined in Sect. 5.3.2. The common
goal of the split and merge operations is to keep the number of bids in each block of a superblock
S within a constant factor of slice(S), and to keep |S| at most slice(S). In addition, for any block
B that is created by any of these four block-level operations on a superblock S, shifts(B) is within
a constant factor of slice(S). We define here what each of these operations establishes and we
outline how these operations are chained together in order to achieve a SWAP implementation, we
defer the analysis of the running times to Sect. 5.3.4. We start with some useful definitions.

All of the four block-level operations operate by replacing one or two existing blocks with one
or two new blocks. We now outline how the new blocks are chosen by these operations. The choice
of the bid set of a new block directly depends on the type of the operation: it is equal to the bid set
of the block to be replaced by a refresh, or it is one of the two halves of the bid set of the block to
be replaced by a split , or it is the union of the bid sets of the two blocks to be replaced by a merge,
or one bid is removed and/or one bid is added to the bid set of a block to be replaced by a exchange.
The exact details are given in the paragraphs below that introduce the individual operations. Given
the bid set of the block that is to be created, the choice of the item set of the block depends only
on the matching that the superblock resulting from the operation represents. Thus, any new block
that the block-level operations create can be expressed as a function of the resulting matching M
and the set U of the bids that are involved in the block. This function fresh(M,U) is defined as
follows.

Let M be an ordered matching and let U be a contiguous subset of bids(M). Let i denote
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index (U [1], bids(M)) and let V denote items(M). LetU≺ denote {u′ | u′ ∈ bids(M) ∧ u′ < U [1]}
and let U� denote {u′ | u′ ∈ bids(M) ∧ u′ > U [|U |]} (note that |U≺| = i − 1 and |U�| = |M | −
|U | − |U≺|). Then, we define fresh(M,U) as the block (U, V [i− r : i+ |U | − 1 + r]) where r
denotes 2 ·min(slice(M), |U≺| , |U�|). For any superblock S and any block B in S that is equal to
fresh(matching(S), U) for some U , we make the following two observations: (1) time(S,B) =
maxS′ time(S ′, B) where the maximum is taken over all possible superblocks that B can be a part
of; (2) time(S,B) = 1 + slice(S) unless the degenerate condition min(|U≺| , |U�|) < slice(S)
holds, where U≺ and U� are defined as earlier in this paragraph. It will be explained later that,
at the end of each bid insertion, the degenerate condition mentioned in the preceding observation
only holds for the boundary blocks.

We are now ready to introduce the four block-level operations that the SOM performs to mod-
ify the superblock that it maintains. In order to define what these operations establish, we intro-
duce a function for each operation that takes a superblock as input (with additional arguments for
exchange) and returns another one.

For any superblock S, we define refresh(S) as the superblock that is identical to S except that,
if it exists, the block B = (U, V ) among all interior blocks with the lowest time(S,B), breaking
ties by choosing the block with the lowest index, is replaced with fresh(matching(S), U).

For any superblock S, we define split(S) as the superblock that is identical to S except that, if
it exists, the block B = (U, V ) with the lowest index among the ones satisfying |U | ≥ 2 · slice(S)
is replaced with two blocks fresh(matching(S), U [ : m]) and fresh(matching(S), U [m+ 1 : ]),
where m denotes d|U | /2e.

For any superblock S, we define merge(S) as the superblock that is identical to S except that,
if it exists, the block B = (U, V ) with the lowest index among the ones satisfying |U | < slice(S),
and the block B′ = (U ′, V ′) with the lowest index among the at most two that are adjacent to B,
are replaced with a single block fresh(matching(S), U ∪ U ′).

It is easy to see that matching(refresh(S)), matching(split(S)), and matching(merge(S)) are
all equal to matching(S). However, the following function returns a superblock that represents a
matching that is different than the one its input represents, by exchanging an existing bid for a new
bid.

Let S be a superblock such that time(S,B) > 1 for each interior block B in S, let u∗ be
a bid that belongs to bids(S), let u be a bid that does not belong to bids(S), and let M denote
matching(bids(S) − u∗ + u, items(S)). Then we define exchange(S, u∗, u), which returns a su-
perblock that represents M and that is identical to S with the exception of at most two blocks, as
follows: let B∗ = (U∗, V ∗) denote the block in S that contains u∗; let B† = (U †, V †) denote the
block with the lowest index among the ones in S satisfying that U † + u is a contiguous subset of
bids(S) + u; if B∗ = B†, then exchange(S, u∗, u) is identical to S except that B∗ is replaced with
fresh(M,U∗ − u∗ + u), otherwise, exchange(S, u∗, u) is identical to S except that B∗ is replaced
with fresh(M,U∗ − u∗) and B† is replaced with fresh(M,U † + u).

In order to justify that exchange(S, u∗, u) returns a valid superblock that represents the de-
sired matching, we now compare matching(S) with the desired matching from the perspectives
of bids and blocks. In what follows, let S be a superblock and let u∗ and u be two bids such that
exchange(S, u∗, u) is well-defined, and let S ′ denote exchange(S, u∗, u). Let U denote bids(S),
let V denote items(S), let M denote matching(S), and let M ′ denote the desired matching
matching(U − u∗ + u, V ). Let k∗ denote index (u∗, U) and let k denote index (u, U + u). Let
B∗ and B† be the blocks defined as in the preceding paragraph, let `∗ denote index (B∗, S), and let
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`† denote index (B†, S). Comparing M with M ′ from the perspective of bids, it is straightforward
to see that, if k∗ < k (resp., k∗ ≥ k) then u is assigned to V [k − 1] (resp., V [k]) in M ′, and for
each i such that k∗ < i ≤ k − 1 (resp., k ≤ i < k∗), the bid U [i], which is assigned to V [i] in
M , is shifted left (resp., right) by exchange(S, u∗, u), i.e., is assigned to V [i− 1] (resp., V [i + 1])
in M ′. Each bid that belongs to U but that is neither shifted left nor right by exchange(S, u∗, u) is
assigned to the same item in both M and M ′, except for u∗ which is unassigned in M ′. Comparing
M with M ′ from the perspective of the blocks, it is easy to see that, if `∗ < `† (resp., `∗ > `†), then
each bid in each block S[i] with a block index `∗ < i < `† (resp., `∗ > i > `†) is shifted left (resp.,
right), hence, we say that the block S[i] is shifted left (resp., right) by exchange(S, u∗, u). For each
block B that is shifted left (resp., right) by exchange(S, u∗, u), shift(S ′, B) = shift(S,B) − 1
(resp., +1), and for each block B that belongs to both S and S ′ but that is neither shifted left nor
right, shift(S ′, B) = shift(S,B). Thus, since B∗ and B† are replaced with new blocks in S ′ and
since time(S,B) > 1 for each interior block B that belongs to S, matching(B, shift(S ′, B)) is
well-defined for each block B that belongs to S ′. Hence, S ′ is a valid superblock and it is easy to
see that matching(S ′) = M ′.

We now define a function via refresh, exchange, split , and merge that proves to be useful in
our goal of efficiently implementing SWAP on the SOM.

For any nice superblock S, any bid u∗ that belongs to bids(S), and any bid u that does not
belong to bids(S), we define swap(S, u∗, u) as split(merge(split(exchange(refresh(S), u∗, u)))).
The following lemma suggests using S = swap(S, u∗, u) as an implementation of SWAP(S, u∗, u)
since it modifies the superblock as desired while maintaining the predicates P(S) and Q(S).

Lemma 12. Let S be a nice superblock, let u∗ be a bid that belongs to bids(S), and let u be a bid
that does not belong to bids(S). Then swap(S, u∗, u) is a nice superblock, and matching(swap(S, u∗, u)) =
matching(bids(S) + u− u∗, items(S)).

Proof. Let S1 denote refresh(S). By the definition of refresh, matching(S1) = matching(S).
Since S is nice, P(S) and Q(S) holds. Then, since refresh does not change the bid partitioning
implied by the superblock, P(S1) holds. And since refresh only replaces an interior block B with
the lowest time(S,B), if it exists, with a block B′ having time(S1, B

′) = slice(S1) + 1, it is
straightforward to see that a stronger Q(S1) (thus implying Q(S1)) holds, which we define next as
Q+(S1).

For any superblock S, we define the predicate Q+(S) to hold if for any ` such that 1 ≤ ` ≤
slice(S), there are at most `− 1 interior blocks B of S such that time(S,B) ≤ `.

Let S2 denote exchange(S1, u
∗, u). Since Q+(S1) implies that time(S1, B) > 1 for each inte-

rior blockB in S1, exchange(S1, u
∗, u) is well-defined, and hence matching(S2) = matching(bids(S)+

u − u∗, items(S)). Now, if only one block is replaced during exchange(S1, u
∗, u), then the fol-

lowing claims hold: P(S2) since the replaced block has the same number of bids; Q+(S2), and
thus Q(S2) since no blocks are shifted; hence, split(merge(split(S2))) is equal to S2, which is a
nice superblock with the desired matching, and we are done. If two blocks are replaced, then it is
straightforward to see that the following claims hold by the definition of exchange: Q(S2) since
Q+(S1) and the fact that |shift(S2, B)− shift(S1, B)| ≤ 1 for each surviving block B, where the
latter fact is a result of the shifts, as described while arguing the correctness of exchange; P(S2)
except that one block may be undersized by one bid and one block may be oversized by one bid.

Let S3 denote split(S2). It is straightforward to see that the following claims hold by the
definition of split : matching(S3) = matching(S2); Q(S3); P(S3) except that one block may be
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undersized by one bid.
Let S4 denote merge(S3). It is straightforward to see that the following claims hold by the

definition of merge: matching(S4) = matching(S3); Q(S4); P(S4) except that one block may be
oversized with total number of bids at most 3 · slice(S)− 2.

Let S5 denote split(S4). It is straightforward to see that the following claims hold by the
definition of split : matching(S5) = matching(S4); Q(S5); P(S5).

By the preceding observations, we see that S5, which is equal to swap(S, u∗, u), is a nice
superblock and matching(S5) = matching(S2) = matching(bids(S) + u − u∗, items(S)), as
required.

5.3.4 Implementation of SWAP and Time Complexity

We now complete the discussion of the fast bid insertion on the SOM by describing how to ef-
ficiently implement SWAP as S = swap(S, u∗, u), as described in the preceding section, and by
proving Theorem 2, which summarizes our results. Recall that the goal of SWAP(S, u∗, u) is, given
a superblock S, a bid u∗ that belongs to bids(S), and a bid u that does not belong to bids(S), to
return a superblock that represents matching(bids(S) + u − u∗, items(S)); since a SOM always
maintains a nice superblock, we require the input S and the returned superblock to be nice.

Lemma 13. Let D be a SOM, let S denote the superblock maintained by D, and let n denote
size(S). Then, SWAP(S, u∗, u) on D can be implemented as S = swap(S, u∗, u) in O(

√
n log2 n)

time.

Proof. Lemma 12 implies that S = swap(S, u∗, u) is a correct implementation of SWAP(S, u∗, u),
and it satisfies the requirement thatD maintains a nice superblock. We now argue the running time.
It is straightforward to see that each of the operations refresh, exchange, split , and merge can be
implemented in O(

√
n log2 n) time; it takes O(|S|) = O(

√
n) time to identify the block/blocks to

be replaced, since P(S) implies that |S| is Θ(
√
n); it takes O(

√
n log2 n) time to construct each

block B = (U, V ) by Theorem 1, since P(S) and the definition of fresh implies that |U |, |V |, and
shifts(B) are O(

√
n); there are at most two block constructions per operation.

Proof of Theorem 2. When initialized with an ordered matching M with size n, the SOM con-
structs Θ(

√
n) blocks, each taking O(

√
n log2 n) time.

Bid insertion on the SOM can be implemented as Alg. 2 inO(
√
n log2 n) time since Lemma 13

shows that SWAP(S, u∗, u) can be implemented inO(
√
n log2 n) time, and as argued in Sect. 5.3.2,

the remaining operations in Alg. 2 can be implemented in O(
√
n) time, where n denotes the size

of the superblock that the SOM maintains.
It is straightforward to implement dump by scanning over all the blocks and constructing a list

representation of the matching in O(n) time where n denotes the size of the matching.

We conclude the discussion of the fast bid insertion on the SOM with some remarks. It is
possible to support constant-time queries that return the bid matched to a given item with some
additional bookkeeping. Queries to find whether a bid is matched or not, and if so, to return the
matched item, can be implemented in logarithmic time by performing binary search. Finally, it is
possible to initialize the SOM with a matching consisting of all dummy bids, each with intercept
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zero and slope zero, in linear time, since all of the weights involving those bids are zero, and thus
it is trivial to construct the blocks.

6 Computation of the VCG Prices
In this section, we show how to extend the SOM to maintain the VCG prices as each bid is inserted.
Section 6.1 introduces some useful definitions. Section 6.2 extends the incremental framework of
Sect. 3 to compute the VCG prices. Section 6.3 presents a basic algorithm within the framework
of Sect. 6.2. Section 6.4 describes how to extend the data structure of Sect. 5 and presents a fast
emulation of the algorithm of Sect. 6.3.

6.1 Preliminaries
In many settings including the unit-demand auction settings, every efficient and strategyproof
mechanism is a so-called Groves mechanism, one that aligns the incentives of all players with the
goal of maximizing social welfare [7]. In addition to being efficient and strategyproof, the special
case of the Groves mechanism that employs the Clarke pivot rule for payments, what is commonly
referred to as the VCG mechanism, is individually rational and has no positive transfers, i.e., the
mechanism does not make payments to the bidders. The VCG allocation is an assignment that
maximizes the social welfare, and hence corresponds to an MWM of the bipartite graph. The VCG
prices can be characterized in various equivalent ways. In this section, we use the characterization
that identifies the VCG prices as the minimum stable price vector [11]. Another characterization
of the VCG prices follows directly from the Clarke pivot rule; the price of the item that is assigned
to a bidder u is the decrease in the social welfare of others caused by the participation of u.

We begin by reviewing some standard definitions and results that prove to be useful. We state
these results for UDALEWs; however, they hold for general unit-demand auctions. (The reader is
referred to [15, Chapter 8] for a thorough discussion and omitted proofs.)

For a UDALEWA = (U, V ), a surplus vector s assigns a real value s [i] to each bid U [i] in U , a
price vector p assigns a real value p[j] to each item V [j] in V , and an outcome is a triple (M, s , p)
such that s is a surplus vector, p is a price vector, and M is a matching of A.

An outcome (M, s , p) of a UDALEW (U, V ) is feasible if
∑

1≤i≤|U | s [i] +
∑

1≤j≤|V | p[j] =

w(M). For any feasible outcome (M, s , p), we say that the pair of vectors (s , p) and the matching
M are compatible.

Let A = (U, V ) be a UDALEW. We say that a bid U [i] (resp., item V [j]) blocks an outcome
(M, s , p) of A if s [i] < 0 (resp., p[j] < 0). We say that a bid-item pair (U [i], V [j]) blocks an
outcome (M, s , p) of A if s [i] + p[j] < w(U [i], V [j]). If no bid, item, or bid-item pair blocks an
outcome (M, s , p) ofA , then we say that the outcome (M, s , p) is stable, and that the payoff (s , p)
is stable with M . For any stable outcome (M, s , p) of A, the following are known: M is an MWM
of A; s [i]+ p[j] = w(U [i], V [j]) for all (U [i], V [j]) matched in M ; s [i] = 0 for all U [i] unmatched
in M ; p[j] = 0 for all V [j] unmatched in M . It is also known that any MWM is compatible with
any stable payoff. Thus, given the price vector p of a stable outcome of A, the corresponding
surplus vector s is uniquely determined by the following equation, where M denotes an arbitrary
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MWM of A:

s [i] =

{
w(U [i], V [j])− p[j] if V [j] is assigned to U [i] in M
0 if U [i] is left unassigned in M .

(3)

For any stable payoff (s , p) of A, we say that p is a stable price vector of A.
In the remainder of the paper, we write an outcome as a pair (M, p) rather than a triple

(M, s , p), and it is understood that the associated surplus vector s is given by (3).
It is known that the stable price vectors of a UDALEW form a lattice [16]. Hence, there is a

unique stable price vector that is componentwise less than or equal to any other stable price vector;
this minimum stable price vector corresponds to the VCG prices [11]. Thus, for a UDALEW A,
we refer to a stable outcome (M, p) of A as a VCG outcome of A if p is the VCG prices. In the
remainder of the paper, the inequality operators denote componentwise inequalities when they are
used on price vectors.

6.2 Incremental Framework with Prices
In this section, we present an incremental framework for the problem of finding a VCG outcome
of a UDALEW; we follow the approach of Sect. 3. In order to utilize the algorithms of Sections 4
and 5, we assume that the UDALEW (U, V ) for which we seek a VCG outcome is enlarged by
adding |V | dummy bids, each with intercept zero and slope zero, so that, by Corollary 1, we can
restrict our attention to ordered MWMCMs. Hence, in the remainder of the paper, for any outcome
(M, p) of a UDALEW A, we impose the condition that M is an ordered MWMCM of A.

Let A = (U, V ) be a UDALEW such that |U | ≥ |V |. Then for any VCG outcome (M, p)
of A and any bid u that does not belong to U , we define insert(M, p, u) as the stable outcome
(M ′, p ′) of the UDALEW A′ = (bids(M) + u, items(M)) where M ′ is insert(M,u) and p ′ is the
minimum stable price vector of A′ such that p ′ ≥ p; the existence and uniqueness of such p ′ is
implied by the lattice property of the stable price vectors.

The following lemma is at the core of our incremental framework. The proof follows from [15,
Proposition 8.17] and from Lemma 2.

Lemma 14. Let A = (U, V ) be a UDALEW such that |U | ≥ |V | and let u be a bid that does not
belong to U . Then for any VCG outcome (M, p) of A, insert(M, p, u) is a VCG outcome of the
UDALEW (U + u, V ).

We want to devise a data structure that maintains a dynamic outcome (M, p). The data structure
is initialized with a VCG outcome (M ′, p ′) of some UDALEW. The characterization of the data
structure is analogous to that of Sect. 3, except that bid insertion transforms the data structure to
represent insert(M, p, u), and dump returns a list representation of both M and p.

Lemma 15. Let D be an outcome data structure with initialization cost f(n), bid insertion cost
g(n), and dump cost h(n). Let A be a UDALEW (U, V ). Then a VCG outcome of A can be
computed in O(f(|V |) + (|U | − |V |) · g(|V |) + h(|V |)) time.

Proof. LetU ′ be a set of |V | dummy bids, each with intercept zero and slope zero. Let 〈u1, . . . , u|U |〉
be an arbitrary permutation of the bids in U . For any integer i such that 0 ≤ i ≤ |U |, let Ui denote
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U ′∪{u1, . . . , ui}. Remark: U0 = U ′ and U|U | = U∪U ′. We now show how to useD to find a VCG
outcome of the UDALEW (U|U |, V ), which is also a VCG outcome of A. We initialize D with the
outcome consisting of the ordered matching M0 = matching(U0, V ) and the all-zeros price vector
p0; note that (M0, p0) is a VCG outcome of the UDALEW (U0, V ). Then we iteratively insert bids
u1, . . . , u|U |. Let (Mi, pi) denote the outcome associated with D after i iterations, 1 ≤ i ≤ |U |.
Then, by induction on i, Lemma 14 and the definition of bid insertion together imply that (Mi, pi)
is a VCG outcome of the UDALEW (Ui, V ). Thus, a dump on D after completing all iterations
returns a VCG outcome of A. The whole process runs in the required time since we perform one
initialization, |U | bid insertions, and one dump.

In Sect. 6.3, we give a linear-time bid insertion algorithm assuming an array representation of
the ordered matching and the price vector. Building on the concepts introduced in Sect. 6.3 and the
SOM of Sect. 5, Sect. 6.4 develops an outcome data structure with initialization cost O(n log2 n),
bid insertion cost O(

√
n log2 n), and dump cost O(n). The results of Sect. 6.4, together with

Lemma 15, imply an O(m
√
n log2 n) time bound for computing a VCG outcome.

6.3 A Basic Algorithm with Prices
In this section, we describe a linear-time implementation of insert(M, p, u) given an array rep-
resentation of the ordered matching M and the price vector p. In Sect. 6.3.1, we give a char-
acterization of the price component of insert(M, p, u); in Sect. 6.3.2, we show how to compute
insert(M, p, u) based on this characterization. We start with some useful definitions and lemmas.

For any ordered matching M , we make the following definitions, where U denotes bids(M)
and V denotes items(M): V [j] is the match of U [j] in M for 1 ≤ j ≤ |M |; V [j − 1] is the
left-adjacent item of U [j] in M for 1 < j ≤ |M |; V [j + 1] is the right-adjacent item of U [j] in
M for 1 ≤ j < |M |; a bid-item pair consisting of a bid and its left-adjacent (resp., right-adjacent)
item in M , i.e., (U [j], V [j − 1]) (resp., (U [j], V [j + 1])), is a left-adjacent (resp., right-adjacent)
pair in M ; a left-adjacent or a right-adjacent pair is also called an adjacent pair.

The following lemma plays a key role in our algorithm; it suggests that we focus on adjacent
pairs to obtain a stable price vector.

Lemma 16. Let A = (U, V ) be a UDALEW such that |U | ≥ |V | and let M be an ordered
MWMCM of A. Let p be a price vector such that no adjacent pair in M blocks the outcome
(M, p) of A. Let u be a bid in U .

1. For any index i such that 1 ≤ i < |M | and u.slope ≤ U [i].slope, if (u, V [i]) does not block
(M, p), then (u, V [i+ 1]) does not block (M, p).

2. For any index i such that 1 < i ≤ |M | and u.slope ≥ U [i].slope, if (u, V [i]) does not block
(M, p), then (u, V [i− 1]) does not block (M, p).

Proof. We prove the first claim; the second claim is symmetric. Let i be an index such that 1 ≤
i < |M |, u.slope ≤ U [i].slope, and (u, V [i]) does not block (M, p). Since V [i + 1].quality ≥
V [i].quality and U [i].slope ≥ u.slope, we have

w(U [i], V [i+ 1])− w(U [i], V [i]) = U [i].slope · (V [i+ 1].quality − V [i].quality)

≥ u.slope · (V [i+ 1].quality − V [i].quality)

= w(u, V [i+ 1])− w(u, V [i]). (4)

23



Since (U [i], V [i + 1]) does not block (M, p), we have p[i + 1] − p[i] ≥ w(U [i], V [i + 1]) −
w(U [i], V [i]), and by (4), w(u, V [i]) − p[i] ≥ w(u, V [i + 1]) − p[i + 1]. Since (u, V [i]) does
not block (M, p), we know that the surplus of u is at least w(u, V [i]) − p[i]; combining this with
the inequality established in the preceding sentence, we deduce that the surplus of u is at least
w(u, V [i+ 1])− p[i+ 1], as required.

For any outcome (M ′, p ′), we make the following definitions, where U ′ denotes bids(M ′) and
V denotes items(M ′): a bid u in U ′ is left-tight (resp., right-tight) if it is indifferent between being
assigned to its match in M ′ or being assigned to its left-adjacent (resp., right-adjacent) item in M ′;
for any two indices j1 and j2 such that 1 ≤ j1 < j2 ≤ |M ′|, the interval [j1, j2] of (M ′, p ′) is
left-tight if each bid U ′[j] for j1 < j ≤ j2 is left-tight, and symmetrically, the interval [j1, j2] of
(M ′, p ′) is right-tight if each bid U ′[j] for j1 ≤ j < j2 is right-tight.

For any outcome (M ′, p ′), it is straightforward to observe the following, where U ′ denotes
bids(M ′) and V denotes items(M ′): if a bid U ′[j] is left-tight, then

p ′[j − 1] = p ′[j]− w(U ′[j], V [j]) + w(U ′[j], V [j − 1]), (5)

and hence, if an interval [j1, j2] is left-tight, then

p ′[j1] = p ′[j2] + ∆L(M ′[j1 : j2]) + w(U ′[j1], V [j1]); (6)

symmetrically, if a bid U ′[j] is right-tight, then

p ′[j + 1] = p ′[j]− w(U ′[j], V [j]) + w(U ′[j], V [j + 1]), (7)

and hence, if an interval [j1, j2] is right-tight, then

p ′[j2] = p ′[j1] + ∆R(M ′[j1 : j2]) + w(U ′[j]2, V [j2]). (8)

For any ordered matchingM ′ and any real value t, we define tightL(M ′, t) (resp., tightR(M ′, t))
as the price vector p ′ of the UDALEW (U, V ) such that p ′[|V |] = t (resp., p ′[1] = t), and for
j = |V | − 1, . . . , 1 (resp., for j = 2, . . . , |V |), p ′[j] is defined by (5) (resp., by (7)), where U ′

denotes bids(M ′) and V denotes items(M ′).
Let M ′ be an ordered matching, let V denote items(M ′), let p be a price vector for V ,

and let u∗ be a bid that does not belong to bids(M ′). Then we define reachL(M ′, p, u∗) and
reachR(M ′, p, u∗) as follows. Let j∗ denote index (u∗, bids(M ′) + u∗). If there exists an in-
dex j such that 1 ≤ j < j∗ and p[j : j∗ − 1] ≤ tightL(M ′[j : j∗ − 1],w(u∗, V [j∗ − 1])),
then reachL(M ′, p, u∗) is defined as the minimum such j; otherwise, reachL(M ′, p, u∗) is de-
fined as j∗. Symmetrically, if there exists an index j such that j∗ ≤ j ≤ |M | and p[j∗ : j] ≤
tightR(M ′[j∗ : j],w(u∗, V [j∗])), then reachR(M ′, p, u∗) is defined as the maximum such j; other-
wise, reachR(M ′, p, u∗) is defined as j∗ − 1.

In the next section, we use the concepts introduced above to characterize the prices after bid
insertion.

6.3.1 Characterization of the Prices After Bid Insertion

In this section, we fix an arbitrary outcome (M, p) that is stable for the UDALEW (bids(M), items(M))
and an arbitrary bid u that does not belong to bids(M). In what follows, let U denote bids(M),
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let V denote items(M), let A denote the UDALEW (U + u, V ), let M ′ denote insert(M,u), let
U ′ denote bids(M ′), let u∗ denote (U + u) \ U ′, let j∗ denote index (u∗, U + u), let j†L denote
reachL(M ′, p, u∗), and let j†R denote reachR(M ′, p, u∗). We first introduce two useful lemmas and
then, in Theorem 3, we characterize the prices after bid insertion.

Lemma 17. M ′[ : j†L − 1] = M [ : j†L − 1] and M ′[j†R + 1 : ] = M [j†R + 1 : ].

Proof. We prove by contradiction that M ′[ : j†L − 1] = M [ : j†L − 1]; the proof of the other
statement is symmetric. Assume that M ′[ : j†L − 1] 6= M [ : j†L − 1] and let k denote the least index
such that M ′[k] 6= M [k]; thus k is less than j†L, which by definition is at most j∗. We consider two
cases.

Case 1: u ≥ u∗. Then U ′[ : j∗ − 1] = U [ : j∗ − 1], which implies M ′[ : j∗ − 1] = M [ :
j∗ − 1], contradicting our assumption that M ′[ : j†L − 1] 6= M [ : j†L − 1].

Case 2: u < u∗. Then u∗ = U [j∗ − 1], u = U ′[k], and U ′[k + 1 : j∗ − 1] = U [k : j∗ − 2]
since M and M ′ are ordered matchings with |M | − 1 common bids and since k < j∗. The claim
established below implies that j†L ≤ k, which contradicts k < j†L, thereby completing the proof.

Claim: p[k : j∗ − 1] ≤ tightL(M ′[k : j∗ − 1],w(u∗, V [j∗− 1])). In what follows, let q[j∗− 1]
denote w(u∗, V [j∗−1]) and let q[j] denote q[j+1]−w(U ′[j+1], V [j+1])+w(U ′[j+1], V [j]) for
k ≤ j ≤ j∗ − 2. In the remainder of the proof, we show by reverse induction on j that p[j] ≤ q[j]
for k ≤ j < j∗; then the claimed inequality follows immediately since the right-hand side is a
vector with components q[k], . . . , q[j∗ − 1].

Base case: j = j∗ − 1. Since u∗ = U [j∗ − 1] and since (M, p) is stable for the UDALEW
(bids(M), items(M)), we have p[j∗ − 1] ≤ w(u∗, V [j∗ − 1]) = q[j∗ − 1].

Induction step. Let j be an integer such that k < j < j∗ and assume p[j + 1] ≤ q[j + 1]. Since
the pair (U [j], V [j + 1]) does not block (M, p), we know that p[j] ≤ p[j + 1] − w(U [j], V [j +
1]) + w(U [j], V [j]). Then, by our assumption that p[j + 1] ≤ q[j + 1] and since U ′[j + 1] = U [j],
we deduce that p[j] ≤ q[j + 1]− w(U ′[j + 1], V [j + 1]) + w(U ′[j + 1], V [j]) = q[j].

Lemma 18. For any item index j such that j < j∗, we have j†L ≤ j if and only if p[j] ≤
w(u∗, V [j∗−1]) + ∆L(M ′[j : j∗ − 1]) + w(U ′[j], V [j]). Symmetrically, for any item index j such
that j ≥ j∗, we have j†R ≥ j if and only if p[j] ≤ w(u∗, V [j∗]) + ∆L(M ′[j∗ : j]) + w(U ′[j], V [j]).

Proof. We only prove the first claim; the proof of the second claim is symmetric. It is easy to see
by the definition of reachL(M ′, p, u∗) that the claim holds for j = j∗− 1. We now show that if the
claim holds for some item index j such that 1 < j < j∗, then it holds for j − 1. In what follows,
let q[j] denote w(u∗, V [j∗−1]) + ∆L(M ′[j : j∗ − 1]) + w(U ′[j], V [j]) for 1 ≤ j < j∗. Let j be an
item index such that 1 < j < j∗ and assume that the claim holds for this index, i.e., j†L ≤ j if and
only if p[j] ≤ q[j]. In what follows, let p ′ denote tightL(M ′[j − 1 : j∗ − 1],w(u∗, V [j∗ − 1])).
Note that q[j] = p ′[2] by (6), and q[j − 1] = q[j] − w(U ′[j], V [j]) + w(U ′[j], V [j − 1]) = p ′[1]
by (L1′) and (6). We consider two cases.

Case 1: j†L ≤ j and p[j] ≤ q[j]. Since j†L ≤ j, we know that p[j : j∗ − 1] ≤ p ′[2 : ]. Thus,
p[j − 1] ≤ q[j − 1] if and only if p[j − 1 : j∗ − 1] ≤ p ′. Hence, j†L ≤ j − 1 if and only if
p[j − 1] ≤ q[j − 1] by the definition of reachL(M ′, p, u∗).

Case 2: j†L > j and p[j] > q[j]. Then Lemma 17 implies that U ′[j] = U [j]. The stability of
(M, p) implies that p[j−1] ≥ p[j]−w(U [j], V [j])+w(U [j], V [j−1]). Then, since p[j] > q[j] and
U ′[j] = U [j], we conclude that p[j−1] > q[j]−w(U ′[j], V [j])+w(U ′[j], V [j−1]) = q[j−1].
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We now characterize a certain price vector given the stable outcome (M, p) and the new bid
u, and then state in Theorem 3 that this price vector is the price component of any VCG outcome
after insertion of u. We define grow(M, p, u) as the price vector p ′ of A such that the following
conditions hold: p ′[ : j†L − 1] = p[ : j†L − 1]; if j†L < j∗, then p ′[j†L : j∗ − 1] = tightL(M ′[j†L :
j∗ − 1],w(u∗, V [j∗ − 1])); if j†R ≥ j∗, then p ′[j∗ : j†R] = tightR(M ′[j∗ : j†R],w(u∗, V [j∗]));
p ′[j†R + 1 : ] = p[j†R + 1 : ].

Theorem 3. For any VCG outcome (M0, p0) of a UDALEW (U0, V0) such that |U0| ≥ |V0| and for
any bid u0 that does not belong to U0, insert(M0, p0, u0) = (insert(M0, u0), grow(M0, p0, u0)).

Proof. The proof follows from Lemma 14, which summarizes our incremental framework, and
from Lemma 19 below.

The remainder of this section states and proves Lemma 19 which is used in the proof of Theo-
rem 3. In what follows, let p ′ denote grow(M, p, u).

Lemma 19. The following claims hold: (1) p ′ ≥ p; (2) p ′ is a stable price vector of A; (3) for any
stable price vector p ′′ of A such that p ′′ ≥ p, p ′ ≤ p ′′.

We state two useful lemmas before proving Lemma 19.

Lemma 20. p ′[j] ≤ w(U ′[j], V [j]) for 1 ≤ j ≤ |V |.

Proof. Since (M, p) is stable for the UDALEW (U, V ), we know that p[j] ≤ w(U [j], V [j]) for
1 ≤ j ≤ |V |. Then, p ′[j] ≤ w(U ′[j], V [j]) for 1 ≤ j < j†L (resp., j†R < j ≤ |V |) since
p ′[ : j†L − 1] = p[ : j†L − 1] (resp., p ′[j†R + 1 : ] = p[j†R + 1 : ]) by the definition of grow(M, p, u),
and since U ′[ : j†L − 1] = U [ : j†L − 1] (resp., U ′[j†R + 1 : ] = U [j†R + 1 : ]) by Lemma 17. It
remains to show that the claim holds for j†L ≤ j ≤ j†R. If j†L < j∗ (resp., if j†R ≥ j∗), then
p ′[j∗ − 1] = w(u∗, V [j∗ − 1]) ≤ w(U ′[j∗ − 1], V [j∗ − 1]) (resp., p ′[j∗] = w(u∗, V [j∗]) ≤
w(U ′[j∗], V [j∗])) where the equality holds by the definition of grow(M, p, u) and the inequality
holds by the fact that u∗ is not matched by the MWMCM M ′. Then it is straightforward to see
that p ′[j] ≤ w(U ′[j], V [j]) for j = j∗ − 2, . . . , j†L (resp., j = j∗ + 1, . . . , j†R) since p ′[j] is defined
by (5) (resp., by (7)).

Lemma 21. No adjacent pair in M ′ blocks the outcome (M ′, p ′) of A.

Proof. We start the proof by showing in the following three paragraphs that no adjacent pair in
M ′[ : j∗ − 1] blocks the outcome (M ′, p ′). The task of showing that no adjacent pair in M ′[j∗ : ]
blocks (M ′, p ′) is symmetric. Then, we complete the proof by showing that if 1 < j∗ ≤ |M ′|, then
neither of the two adjacent pairs in M ′[j∗ − 1 : j∗] blocks the outcome (M ′, p ′).

First, we argue about the adjacent pairs in M ′[ : j†L − 1], which is nonempty only if j†L > 1.
Assume that j†L > 1. Since p ′[ : j†L − 1] = p[ : j†L − 1] by the definition of grow(M, p, u) and
since M ′[ : j†L − 1] = M [ : j†L − 1] by Lemma 17, the stability of (M, p) implies that no pair
(adjacent or not) in M ′[ : j†L − 1] blocks (M ′, p ′).

Second, we argue about the two adjacent pairs in M ′[j†L − 1 : j†L] when j†L < j∗. Assume that
j†L < j∗. Since p ′[j†L − 1] > p ′[j†L]− w(U ′[j†L], V [j†L]) + w(U ′[j†L], V [j†L − 1]) by the definition of
j†L, the left-adjacent pair (U ′[j†L], V [j†L − 1]) does not block (M ′, p ′). Since U ′[j†L − 1] is matched
to the same item (V [j†L − 1]) in M and in M ′ by Lemma 17, and since the right-adjacent pair
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(U ′[j†L − 1], V [j†L]) does not block (M, p) (by the stability of (M, p)), we conclude that the same
pair does not block (M ′, p ′) because the definition of j†L implies that p ′[j†L − 1] = p[j†L − 1] and
p ′[j†L] ≥ p[j†L].

Third, we argue about the adjacent pairs in M ′[j†L : j∗ − 1], which is nonempty only if j†L <
j∗ − 1. Assume that j†L < j∗ − 1. Let j be an arbitrary index such that j†L < j < j∗. It is
easy to see that the left-adjacent pair (U ′[j], V [j − 1]) does not block (M ′, p ′) since p ′[j − 1] =
p ′[j]−w(U ′[j], V [j]) + w(U ′[j], V [j−1]) by (5). Since U ′[j−1] < U ′[j], by an argument similar
to the one that is used to derive (4), we deduce that w(U ′[j − 1], V [j])−w(U ′[j − 1], V [j − 1]) ≤
w(U ′[j], V [j]) − w(U ′[j], V [j − 1]), which combined with the equality in the preceding sentence
implies that the right-adjacent pair (U ′[j − 1], V [j]) does not block (M ′, p ′).

Finally, we complete the proof by showing that if 1 < j∗ ≤ |M ′|, then neither of the two
adjacent pairs in M ′[j∗ − 1 : j∗] blocks the outcome (M ′, p ′). Assume that 1 < j∗ ≤ |M ′|.
Then at least one of the following conditions hold: (1) u ≤ u∗ < U ′[j∗] = U [j∗]; (2) u ≥
u∗ > U ′[j∗ − 1] = U [j∗ − 1]. We argue about condition (1); the argument about condition (2) is
symmetric. We start with some useful observations. Since U ′[j∗ − 1] ≤ u∗ < U [j∗], we deduce
the following two inequalities by an argument similar to the one that is used to derive (4):

w(U ′[j∗ − 1], V [j∗])− w(U ′[j∗ − 1], V [j∗ − 1]) ≤ w(u∗, V [j∗])− w(u∗, V [j∗ − 1]); (9)
w(u∗, V [j∗])− w(u∗, V [j∗ − 1]) ≤ w(U [j∗], V [j∗])− w(U [j∗], V [j∗ − 1]). (10)

Stability of (M, p) implies the following two inequalities:

w(U [j∗ − 1], V [j∗])− w(U [j∗ − 1], V [j∗ − 1]) ≤ p[j∗]− p[j∗ − 1]; (11)
p[j∗]− p[j∗ − 1] ≤ w(U [j∗], V [j∗])− w(U [j∗], V [j∗ − 1]). (12)

It is easy to see that U ′[j∗ − 1] ≤ U [j∗ − 1] because either M = M ′ or U [j∗ − 1] = u∗; hence

w(U ′[j∗ − 1], V [j∗])− w(U ′[j∗ − 1], V [j∗ − 1]) ≤
w(U [j∗ − 1], V [j∗])− w(U [j∗ − 1], V [j∗ − 1]), (13)

by an argument similar to the one that is used to derive (9).
With these observations in mind, we want to show the stability of the right-adjacent pair in

M ′[j∗ − 1 : j∗], i.e.,

w(U ′[j∗ − 1], V [j∗])− w(U ′[j∗ − 1], V [j∗ − 1]) ≤ p ′[j∗]− p ′[j∗ − 1], (14)

and the stability of the left-adjacent pair in M ′[j∗ − 1 : j∗], i.e.,

p ′[j∗]− p ′[j∗ − 1] ≤ w(U [j∗], V [j∗])− w(U [j∗], V [j∗ − 1]), (15)

where p ′[j∗ − 1] = max(p[j∗ − 1],w(u∗, V [j∗ − 1])) and p ′[j∗] = max(p[j∗],w(u∗, V [j∗])). We
consider three cases.

Case 1: p ′[j∗ − 1] = w(u∗, V [j∗ − 1]) and p ′[j∗] = w(u∗, V [j∗]). Then, (9) implies (14)
and (10) implies (15).

Case 2: p ′[j∗ − 1] = p[j∗ − 1] ≥ w(u∗, V [j∗ − 1]) and p ′[j∗] = w(u∗, V [j∗]) > p[j∗]. Then
p[j∗]− p[j∗ − 1] < p ′[j∗]− p ′[j∗ − 1] ≤ w(u∗, V [j∗])− w(u∗, V [j∗ − 1]). The first inequality in
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the preceding sentence, (11), and (13) imply (14); the second inequality in the preceding sentence
and (10) imply (15).

Case 3: p ′[j∗ − 1] = w(u∗, V [j∗ − 1]) > p[j∗ − 1] and p ′[j∗] = p[j∗] ≥ w(u∗, V [j∗]). Then
w(u∗, V [j∗])−w(u∗, V [j∗−1]) ≤ p ′[j∗]−p ′[j∗−1] < p[j∗]−p[j∗−1]. The first inequality in the
preceding sentence and (9) imply (14); the second inequality in the preceding sentence and (12)
imply (15).

Proof of Lemma 19. It is easy to see that claim (1) holds by the definition of grow(M, p, u).
No item blocks the outcome (M ′, p ′) since the stability of p and claim (1) together imply that

no price in p ′ is negative. No bid blocks the outcome (M ′, p ′) by Lemma 20. In order to prove
claim (2), it remains to show that no bid-item pair in A blocks the outcome (M ′, p ′). Observe that
Lemmas 16 and 21 directly imply that no bid-item pair involving a bid in U ′ blocks (M ′, p ′). Now,
if j∗ > 1 (resp., j∗ ≤ |V |), then it is easy to see that (u∗, V [j∗ − 1]) (resp., (u∗, V [j∗])) does not
block (M ′, p ′) since p ′[j∗−1] ≥ w(u∗, V [j∗−1]) (resp., p ′[j∗] ≥ w(u∗, V [j∗])); thus, Lemmas 16
and 21 imply that no bid-item pair involving u∗ blocks (M ′, p ′).

We now prove claim (3). Assume that there exists a stable price vector ofA, denoted p ′′ in what
follows, such that p ′′ ≥ p and p ′′[j] < p ′[j] for at least one item index j. We show a contradiction
if p ′′[j] < p ′[j] for some j ≥ j∗; the argument for the case where j < j∗ is symmetric. Assume that
p ′′[j] < p ′[j] for some j ≥ j∗ and let j′ denote the minimum such j. Since p ′[j′] > p ′′[j′] ≥ p[j′],
we conclude that j†R ≥ j′. We consider two cases.

Case 1: j′ = j∗. Then p ′′[j∗] < p ′[j∗] = w(u∗, V [j∗]), and thus the bid-item pair (u∗, V [j∗])
blocks the outcome (M ′, p ′′) since u∗ is not matched by M ′, contradicting the stability of p ′′.

Case 2: j′ > j∗. Then p ′′[j′] < p ′[j′] = p ′[j′−1]−w(U ′[j′−1], V [j′−1])+w(U ′[j′−1], V [j′]),
where the equality holds by (7). Then, since the definition of j′ implies p ′[j′ − 1] ≤ p ′′[j′ − 1], we
conclude that p ′′[j′] < p ′′[j′−1]−w(U ′[j′−1], V [j′−1]) + w(U ′[j′−1], V [j′]), and thus that the
bid-item pair (U ′[j′ − 1], V [j]) blocks the outcome (M ′, p ′′), contradicting the stability of p ′′.

6.3.2 Computing Prices after Bid Insertion

In this section, we show how to compute insert(M, p, u) in linear time. In what follows, let
(M, p) be an arbitrary outcome that is stable for the UDALEW (bids(M), items(M)), let u
be an arbitrary bid that does not belong to bids(M), let M ′ denote insert(M,u), let U denote
bids(M), let V denote items(M), let U ′ denote bids(M ′), let u∗ denote (U +u)\U ′, let j∗ denote
index (u∗, U + u), let j†L denote reachL(M ′, p, u∗), let j†R denote reachR(M ′, p, u∗), and let p†

denote grow(M, p, u).
Algorithm 3 first computesM ′ and identifies the bid u∗ that is not matched byM ′, using Alg. 1

of Sect. 4. Then, Alg. 3 computes j†L (resp., j†R) in lines 6 through 15 (resp., 17 through 26), which
we refer to as the left-scan (resp., right-scan) in what follows, by initializing the program variable
jL to j∗ (resp., jR to j∗− 1), and then decrementing jL (resp., incrementing jR) until jL is equal to
j†L (resp., jR is equal to j†L). The prices p†[j†L : j†R] are also computed on the fly during the left-scan
(resp., right-scan) and stored in the array p ′[j†L : j†R]. We begin our discussion by introducing two
useful definitions.

We define the state predicate PL to hold if j†L ≤ jL and p ′[jL : j∗ − 1] = p†[jL : j∗ − 1].
Symmetrically, we define the state predicate PR to hold if j†R ≥ jR and p ′[j∗ : jR] = p†[j∗ : jR].
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Algorithm 3 A linear-time implementation of insert(M, p, u).

Input: (M, p) is an outcome that is stable for the UDALEW (bids(M), items(M)), and u is a bid
that does not belong to bids(M).

Output: insert(M, p, u).
1: Let U denote bids(M) and let V denote items(M)
2: M ′ ← insert(M,u)
3: u∗ ← (U + u) \ bids(M ′)
4: j∗ ← index (u∗, U + u)
5: U ′ ← bids(M ′)
6: j ← jL ← j∗

7: while j > 1 do
8: j ← j − 1
9: t← if j = j∗−1 then w(u∗, V [j]) else p ′[j+1]−w(U ′[j+1], V [j+1])+w(U ′[j+1], V [j])

10: if p[j] ≤ t then
11: p ′[j]← t
12: jL ← j
13: else break
14: end if
15: end while
16: p ′[ : jL − 1] = p[ : jL − 1]
17: j ← jR ← j∗ − 1
18: while j < |V | do
19: j ← j + 1
20: t← if j = j∗ then w(u∗, V [j]) else p ′[j−1]−w(U ′[j−1], V [j−1])+ w(U ′[j−1], V [j])
21: if p[j] ≤ t then
22: p ′[j]← t
23: jR ← j
24: else break
25: end if
26: end while
27: p ′[jR + 1 : ] = p[jR + 1 : ]
28: return (M ′, p ′)

Lemma 22. The following claims hold: (1) the predicate PL is an invariant of the while loop in
the left-scan; (2) upon completion of the left-scan, jL = j†L.

Proof. The predicate PL trivially holds upon execution of line 6, and thus at the beginning of the
first iteration of the while loop, by the definition of j†L. We prove by induction on the number of
iterations that PL holds at the end of each iteration. Consider an arbitrary iteration of the loop
and assume that PL holds at the beginning of the iteration. After executing line 8, let p ′′ denote
tightL(M ′[j : j∗ − 1],w(u∗, V [j∗ − 1])). If this is the first iteration of the loop, it is trivial to see
that the variable t computed at line 9 is equal to p ′′[1]. Otherwise, since PL holds at the beginning
of the iteration, p ′[j + 1] is equal to p ′′[2], and thus the variable t computed at line 9 is equal to
p ′′[1] by (5). Then it is easy to see that j†L ≤ j if and only if the condition p[j] ≤ t at the if
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statement at line 10 holds, since p[j + 1 : j∗ − 1] is less than or equal to p ′′[2 : ] by our assumption
that PL holds at the beginning of the iteration. Then it is easy to see that PL holds after execution
of the if statement, and thus at the end of the iteration. It is also easy to see that jL = j†L upon
the termination of the loop: if the loop terminates via the break statement, then the inequality
j†L > j = jL − 1 and PL implies jL = j†L; if the loop terminates because j = 1 at line 7, then PL

implies jL = j†L = j = 1 since j†L ≥ 1 by definition.

Lemma 23 below is symmetric to Lemma 22, and so its proof is omitted.

Lemma 23. The following claims hold: (1) the predicate PR is an invariant of the while loop in
the right-scan; (2) upon completion of the right-scan, jR = j†R.

Finally, the unchanged prices, i.e., p†[ : j†L − 1] (resp., p†[j†R + 1 : ]), are copied into p ′[ :
j†L − 1] (resp., p ′[j†R + 1 : ]) after the left-scan (resp., right-scan) at line 16 (resp., line 27).

Lemma 24. Algorithm 3 is correct.

Proof. By Lemmas 22 and 23, and lines 16 and 27, the array p ′ is equal to p† upon termination of
the algorithm. The correctness follows by Theorem 3.

6.4 Superblock-Based Price Computation
We obtain a fast emulation of Alg. 3 by employing a superblock-based outcome representation and
by extending the faster superblock-based bid insertion algorithm of Sect. 5.

For any nonempty ordered matching M , we say that π is a price-block for M if π is an array
of real values of size |M |, or π is a pair (D, q) where D ∈ {L,R} and q is a real value.

Let M be a nonempty ordered matching and let π be a price-block for M . Let U denote
bids(M) and let V denote items(M). If π is an array, then we say that π explicitly represents
prices, or π is an explicit price-block, and it is understood that π[j] is the price of V [j] for 1 ≤
j ≤ |V |. If π is a pair (L, q) (resp., (R, q)), then we say that π compactly represents left-tight
(resp., right-tight) prices, or π is a compact price-block, and it is understood that q is the price
of V [|V |] (resp., V [1]), and the prices of other items are defined by (6) (resp., (8)). If the price-
block π compactly represents left-tight (resp., right-tight) prices, it is straightforward to see that
the following claims hold: for any j such that 1 ≤ j ≤ |V |, the price of V [j] can be computed in
O(min(j, |V | − j)) time via (5) and (6) (resp., via (7) and (8)) given ∆L(M) (resp., ∆R(M)); π
can be converted to an explicit price-block in O(|V |) time.

For any superblock S and any sequence Π = 〈π1, . . . , π|S|〉 of price-blocks, we say that (S,Π)
is a superblock-based outcome if πi is a price-block for matching(S[i], shift(S, i)) for 1 ≤ i ≤ |S|.
It is understood that (S,Π) represents the outcome (M, p) where M = matching(S) and the price
vector p is represented by the individual price-blocks πi. Thus, for any superblock-based outcome
(S,Π) and any bid u that does not belong to bids(S), we use the notation insert(S,Π, u) to denote
insert(M, p, u), where (M, p) is the outcome that (S,Π) represents.

In order to obtain a fast implementation of insert(M, p, u), we enhance the data structure
of Sect. 5.3.2 so that we maintain a superblock-based outcome. We momentarily describe the
necessary modifications in the implementation of the four block-level operations of Sect. 5.3.3, but
we first characterize what our fast implementation computes.
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Let (S,Π) be a superblock-based outcome and let u be a bid that does not belong to bids(S).
Let M ′ denote insert(matching(S), u) and let u∗ denote the bid (bids(S) +u) \M ′. Then for any
superblock S ′ such that matching(S ′) = M ′, |S| = |S ′|, and |sum(S, i)− sum(S ′, i)| ≤ 1 for
0 ≤ i ≤ |S|, we define prices(Π, S, u∗, S ′) as the set of all price-block sequences Π′ such that the
superblock-based outcome (S ′,Π′) represents insert(S,Π, u). Note that there may be more than
one Π′ in prices(Π, S, u∗, S ′), each representing the same price vector, and we are only interested
in computing an arbitrary one. We describe how to compute a price-block sequence that belongs
to prices(Π, S, u∗, S ′) in Sect. 6.4.2 by emulating Alg. 3, starting with line 4.

6.4.1 Block-Level Operations

We are now ready to describe our efficient implementation of insert(S,Π, u), which is based on an
enhanced SOM. The input is a superblock-based outcome (S,Π) and a bid u that does not belong to
bids(S). We proceed as in Alg. 2 of Sect. 5 and identify u∗ at line 29. We enhance the four block-
level operations, refresh, split , merge, and exchange, so that they operate on superblock-based
outcomes, and thus SWAP at line 30 modifies the superblock-based outcome (S,Π).

If the matching does not change, i.e., u∗ = u at line 30, we simply set the superblock-based
outcome that the data structure maintains to (S ′,Π′) where S ′ = S and Π′ is a price-block se-
quence that belongs to prices(Π, S, u∗, S ′), and we are done. Otherwise, the enhanced block-level
operations are performed during SWAP(S, u∗, u), as described next.

The refresh operation does not change the matching and does not change the partitioning of
bids (by the blocks of S), so the price-block sequence Π does not need to be modified.

The split and merge operations do not change the matching, but they potentially change the
partitioning of the bids, by either splitting a block or merging two blocks, respectively. If split re-
places a block S[i] with two blocks, then we perform the following two steps: if the corresponding
price-block Π[i] is compact, we convert it to explicit form; we split the array Π[i] into two halves.
If merge replaces two blocks S[i] and S[i+ 1] with a single block, then we perform the following
two steps: if the corresponding price-block Π[i] (resp., Π[i+1]) is compact, we convert Π[i] (resp.,
Π[i+ 1]) to explicit form; we merge the arrays Π[i] and Π[i+ 1] into a single array.

The most complicated operation is exchange because it alters the matching. It is also at the end
of the enhanced exchange where we emulate Alg. 3 (starting with line 4) to compute the prices, as
described in Sect. 6.4.2. The goal is to transform a superblock-based outcome (S,Π) into another
superblock-based outcome (S ′,Π′) such that S ′ = exchange(S, u∗, u) (as described in Sect. 5.3.3)
and Π′ belongs to prices(Π, S, u∗, S ′). First, the operation exchange(S, u∗, u) is carried out as de-
scribed in Sect. 5.3.3 to obtain the superblock S ′, except that the replaced blocks are not discarded
until the whole process we describe next is finished, since the blocks corresponding to the old su-
perblock will be useful. Therefore, in what follows, we assume that both S and S ′ are available.
Note that |sum(S, i)− sum(S ′, i)| ≤ 1 for 0 ≤ i ≤ |S|, as required by the definition of prices ,
where the difference of one is caused by the shifts and by the fact that one block may lose a bid
and another block may gain a bid. Second, we compute a price-block sequence Π′ that belongs to
prices(Π, S, u∗, S ′), and we set the superblock-based outcome that the data structure represents to
(S ′,Π′).

In the next section, we describe how to compute a price-block sequence that belongs to
prices(Π, S, u∗, S ′) in O(

√
n) time, where n denotes size(S). It is straightforward to see that

all the additional computations described above associated with enhanced refresh, split , merge,
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and exchange operations take O(
√
n) time.

6.4.2 Fast Update of Price-Blocks

In order to complete the description of our efficient implementation of insert(S,Π, u), we now
show how to compute a price-block sequence that belongs to prices(Π, S, u∗, S ′) in O(

√
n) time.

Our approach is to emulate Alg. 3, starting with line 4, on input M , p, and u where (M, p) is
the outcome that (S,Π) represents. In what follows, when we refer to the execution of Alg. 3,
we mean the execution associated with this input. In the remainder of this section, let M ′ denote
matching(S ′), which is equal to the ordered matching that the program variable of the same name
stores during the execution of Alg. 3, let U ′ denote bids(M ′), let V denote items(M ′), let j†L (resp.,
j†R) denote reachL(M ′, p, u∗) (resp., reachR(M ′, p, u∗)), which is equal to the value of jL (resp.,
jR) at the end of the execution of Alg. 3, and let p† denote grow(M, p, u). Before beginning our
formal presentation, we present the key idea underlying our fast emulation.

Recall that Alg. 3 computes j†L (resp., j†R) by initializing the program variable jL to j∗ (resp.,
jR to j∗ − 1), and then decrementing jL (resp., incrementing jR) by one at each iteration in a loop
until jL is equal to j†L (resp., jR is equal to j†L). Our fast emulation of Alg. 3 relies on the following
lemma, which allows us to “jump over” the blocks, i.e., decrement jL by one plus the size of a
block when we are at a block boundary.

Lemma 25. Let j1 and j2 be indices in M such that j1 < j2 and j†L ≤ j2 (resp., j†R ≥ j1). Then,
we can decide whether j†L ≤ j1 (resp., j†R ≥ j2) holds and we can compute p†[j1] (resp., p†[j2]) in
constant time given ∆L(M ′[j1 : j2]), p[j1], and p†[j2] (resp., ∆R(M ′[j1 : j2]), p[j2], and p†[j1]).

Proof. We address the claims regarding j†L and the computation of p†[j1]; the claims regard-
ing j†R and the computation of p†[j2] are symmetric. Let p denote p†[j2] + ∆L(M ′[j1 : j2]) +
w(U ′[j1], V [j1]), which can be computed in constant time given p†[j2] and ∆L(M ′[j1 : j2]). Since
j†L ≤ j2, the definition of p† implies that p†[j2] = w(u∗, V [j∗ − 1]) + ∆L(M ′[j2 : j∗ − 1]) +
w(U ′[j2], V [j2]), which is equal to w(u∗, V [j∗−1])+∆L(M ′[j2 + 1 : j∗ − 1])+w(U ′[j2+1], V [j2])
by (L1). Then, p is equal to w(u∗, V [j∗ − 1]) + ∆L(M ′[j1 : j∗ − 1]) + w(U ′[j1], V [j1]) by (L1′),
and Lemma 18 implies that j†L ≤ j1 if and only if p[j1] ≤ p. Finally, the definition of p† implies
that p†[j1] is equal to p if j†L ≤ j1, to p[j1] otherwise.

Before presenting Alg. 4, our fast implementation of computing a price-block sequence that
belongs to prices(Π, S, u∗, S ′), we introduce several useful definitions.

For any superblock-based outcome (S,Π) and any index ` such that 1 ≤ ` ≤ |S|, we define
explicit(S,Π, `) as the explicit price-block (an array of real values) that stores the same prices
of items(matching(S[`], shift(S, `))) as in Π[`]. Note that explicit(S,Π, `) can be computed in
O(sum(S, `)− sum(S, `− 1)) time.

For any superblock-based outcome (S,Π), any index ` such that 1 ≤ ` ≤ |S|, and any in-
teger offset such that max(−1, 1 − `) ≤ offset ≤ 1, we define boundaryL(S,Π, `, offset) as
follows: if offset ≥ 0, then boundaryL(S,Π, `, offset) is the price of the item V [1 + offset ]
represented by Π[`], where V denotes items(matching(S[`], shift(S, `))); if offset = −1, then
boundaryL(S,Π, `, offset) is the price of the item V [|V |] represented by Π[` − 1], where V de-
notes items(matching(S[`−1], shift(S, `−1))). Note that boundaryL(S,Π, `, offset) is the price
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of the item V [sum(S, `− 1) + 1 + offset ] represented by Π, where V denote items(S), and it can
be computed in constant time.

Symmetrically, for any superblock-based outcome (S,Π), any index ` such that 1 ≤ ` ≤ |S|,
and any integer offset such that−1 ≤ offset ≤ min(1, |S|−`), we define boundaryR(S,Π, `, offset)
as follows: if offset ≤ 0, then boundaryR(S,Π, `, offset) is the price of the item V [|V | + offset ]
represented by Π[`], where V denotes items(matching(S[`], shift(S, `))); if offset = 1, then
boundaryR(S,Π, `, offset) is the price of the item V [1] represented by Π[`+ 1], where V denotes
items(matching(S[`+1], shift(S, `+1))). Note that boundaryR(S,Π, `, offset) is the price of the
item V [sum(S, `) + offset ] represented by Π, where V denote items(S), and it can be computed
in constant time.

Our efficient computation of a price-block sequence that belongs to prices(Π, S, u∗, S ′) is
shown in Alg. 4. First, the algorithm performs a scan over the blocks of S ′ to compute a block
index `∗ at line 6 so that each bid in each block S[i] for 1 ≤ i < `∗ (resp., `∗ < i ≤ |S|) is less
(resp., greater) than u∗. Then it is easy to see that the integer j∗ computed at line 7 is equal to
index (u∗, U ′ + u∗), as in Alg. 3.

We compute j†L and the price-blocks that represent p† for the items V [ : j∗ − 1] in three stages.
The computation of j†R and the price-blocks for the items V [j∗ : ] is symmetric and omitted. We
first give some useful definitions that are analogous to those of PL and PR introduced in Sect. 6.3.2,
and then we describe the three stages of Alg. 4.

We define the state predicate QL (resp., QR) to hold if j†L ≤ jL (resp., j†R ≥ jR) and for each
item index j′ such that jL ≤ j′ ≤ j∗ − 1 (resp., j∗ ≤ j′ ≤ jR), either (1) p ′[j′] is assigned p†[j′],
or (2) p ′[j′] remains uninitialized and the price of V [j′] represented by Π′ is equal to p†[j′].

The first stage (lines 13 through 15) is identical to the left-scan of Alg. 3 except that it is
confined within the block S ′[`∗]. The goal of the first stage is to fill p ′[σ′(`∗ − 1) + 1 : j∗ − 1]
which, together with p ′[j∗ : σ′(`∗)] that is computed in the symmetric stage (i.e., the first stage
associated with the computation of j†R and the price-blocks for the items V [j∗ : ]), constitutes the
explicit price-block Π′[`∗] built at line 41. Before executing the while loop at lines 13 through 15
that decrements jL and fills p ′, we ensure at lines 10 through 12 that the input prices (prices
represented by Π) for the items that are matched in S ′[`∗] (items in V [σ′(`∗ − 1) + 1 : σ′(`∗)]) are
available in the array p. Then, Lemma 26 below implies that jL = max(j†L, σ

′(`∗ − 1) + 1) and
p ′[jL : j∗ − 1] = tightL(M ′[jL : j∗ − 1],w(u∗, V [j∗ − 1])) upon completion of the while loop.
Hence, if the inequality checked at line 16 holds, we have jL = j†L, and we copy the unchanged
prices for the remaining items into p ′[σ′(`∗ − 1) + 1 : jL − 1] from p[σ′(`∗ − 1) + 1 : jL − 1] at
line 17, and we are done. Otherwise, we proceed to the next stage to see whether j†L < σ′(`∗−1)+1.

Lemma 26. The following claims hold: (1) the predicate QL is an invariant of the while loop
at lines 13 through 15; (2) upon termination of the while loop at lines 13 through 15, if jL >
σ′(`∗ − 1) + 1) then jL = j†L.

Proof. The predicate QL trivially holds upon execution of line 7, and thus at the beginning of
the first iteration of the while loop, by the definition of j†L. The rest of the proof is identical
to that of Lemma 22, with QL replacing PL, except that if the while loop terminates because
j = σ′(`∗ − 1) + 1 at line 13, then QL only implies jL = j = σ′(`∗ − 1) + 1 ≥ j†L, but not
necessarily jL = j†L.

The second stage (lines 19 through 31) identifies the blocks that reside in the left-tight interval
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Algorithm 4 Fast implementation of computing a price-block sequence that belongs to
prices(Π, S, u∗, S ′).
Input: Π, S, u∗, and S′ such that prices(Π, S, u∗, S′) is well-defined.
Output: Π′ such that the outcome (S′,Π′) represents insert(S,Π, u), where u denotes bids(S′)\ bids(S).

1: Let U ′ denote bids(S′), let V denote items(S′), and let M ′ denote matching(S′)
2: Let S′[i] be (U ′i , V

′
i ) for 1 ≤ i ≤ |S′|

3: Let p and p′ be two uninitialized arrays of |M ′| real values
4: σ(i)← sum(S, i) for 0 ≤ i ≤ |S|
5: σ′(i)← sum(S′, i) for 0 ≤ i ≤ |S′|
6: `∗ ← max(1, |{(U ′, V ′) | (U ′, V ′) ∈ S′ and U ′[1] < u∗}|)
7: j ← jL ← j∗ ← index (u∗, U ′`∗ + u∗) + σ′(`∗ − 1)
8: if j∗ > 1 then
9: `← `∗

10: p[σ(`− 1) + 1 : σ(`)]← explicit(S,Π, `)
11: p[σ′(`− 1) + 1]← boundaryL(S,Π, `, σ′(`− 1)− σ(`− 1))
12: p[σ′(`)]← boundaryR(S,Π, `, σ′(`)− σ(`))
13: while j > σ′(`− 1) + 1 do
14: Perform lines 8 through 14 of Alg. 3
15: end while
16: if jL > σ′(`− 1) + 1 then
17: p′[σ′(`− 1) + 1 : jL − 1]← p[σ′(`− 1) + 1 : jL − 1]
18: else
19: `← `− 1
20: while ` ≥ 1 do
21: t← p ′[j]− w(U ′[j], V [j]) + w(U ′[j], V [j − 1])
22: j1 ← σ′(`− 1) + 1
23: p[j1]← boundaryL(S,Π, `, σ′(`− 1)− σ(`− 1))
24: if p[j1] ≤ t+ ∆L(M ′[j1 : j − 1]) + w(U ′[j1], V [j1]) then
25: p′[j1]← t+ ∆L(M ′[j1 : j − 1]) + w(U ′[j1], V [j1])
26: Π′[`]← (L, t)
27: j ← jL ← j1
28: `← `− 1
29: else break
30: end if
31: end while
32: if ` ≥ 1 then
33: Perform lines 10 through 15 above
34: p ′[σ′(`− 1) + 1 : jL − 1]← p[σ′(`− 1) + 1 : jL − 1]
35: Π′[`]← p′[σ′(`− 1) + 1 : σ′(`)]
36: end if
37: end if
38: Π′[ : `− 1]← Π[ : `− 1]
39: end if
40: Compute jR and the price-blocks for the items V [j∗ : ] that represent the prices in p†, using code

symmetric to lines 7 through 39
41: Π′[`∗]← p′[σ′(`∗ − 1) + 1 : σ′(`∗)]
42: return Π′
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of (M ′, p†) by utilizing the constant-time computation of Lemma 25. The prices corresponding to
these blocks are represented using compact price-blocks. More precisely, for each block index i
such that 1 ≤ i < `∗ and j†L ≤ σ′(i), the while loop at lines 20 through 31 sets the price-block
Π′[i] corresponding to block S ′[i] to a compact price-block representing the prices in p†. Upon
termination of the while loop, the program variable ` is equal to min{i | 1 ≤ i ≤ `∗ and j†L ≤
σ′(i)} − 1. The following lemma establishes useful properties of the second stage.

Lemma 27. The following claims hold: (1) the predicate QL is an invariant of the while loop
at lines 20 through 31; (2) upon termination of the while loop at lines 20 through 31, we have
jL = σ′(`) + 1, and if ` ≥ 1 then j†L > σ′(`− 1) + 1.

Proof. The predicate QL holds upon execution of line 19, and thus at the beginning of the first
iteration of the while loop, by the first claim of Lemma 26. It is easy to see that the second claim
holds if the loop never iterates, i.e., if ` = 0 upon execution of line 19. We prove by induction on
the number of iterations that QL holds at the end of each iteration. Consider an arbitrary iteration
of the loop and assume that QL holds at the beginning of the iteration. The variable j1 is set at
line 22 to the index of the item that is matched to the leftmost bid in S ′[`]; the following line
sets p[j1] to the price of that item as represented by the input Π. Then, the algorithm determines
whether j†L ≤ j1 at line 24 by utilizing the constant-time computation of Lemma 25, where j plays
the role of j2: it is easy to see that the right-hand side of the condition of the if statement at line 24
is equal to p ′[j] + ∆L(M ′[j1 : j]) + w(U ′[j1], V [j1]) by (L1), and thus the condition holds if and
only if j†L ≤ j1. If j†L ≤ j1, then QL and the definition of p† imply that the price assigned at
line 25 is equal to p†[j1], the price stored in the variable t is equal to p†[j], and p†[j1 : j] is equal
to tightL(M ′[j1 : j], t); thus, the predicate QL is maintained after setting Π′[`] to the left-tight
compact price-block at line 26 and upon executing line 28. If j†L > j1, it is easy to see that QL

continues to hold and the second claim of the lemma holds.

The third stage (line 33) is similar to the first stage: it is identical to the left-scan of Alg. 3 except
that it is confined within the block S ′[`]. The goal of the third stage is to fill p ′[σ′(`− 1) + 1 : σ′(`)]
which subsequently forms the explicit price-block Π′[`] at line 35. Before executing the while loop
that decrements jL and fills p ′, we ensure that the input prices (prices represented by Π) for the
items that are matched in S ′[`] (items in V [σ′(`− 1) + 1 : σ′(`)]) are available in the array p.
By the second claim of Lemma 27 and by Lemma 28 below, it is easy to see that the while loop
terminates with jL = j†L, and we have p ′[jL : j∗ − 1] = tightL(M ′[jL : j∗ − 1],w(u∗, V [j∗ − 1])).

Lemma 28. The following claims hold: (1) the predicate QL is an invariant of the while loop
associated with line 33; (2) upon termination of the while loop associated with line 33, jL = j†L.

Proof. The predicate QL holds right before executing line 33, and thus it holds at the beginning
of the first iteration of the while loop, by the first claim of Lemma 27. The rest of the proof is
identical to that of Lemma 22, with QL replacing PL, except that it is guaranteed by the second
claim of Lemma 27 that the while loop terminates via the break statement, and thus, the inequality
j†L > j = jL − 1 and QL imply that jL = j†L holds upon termination of the loop.

Corollary 2. Upon execution of line 39, jL = j†L.

Lemma 29. Algorithm 4 is correct.
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Proof. It is sufficient to prove that the price-block sequence Π′ represents the prices in p†. In
what follows, let `† denote min{i | 1 ≤ i ≤ `∗ and j†L ≤ σ′(i)} − 1. As discussed earlier, upon
termination of the while loop at lines 20 through 31, the program variable ` is equal to `†.

Lemma 26 and line 17 imply that p ′[σ′(`∗ − 1) + 1 : j∗ − 1] = p†[σ′(`∗ − 1) + 1 : j∗ − 1].
The symmetric results and code associated with the computation of j†R and the price-blocks for
the items V [j∗ : ] imply that p ′[j∗ : σ′(`∗)] = p†[j∗ : σ′(`∗)]. Then line 41 implies that Π′[`∗]
represents p†[σ′(`∗ − 1) + 1 : σ′(`∗)].

If `† < `∗−1, then Lemma 27 and line 26 imply that Π′[`† + 1 : `∗ − 1] represents p†[σ′(`†) + 1 :
σ′(`∗ − 1)].

If `† ≥ 1, then Lemma 28 and lines 34 and 35 imply that Π′[`†] represents p†[σ′(`† − 1) + 1 :
σ′(`†)].

If `† > 1, then Corollary 2 and line 38 imply that Π′[ : `† − 1] represents p†[ : σ′(`† − 1)], as
those prices are unaffected by bid insertion.

If `∗ < |S ′|, the symmetric results and code associated with the computation of j†R and the
price-blocks for the items V [j∗ : ] imply that Π′[`∗ + 1 : ] represents p†[σ′(`∗) + 1 : ].

It is easy to see that the three stages associated with the computation of j†L and the price-blocks
that represent p† for the items V [ : j∗ − 1] run in O(

√
n) time where n denotes size(S): for the

first and third stages, the number of iterations of each loop is at most the number of bids in the
associated block, which is O(

√
n); for the second stage, the number of iterations of the loop is at

most the number of blocks in S ′, which is O(
√
n); each iteration of each loop takes constant time;

all the remaining operations can be performed inO(
√
n) time. By a symmetric argument, the three

stages associated with the computation of j†R and the price-blocks for the items V [j∗ : ] also run in
O(
√
n) time.
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