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Abstract

We study variants of the stable marriage and college admissions models in which the agents
are allowed to express weak preferences over the set of agents on the other side of the mar-
ket and the option of remaining unmatched. For the problems that we address, previous au-
thors have presented polynomial-time algorithms for computing a “Pareto-stable” matching.
In the case of college admissions, these algorithms require the preferences of the colleges over
groups of students to satisfy a technical condition related to responsiveness. We design new
polynomial-time Pareto-stable algorithms for stable marriage and college admissions that cor-
respond to strategyproof mechanisms. For stable marriage, it is known that no Pareto-stable
mechanism is strategyproof for all of the agents; our algorithm provides a mechanism that is
strategyproof for the agents on one side of the market. For college admissions, it is known
that no Pareto-stable mechanism can be strategyproof for the colleges; our algorithm provides
a mechanism that is strategyproof for the students.
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1 Introduction
Gale and Shapley [4] introduced the stable marriage model and its generalization to the college
admissions model. Their work spawned a vast literature on two-sided matching; see Manlove [6]
for a recent survey. The present paper is primarily concerned with variants of the stable marriage
and college admissions models where the agents have weak preferences, i.e., where indifferences
are allowed.

In the most basic stable marriage model, we are given an equal number of men and women,
where each man (resp., woman) has complete, strict preferences over the set of women (resp.,
men); we refer to this model as SMCS. For SMCS, an outcome is a matching that pairs up all of
the men and women into disjoint man-woman pairs. A man-woman pair (p, q) is said to form a
blocking pair for a matching M if p prefers q to his partner in M and q prefers p to her partner
in M . A matching is stable if it does not have a blocking pair. It is straightforward to prove that
any stable matching is also Pareto optimal. Gale and Shapley presented the deferred acceptance
(DA) algorithm for the SMCS problem and proved that man-proposing version of the DA algorithm
produces the unique man-optimal (and woman-pessimal) stable matching. Roth [7] showed that the
associated mechanism, which we refer to as the man-proposing DA mechanism, is strategyproof
for the men, i.e., it is a weakly dominant strategy for each man to declare his true preferences.
Unfortunately, the man-proposing DA mechanism is not strategyproof for the women. In fact,
Roth [7] showed that no stable mechanism for SMCS is strategyproof for all of the agents.

The SMCW model is the generalization of the SMCS model in which each man (resp., woman)
has weak preferences over the set of women (resp., men). When indifferences are allowed, we
need to refine our notion of a blocking pair. A man-woman pair (p, q) is said to form a strongly
blocking pair for a matching M if p prefers q to his partner in M and q prefers p to her partner in
M . A matching is weakly stable if it is individually rational as defined in Sect. 4 and it does not
have a strongly blocking pair. Two other natural notions of stability, namely strong stability and
super-stability, have been investigated in the literature (see Manlove [6, Chapter 3] for a survey of
these results). We focus on weak stability because every SMCW instance admits a weakly stable
matching (this follows from the existence of stable matchings for SMCS, coupled with arbitrary
tie-breaking), but not every SMCW instance admits a strongly stable or super-stable matching. It
is straightforward to exhibit SMCW instances (with as few as two men and two women) for which
some weakly stable matching is not Pareto optimal. Sotomayor [11] proves that every SMCW
instance admits a matching that is Pareto optimal, and argues that Pareto-stability (i.e., Pareto
optimality plus weak stability) is an appropriate solution concept for SMCW and certain other
matching models with weak preferences.

Erdil and Ergin [2] and Chen and Ghosh [1] present polynomial-time algorithms for computing
a Pareto-stable matching of a given SMCW instance; in fact, these algorithms are applicable to
certain more general models to be discussed shortly. Given the existence of a stable mechanism
for SMCS that is strategyproof for the men (or, symmetrically, for the women), it is natural to ask
whether there is a Pareto-stable mechanism for SMCW that is strategyproof for the men. We cannot
hope to find a Pareto-stable mechanism for SMCW that is strategyproof for all agents, since that
would imply a stable mechanism for SMCS that is strategyproof for all agents. A similar statement
holds for the SMIW model, the generalization of the SMCW model in which the agents are allowed
to express incomplete preferences. See Sect. 4 for a formal definition of the SMIW model and the
associated notions of weak stability and Pareto-stability. Throughout the remainder of the paper,
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when we say that a mechanism for a stable marriage model is strategyproof, we mean that it is
strategyproof for the agents on one side of the market; moreover, unless otherwise specified, it is
to be understood that the mechanism is strategyproof for the men. This paper provides the first
Pareto-stable mechanism for SMIW (and also SMCW) that is shown to be strategyproof. Our
SMIW mechanism generalizes Gale and Shapley’s DA mechanism, and admits a polynomial time
implementation.

The college admissions model with weak preferences, which we denote CAW, is a further
generalization of the SMIW model. In the CAW model, students and colleges are being matched
rather than men and women, and each college has a positive integer capacity representing the
number of students that it can accommodate. See Sect. 5 for a formal definition of the CAW model
and the associated notions of weak stability and Pareto-stability.

A key difference between CAW and SMIW is that in addition to expressing preferences over
individual students, the colleges have preferences over groups of students. This characteristic is
shared by the CAS model, which is the restriction of the CAW model to strict preferences. It is
known that no stable mechanism for CAS is strategyproof for the colleges [8]; the proof makes use
of the fact that the colleges do not (in general) have unit demand. It follows that no Pareto-stable
mechanism for CAW is strategyproof for the colleges. Throughout the remainder of the paper,
when we say that a mechanism for a college admissions model is strategyproof, we mean that it is
strategyproof for the students.

Gale and Shapley’s DA algorithm generalizes easily to the CAS model. Roth [8] has shown
that the student-proposing DA algorithm provides a strategyproof stable mechanism for CAS when
the preferences of the colleges are responsive. When the colleges have responsive preferences, the
student-proposing DA mechanism is also known to be student-optimal for CAS [8].

Erdil and Ergin [2] consider the special case of the CAW model where the following restrictions
hold for all students x and colleges y: x is not indifferent between being assigned to y and being left
unassigned; y is not indifferent between having one of its slots assigned to x and having that slot left
unfilled. We remark that this special case of CAW corresponds to the HRT problem discussed in
Manlove [6, Chapter 3].1 For this special case, Erdil and Ergin present a polynomial-time algorithm
for computing a Pareto-stable matching when the preferences of the colleges satisfy a technical
restriction related to responsiveness. We consider the same class of preferences, which we refer
to as minimally responsive; see Sect. 5 for a formal definition. The algorithm of Erdil and Ergin
does not provide a strategyproof mechanism. Chen and Ghosh [1] build on the results of Erdil and
Ergin by considering the many-to-many generalization of HRT in which the agents on both sides
of the market have capacities (and the preferences of any agent are minimally responsive). For this
generalization, Chen and Ghosh provide a strongly polynomial-time algorithm. No strategyproof
mechanism (even for the agents on one side of the market) is possible in the many-to-many setting.
We provide the first Pareto-stable mechanism for CAW that is shown to be strategyproof. As in the
work of Erdil-Ergin and Chen-Ghosh, we assume that the restriction preferences of the colleges

1In the model of Erdil and Ergin, which is stated using worker-firm terminology rather than student-college ter-
minology, a “no indifference to unemployment/vacancy” assumption makes the aforementioned restrictions explicit.
In the HRT model of Manlove, which is stated using resident-hospital terminology rather than student-college ter-
minology, it is assumed that a set of acceptable resident-hospital pairs is given, and that each agent specifies weak
preferences over the set of agents with whom they form an acceptable pair. We consider the approach of Erdil-Ergin
— where the starting point is the preferences of the individual agents, and the “acceptability” of a given pair of agents
may be deduced from those preferences — to be more natural, but the resulting models are equivalent.
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are minimally responsive. We can also handle the class of college preferences “induced by additive
utility” that is defined in Sect. 5.3.

The assignment game of Shapley and Shubik [10] can be viewed as an auction with multiple
distinct items where each bidder is seeking to acquire at most one item. This class of unit-demand
auctions has been heavily studied in the literature (see, e.g., Roth and Sotomayor [9, Chapter 8]).
In Sect. 2, we define the notion of a “unit-demand auction with priorities” (UAP) and establish a
number of useful properties of UAPs; these are straightforward generalizations of corresponding
properties of unit-demand auctions. Section 3 builds on the UAP notion to define the notion of an
“iterated UAP” (IUAP), and establishes a number of important properties of IUAPs; these results
are nontrivial to prove and provide the technical foundation for our main results. Section 4 presents
our first main result, a polynomial-time algorithm for SMIW that provides a strategyproof Pareto-
stable mechanism. Section 5 presents our second main result, a polynomial-time algorithm for
CAW that provides a strategyproof Pareto-stable mechanism assuming that the preferences of the
colleges are minimally responsive.

2 Unit-Demand Auctions with Priorities
In this section, we formally define the notion of a unit-demand auction with priorities (UAP) and
we establish Lemma 4, which is useful for analyzing the matching produced by the MATCHSMIW

algorithm to be presented in Sect. 4. Lemma 4 is used to establish Pareto-optimality (Lemma 28).
In Sect. 2.1, we briefly discuss how to efficiently compute a desired matching in a UAP. In Sect. 2.2,
we introduce a key definition that is helpful in establishing our strategyproofness results. We start
with some useful definitions.

Each item v has an associated real reserve price, denoted reserve(v). (We allow the reserve
price to be negative to support procurement-style auction items.)

A (unit-demand) bid β for a set of items V is a subset of V × R such that no two pairs in β
share the same first component. (So β may be viewed as a partial function from V to R.)

A bidder u for a set of items V is a triple (α, β, z) where α is an integer ID, β is a bid for V ,
and z is a real priority. If α is negative, then β is required to be of the form {(v, reserve(v))} for
some item v in V , and u is said to be a reserve bidder for v. For any bidder u = (α, β, z), we
define id(u) as α, bid(u) as β, priority(u) as z, and items(u) as the union, over all (v, x) in β, of
{v}.

A unit-demand auction with priorities (UAP) is a pair A = (U, V ) satisfying the following
conditions: V is a set of items; U is a set of bidders for V ; each bidder in U has a distinct ID; U
contains exactly |V | reserve bidders, one for each item v in V .

At times we view a UAP A = (U, V ) as an edge-weighted bipartite graph, where the set of
edges incident on bidder u correspond to bid(u): for each pair (v, x) in bid(u), there is an edge
(u, v) of weight x. We refer to a matching (resp., MCM, MWMCM) in the associated edge-
weighted bipartite graph as a matching (resp., MCM, MWMCM) of A. For any edge e = (u, v) in
a given UAP, the associated weight is denoted w(e) or w(u, v). For any set of edges E, we define
w(E) as

∑
e∈E w(e). For any UAP A, we let w(A) denote the weight of an MWMCM of A.

Lemma 1. Let A = (U, V ) be a UAP, and let I denote the set of all subsets U ′ of U such that there
exists an MWMCM of A that matches every bidder in U ′. Then (U, I) is a matroid.
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Proof. The only nontrivial property to show is the exchange property. Assume that U1 and U2
belong to I, |U1| > |U2|, and U2 is not contained in U1 . Let M1 be an MWMCM of A that
matches every bidder in U1, and let M2 be an MWMCM of A that matches every bidder in U2. If
M2 matches some bidder u in U1\U2, then U2 +u belongs to I, as required. Thus, in what follows,
we assume that M2 does not match any bidder in U1 \U2. By considering the symmetric difference
of M1 and M2, and making use of the fact that every MCM (and hence also every MWMCM) of
A matches every item in V (due to the presence of the reserve bidders), it is straightforward to
argue that there is a path P in (the edge-weighted bipartite graph associated with) A such that the
following conditions hold: P has an even number of edges; the edges of P alternate between edges
that are matched in M1 and edges that are matched in M2; one endpoint of P is a bidder u that
belongs to U1 (and hence is matched in M1) and does not belong to U2; the other endpoint of P is a
bidder u′ that does not belong to either U1 or U2. Let X1 (resp., X2) denote the set of all edges in P
that belong to M1 (resp., M2). Let M denote (M2 ∪X1) \X2, which is easily seen to be an MCM
of A. Since M1 and M2 are MWMCMs, we deduce that w(X1) = w(X2), and hence that M is an
MWMCM of A. Moreover, M matches U2 + u, where u belongs to U1 \ U2, thereby establishing
the exchange property.

For any UAP A, we define matroid(A) as the matroid of Lemma 1.
For any UAP A = (U, V ) and any independent set U ′ of matroid(A), we define the priority

of U ′ as the sum, over all bidders u in U ′, of priority(u). For any UAP A, the matroid greedy
algorithm can be used to compute a maximum-priority maximal independent set of matroid(A).

For any matching M of a UAP A = (U, V ), we define matched(M) as the set of all bidders
in U that are matched in M . We say that an MWMCM M of a UAP A is greedy if matched(M)
is a maximum-priority maximal independent set of matroid(A). For any UAP A, we define the
predicate unique(A) to hold if matched(M) = matched(M ′) for all greedy MWMCMs M and
M ′ of A.

For any matching M of a UAP, we define the priority of M , denoted priority(M), as the sum,
over all bidders u in matched(M), of priority(u). Thus an MWMCM is greedy if and only if it is
a maximum-priority MWMCM.

Lemma 2. All greedy MWMCMs of a given UAP have the same distribution of priorities.

Proof. This is a standard matroid result that follows easily from the exchange property and the
correctness of the matroid greedy algorithm.

For any UAP A and any real priority z, we define greedy(A, z) as the (uniquely defined, by
Lemma 2) number of matched bidders with priority z in any greedy MWMCM of A.

Lemma 3. Let A = (U, V ) be a UAP. Let u be a bidder in U such that (v, x) belongs to bid(u),
priority(u) = z, and u is not matched in any greedy MWMCM of A. Let u′ be a bidder in U such
that (v, x′) belongs to bid(u′), priority(u′) = z′, and u′ is matched to v in some greedy MWMCM
of A. Then (x, z) < (x′, z′).

Proof. Let M be a greedy MWMCM in which u′ is matched to v. Thus u is not matched in M .
Let M ′ denote M − (u′, v) + (u, v), which is an MCM of A. Since M is an MWMCM of A and
w(M ′) = w(M) − x′ + x, we conclude that x ≤ x′. If x < x′, the claim of the lemma follows.
Assume that x = x′. In this case, M ′ is an MWMCM of A since w(M ′) = w(M). Since M is
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a greedy MWMCM of A and priority(M ′) = priority(M) − z′ + z, we conclude that z ≤ z′.
If z = z′ then M ′ is a greedy MWMCM of A that matches u, a contradiction. Hence z < z′, as
required.

Lemma 4. Let A = (U, V ) be a UAP, let M be a greedy MWMCM of A, let M ′ be an MWMCM
of A, and let u′ be a bidder that is matched in M ′ and unmatched in any greedy MWMCM of A.
Then there is a bidder u such that u is matched in M , u is unmatched in M ′, and priority(u) >
priority(u′).

Proof. It is straightforward to argue that the symmetric difference ofM andM ′ includes a nonempty
collection of even-length paths, each of which begins and ends at a bidder. It follows that u′ is an
endpoint of one such path, call it P . We claim that the other endpoint of P is a valid choice for the
desired bidder u. Since P is of even length, we deduce that u is matched in M and unmatched in
M ′. It remains to argue that priority(u) > priority(u′). Let X denote the set of edges of P that
belong to M (and not M ′), and let X ′ denote the remaining edges of P , which belong to M ′ (and
not M ). Let M0 denote (M ∪X ′)\X . Since M0 is an MCM of A and M is an MWMCM of A, we
deduce that w(X ′) ≤ w(X). Let M ′

0 denote (M ′ ∪X) \X ′. Since M ′
0 is an MCM of A and M ′ is

an MWMCM of A, we deduce that w(X) ≤ w(X ′). Thus w(X) = w(X ′), and we conclude that
M0 and M ′

0 are MWMCMs of A. Since M is a greedy MWMCM of A and M0 is an MWMCM
of A, we deduce that priority(u) ≥ priority(u′). If priority(u) = priority(u′), then we find that
M0 is a greedy MWMCM of A (since M is a greedy MWMCM of A), a contradiction since u′ is
matched in M0. Thus priority(u) > priority(u′), as required.

2.1 Finding a Greedy MWMCM
In this section, we briefly discuss how to efficiently compute a greedy MWMCM of a UAP via
a slight modification of the classic Hungarian method for the assignment problem [5]. In the
(maximization version of the) assignment problem, we are given a set of n agents, a set of n tasks,
and a weight for each agent-task pair, and our objective is to find a perfect matching (i.e., every
agent and task is required to be matched) of maximum total weight. The Hungarian method for the
assignment problem proceeds as follows: a set of dual variables, namely a “price” for each task,
and a possibly incomplete matching are maintained; an arbitrary unmatched agent u is chosen and
a shortest augmenting path from u to an unmatched task is computed using “residual costs” as the
edge weights; an augmentation is performed along the path to update the matching, and the dual
variables are adjusted accordingly to maintain complementary slackness; the process repeats until
a perfect matching is found.

Within our UAP setting, the set of bidders can be larger than the set of items, and some bidder-
item pairs may not be matchable, i.e., the associated bipartite graph is not necessarily complete.
In this setting, we can use an “incremental” version of the Hungarian method to find an (not
necessarily greedy) MWMCM of a given UAP A = (U, V ) as follows. We start with the MCM
M that matches each item v in V to the reserve bidder in U for v. Then, for each non-reserve
bidder u in U (in arbitrary order), we process u via an “incremental Hungarian step” as follows:
find the shortest paths from u to each bidder in matched(M)+u (including the path of length zero
from u to u) in the residual graph; let W denote the minimum path weight among these shortest
paths; identify the nonempty set U ′ of bidders in matched(M) + u that can be reached from u
via a shortest path of weight W ; choose an arbitrary bidder u′ from U ′; augment M along the
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shortest path from u to u′, i.e., if u 6= u′ then u′ becomes unmatched and u becomes matched;
adjust the prices accordingly to maintain complementary slackness; update the residual graph. The
algorithm terminates when every non-reserve bidder has been processed. The algorithm performs
|U | incremental Hungarian steps and each incremental Hungarian step can be implemented in
O(|V | log |V |+m) time by utilizing Fibonacci heaps [3], where m denotes the number of edges
in the residual graph, which is O(|V |2).

In order to find a greedy MWMCM, we slightly modify the implementation described in the
previous paragraph. Lemma 36 established in App. A implies that if we choose a bidder u′ having
minimum priority among the ones in U ′ (instead of choosing an arbitrary one) at each incremental
Hungarian step, then the algorithm described above outputs a greedy MWMCM. It is easy to see
that the added cost of selecting a minimum priority bidder at each iteration does not increase the
asymptotic time complexity of the algorithm.

2.2 Threshold of an Item
In this section, we define the notion of a “threshold” of an item in a UAP. This lays the groundwork
for a corresponding IUAP definition in Sect. 3.2. Item thresholds play an important role in our
strategyproofness results. We start with some useful definitions.

Let A = (U, V ) be a UAP and let u be a bidder such that id(u) is nonnegative and is not equal
to the ID of any bidder in U . Then we define A+ u as the UAP (U + u, V ).

For any UAPs A = (U, V ) and A′ = (U ′, V ′), we say that A′ extends A if U ⊆ U ′ and V = V ′.

Lemma 5. Let A = (U, V ) be a UAP, let u be a bidder in U that is not matched in any greedy
MWMCM of A, and let A′ = (U ′, V ) be a UAP that extends A. Then u is not matched in any
greedy MWMCM of A′.

Proof. Assume for the sake of contradiction that there is a greedy MWMCM M ′ of A′ such that
u is matched in M ′. Let M be a greedy MWMCM of A minimizing |M ⊕M ′|. The symmetric
difference of M and M ′ contains an even-length path P from u to some bidder u′ that is matched
in M . Since all of the vertices on this path belong to U , we can get a matching M ′′ of A by
starting with M and exchanging along this path (take the M ′ edges instead of the M edges). It
is easy to argue that the M -edges on P have the same total weight as the M ′-edges on P , and u
and u′ have the same priority. It follows that M ′′ is a greedy MWMCM of A that matches u, a
contradiction.

Lemma 6. Let A = (U, V ) be a UAP and let v be an item in V . Let U ′ be the set of bidders u
such that A + u is a UAP and bid(u) is of the form {(v, x)}. Then there is a unique pair of reals
(x∗, z∗) such that for any bidder u in U ′, the following conditions hold, where A′ denotes A + u,
x denotes w(u, v), and z denotes priority(u): (1) if (x, z) > (x∗, z∗) then u is matched in every
greedy MWMCM of A′; (2) if (x, z) < (x∗, z∗) then u is not matched in any greedy MWMCM of
A′; (3) if (x, z) = (x∗, z∗) then u is matched in some but not all greedy MWMCMs of A′.

Proof. Let M be a greedy MWMCM of A, let W denote w(M), and let Z denote priority(M).
LetM denote the set of matchings ofA′ with cardinality |V |−1 that do not match v, letM′ denote
the maximum-weight elements ofM, letM′′ denote the maximum-priority elements ofM′, and
observe that there is a unique pair of reals (W ′, Z ′) such that any matching M ′ inM′′ has weight
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W ′ and priority Z ′. It is straightforward to verify that the unique choice of (x∗, z∗) satisfying the
conditions stated in the lemma is (W −W ′, Z − Z ′).

For any UAP A = (U, V ) and any item v in V , we define the unique pair (x∗, z∗) of Lemma 6
as threshold(A, v).

3 Iterated Unit-Demand Auctions with Priorities
In this section, we formally define the notion of an iterated unit-demand auction with priorities
(IUAP). An IUAP allows the bidders, called “multibidders” in this context, to have a sequence of
unit-demand bids instead of a single unit-demand bid. In Sect. 3.1, we define a mapping from an
IUAP to a UAP by describing an algorithm that generalizes the DA algorithm, and we establish
two lemmas that are useful for analyzing the matching produced by the MATCHSMIW algorithm
to be presented in Sect. 4. Lemmas 11 and 12 are used to establish weak stability (Lemmas 25,
26, and 27), and Lemma 12 is used to establish Pareto optimality (Lemma 28). In Sect. 3.2, we
define the threshold of an item in an IUAP and we establish Lemma 15, which plays a key role in
establishing our strategyproofness results. We start with some useful definitions.

A multibidder t for a set of items V is a pair (σ, z) where z is a real priority and σ is a sequence
of bidders for V such that the following conditions hold: all of the bidders in the sequence have
distinct IDs and a common priority z; if a bidder u in the sequence is a reserve bidder for some
item v, then σ is equal to 〈u〉, and we say that t is a reserve multibidder for item v. We define
priority(t) as z. For any integer i such that 1 ≤ i ≤ |σ|, we define bidder(t, i) as the bidder σ(i).
For any integer i such that 0 ≤ i ≤ |σ|, we define bidders(t, i) as {bidder(t, j) | 1 ≤ j ≤ i}. We
define bidders(t) as bidders(t, |σ|).

An iterated UAP (IUAP) is a pair B = (T, V ) where V is a set of items and T is a set of
multibidders for V that contains exactly |V | reserve multibidders, one for each item v in V . In
addition, for any distinct multibidders t and t′ in T , the following conditions hold: priority(t) 6=
priority(t′); if u belongs to bidders(t) and u′ belongs to bidders(t′), then id(u) 6= id(u′).

For any IUAPB = (T, V ) and any item v in V , we define dummy(B, v) as bidder(t, 1) where t
is the unique reserve multibidder for v in T , and we define dummies(B) as {dummy(B, v) | v ∈ V }.

For any IUAP B = (T, V ), we define bidders(B) as the union, over all t in T , of bidders(t).

3.1 Mapping an IUAP to a UAP
Having defined the notion of an IUAP, we now describe an algorithm TOUAP that maps a given
IUAP to a UAP. Algorithm TOUAP generalizes the DA algorithm. In each iteration of the DA
algorithm, a single man is nondeterministically chosen, and this man reveals his next choice. In
each iteration of TOUAP, a single multibidder is nondeterministically chosen, and this multibid-
der reveals its next bid. We prove in Lemma 10 that, like the DA algorithm, algorithm TOUAP

is confluent: the output does not depend on the nondeterministic choices during an execution.
We conclude this section by establishing Lemmas 11 and 12, which are useful for analyzing the
matching produced by algorithm MATCHSMIW in Sect. 4. Lemmas 11 and 12 are used to estab-
lish weak stability (Lemmas 25, 26, and 27), and Lemma 12 is used to establish Pareto optimality
(Lemma 28). We start with some useful definitions.
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Let A be a UAP (U, V ) and let B be an IUAP (T, V ). The predicate prefix(A,B) is said to
hold if U ⊆ bidders(B) and for any multibidder t in T , U ∩ bidders(t) = bidders(t, i) for some i.

A configuration C is a pair (A,B) where A is a UAP, B is an IUAP, and prefix(A,B) holds.
Let C = (A,B) be a configuration, where A = (U, V ) and B = (T, V ), and let u be a bidder

in U . Then we define multibidder(C, u) as the unique multibidder t in T such that u belongs to
bidders(t).

Let C = (A,B) be a configuration where A = (U, V ) and B = (T, V ). For any t in T , we
define bidders(C, t) as {u ∈ U | multibidder(C, u) = t}.

Let C = (A,B) be a configuration where B = (T, V ). We define ready(C) as the set of all
bidders u in bidders(B) such that greedy(A, priority(u)) = 0 and u = bidder(t, |bidders(C, t)|+
1) where t = multibidder(C, u).

Algorithm 1 TOUAP(B)
Input: An IUAP B = (T, V )

1: A← (dummies(B), V )
2: C ← (A,B)
3: while ready(C) is nonempty do
4: A← A+ an arbitrary bidder in ready(C)
5: C ← (A,B)
6: end while
7: return A

Our algorithm that maps an IUAP to a UAP is given in Alg. 1. The input is an IUAP B and the
output is a UAP A such that prefix(A,B) holds. The algorithm starts with the UAP consisting of
the |V | reserve bidders in B and all the items in V . At this point, none of the bidders associated
with the non-reserve bidders have been “revealed”, i.e., no non-reserve bidder is present in the
initial UAP. Then, the algorithm iteratively and nondeterministically chooses a “ready” bidder and
“reveals” it by adding it to the UAP that is maintained in the program variable A. A bidder u
associated with some multibidder t = (σ, z) is ready if u is not revealed and for each bidder u′ that
precedes u in σ, u′ is revealed and it is not matched in any greedy MWMCM of A. It is easy to
verify that the predicate prefix(A,B) is an invariant of the algorithm loop: If a bidder u belonging
to a multibidder t is to be revealed at an iteration and U ∩ bidders(t) = bidders(t, i) for some
integer i at the beginning of this iteration, then U ∩ bidders(t) = bidders(t, i + 1) after revealing
u, where (U, V ) is the UAP that is maintained by the program variable A at the beginning of the
iteration; it is trivial to verify the conditions regarding the multibidders other than t. It is also easy
to see that the algorithm terminates, because no bidder can be revealed more than once since a
bidder cannot be ready after it has been revealed. We now argue that the output of the algorithm
is uniquely determined (Lemma 10), even though the bidder that is revealed at each iteration is
chosen nondeterministically.

For any configuration C = (A,B), we define the predicate tail(C) to hold if for any bidder u
that is matched in some greedy MWMCM of A, we have u = bidder(t, |bidders(C, t)|) where t
denotes multibidder(C, u).

Lemma 7. Let C = (A,B) be a configuration where B = (T, V ) and assume that tail(C) holds.
Then greedy(A, priority(t)) ≤ 1 for each t in T .
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Proof. The claim of the lemma easily follows from the definition of tail(C).

Lemma 8. The predicate tail(C) is an invariant of the Alg. 1 loop.

Proof. It is easy to see that tail(C) holds when the loop is first encountered. Now consider an iter-
ation of the loop that takes us from configuration C = (A,B) where A = (U, V ) to configuration
C ′ = (A′, B) where A′ = (U ′, V ). We need to show that tail(C ′) holds. Let u be a bidder that
is matched in some greedy MWMCM M ′ of A′. Let t denote multibidder(C ′, u). If u belongs to
dummies(B), then |bidders(t)| = |bidders(C ′, t)| = 1 and u = bidder(t, 1), as required. For the
remainder of the proof, assume that u does not belong to dummies(B). Let u∗ denote the bidder
that is added to A in line 4, and consider the following three cases.

Case 1: u = u∗. Let t denote multibidder(C ′, u∗). In this case, |bidders(C, t)| + 1 =
|bidders(C ′, t)|, so u∗ = bidder(t, |bidders(C ′, t)|), as required.

Case 2: u 6= u∗ and priority(u) 6= priority(u∗). Since U ′ contains U , Lemma 5 implies
that u is matched in some greedy MWMCM of A. Since C is a configuration and tail(C)
holds, we deduce that u = bidder(t, |bidders(C, t)|) where t denotes multibidder(C, u). Since
multibidder(C ′, u) = multibidder(C, u) and bidders(C ′, t) = bidders(C, t), we conclude that
u = bidder(t, |bidders(C ′, t)|) where t denotes multibidder(C ′, u), as required.

Case 3: u 6= u∗ and priority(u) = priority(u∗). Since u∗ belongs to ready(C), we know that
greedy(A, priority(u)) = 0. Also, since u is not u∗, u belongs to U and we conclude that u is
not matched in any greedy MWMCM of A. Since U ′ contains U , Lemma 5 implies that u is not
matched in any greedy MWMCM of A′, a contradiction.

Lemma 9. Let C = (A,B) be a configuration such that tail(C) holds. Then unique(A) holds.

Proof. Let M and M ′ be greedy MWMCMs of A, and let u be a bidder in matched(M). To estab-
lish the lemma, it is sufficient to prove that u belongs to matched(M ′). Let t denote multibidder(C, u)
and let z denote priority(t). Since tail(C) holds, we know that u = bidder(t, |bidders(C, t)|).
Since u is matched by M and since tail(C) holds, Lemma 7 implies that greedy(A, z) = 1.
Thus Lemma 2 implies that M ′ matches one priority-z bidder, which is equal to u since tail(C)
holds.

Lemma 10. Let B = (T, V ) be an IUAP. Then all executions of Alg. 1 on input B produce the
same output.

Proof. Suppose not, and let X1 and X2 denote two executions of Alg. 1 on input B that produce
distinct output UAPs A1 = (U1, V ) and A2 = (U2, V ). Without loss of generality, assume that
|U1| ≥ |U2|. Then there is a first iteration of execution X1 in which the bidder added to A in line 4
belongs to U1 \U2; let u′ denote this bidder. Let C ′ = (A′, B) where A′ = (U ′, V ) denote the con-
figuration in program variable C at the start of this iteration, and let t′ denote multibidder(C ′, u′).
Let i be the integer such that u′ = bidder(t′, i). We know that i > 1 because it is easy to see that U2
contains bidder(t′, 1). Let u′′ denote bidder(t′, i − 1). Since u′ belongs to ready(C ′), Lemmas 8
and 9 imply that u′′ is not matched in any greedy MWMCM of A′. Since U ′ is contained in U2,
Lemma 5 implies that u′′ is not matched in any greedy MWMCM of A2. Let C2 = (A2, B) denote
the final configuration of execution X2; thus ready(C2) is empty and |bidders(C2, t

′)| = i − 1.
By Lemma 8, we conclude that greedy(A2, priority(t′)) = 0, and hence that u′′ is contained in
ready(C2), a contradiction.
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For any IUAP B, we define uap(B) as the unique (by Lemma 10) UAP returned by any execu-
tion of Alg. 1 on input B.

We can incorporate the modified incremental Hungarian step of Sect. 2.1 into each iteration of
the loop of Alg. 1 in order to both obtain an efficient implementation and to extend the algorithm so
that it also maintains and returns a greedy MWMCM of the UAP A as follows: we maintain dual
variables (a price for each item) and a residual graph; the initial greedy MWMCM is the matching
that matches the reserve bidders to the items; when a bidder u is added to A at line 4, we perform
an incremental Hungarian step to process u to update the greedy MWMCM, the prices, and the
residual graph. Since we maintain a greedy MWMCM of A at each iteration of the loop, it is easy
to see that identifying a bidder in ready(C) (or determining that this set is empty) takes O(|V |)
time. Thus the whole algorithm can be implemented in O(|bidders(B)| · |V |2) time.

We now present two lemmas that are used in Sect. 4: Lemmas 11 and 12 are used to estab-
lish weak stability (Lemmas 25, 26, and 27); Lemma 12 is used to establish Pareto optimality
(Lemma 28).

Lemma 11. LetB be an IUAP and let uap(B) beA = (U, V ). Let u be a bidder in U and letM be
a greedy MWMCM of A such that (v, x) belongs to bid(u) and u is not matched in M . Let u′ be
a bidder in U such that (v, x′) belongs to bid(u′) and u′ is matched to v in some greedy MWMCM
of A. Then (x, z) < (x′, z′), where z denotes priority(u) and z′ denotes priority(u′).

Proof. Since u is not matched in M and since Lemmas 8 and 9 imply that unique(A) holds, we
deduce that u is not matched in any greedy MWMCM ofA. The claim follows from Lemma 3.

Lemma 12. Let B = (T, V ) be an IUAP, let (σ, z) be a multibidder that belongs to T , let uap(B)
be (U, V ), and let M be a greedy MWMCM of the UAP (U, V ). Then the following claims hold:
(1) if σ(k) is matched in M for some k, then σ(k′) ∈ U if and only if 1 ≤ k′ ≤ k; (2) if σ(k) is
not matched in M for any k, then σ(k) ∈ U for 1 ≤ k ≤ |σ|.

Proof. Let X denote an execution of Alg. 1 on input B. For the first claim, assume that σ(k)
is matched in M for some k. It is easy to see that Alg. 1 adds σ(k) to uap(B) after adding
σ(1), . . . , σ(k−1). We now claim that no bidder σ(k′) for k < k′ ≤ |σ| belongs to U . Suppose the
claim does not hold, and let k′ be an integer such that k < k′ and σ(k′) belongs to U . Consider the
iteration in X in which bidder σ(k′) is added to A in line 4, and let C ′ = (A′, B) denote the state
of the program variable C at the beginning of this iteration. Since σ(k′) belongs to ready(C ′), we
deduce that σ(k) belongs to A′, greedy(A′, z) = 0, and hence σ(k) is not matched in any greedy
MWMCM of A′. Then, since uap(B) extends A′, Lemma 5 implies that σ(k) is not matched in
any greedy MWMCM of uap(B), a contradiction.

For the second claim, assume that σ(k) is not matched in M for any k. For the sake of con-
tradiction, assume that σ(k) does not belong to U for some k, and let k′ denote smallest such
k. Consider the time in X when the while loop terminates, i.e., when the condition of the loop
fails because ready(C) is empty. Since σ(k) is not matched in M for any k, we deduce that
greedy(A, z) = 0. Then, since σ(1), . . . , σ(k′ − 1) belongs to U , we deduce that σ(k′) belongs to
ready(C), a contradiction.
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3.2 Threshold of an Item
In this section, we define the threshold of an item in an IUAP and we establish Lemma 15, which
plays a key role in establishing our strategyproofness results. We start with some useful definitions.

For any IUAPB, Lemmas 8 and 9 imply that unique(uap(B)) holds, and thus that every greedy
MWMCM of uap(B) matches the same set of bidders. We define this set of matched bidders as
winners(B). For any IUAP B, we define losers(B) as U \ winners(B) where (U, V ) is uap(B).

Let B = (T, V ) be an IUAP and let u = (α, β, z) be a bidder for V such that the following
conditions hold: α is nonnegative and is not equal to the ID of any bidder in bidders(B); z is not
equal to the priority of any bidder in dummies(B). Then we define the IUAP B + u as follows: if
T contains a multibidder t of the form (σ, z) for some sequence of bidders σ, then we define B+u
as (T − t+ t′, V ) where t′ = (σ′, z) and σ′ is the sequence of bidders obtained by appending u to
σ; otherwise, we define B + u as (T + t, V ) where t = (〈u〉, z).

Lemma 13. Let B = (T, V ) and B′ = B + u be IUAPs. Then losers(B) ⊆ losers(B′).

Proof. Let u′ be a bidder in losers(B). Thus u′ is not matched in any greedy MWMCM of uap(B).
Using Lemma 10, it is easy to see that uap(B′) extends uap(B). Thus Lemma 5 implies that u′ is
not matched in any greedy MWMCM of uap(B′), and hence that u′ belongs to losers(B′).

Lemma 14. Let B = (T, V ) be an IUAP and let v be an item in V . For i ∈ {1, 2}, let Bi = B+ui

be an IUAP where ui = (αi, {(v, xi)} , zi). LetA1 = (U1, V ) denote uap(B1) and letA2 = (U2, V )
denote uap(B2). Assume that α1 6= α2, z1 6= z2, and u1 belongs to winners(B1). Then the
following claims hold: if u2 belongs to winners(B2) then U1 − u1 = U2 − u2; if u2 belongs to
losers(B2) then U1 − u1 contains U2 − u2.

Proof. Let B3 denote the IUAP B1 + u2 which is equal to the IUAP B2 + u1. For the first claim,
assume that u2 belongs to winners(B2). Using Lemma 10, it is straightforward to argue that
uap(B3) is equal to A1 + u2 = (U1 + u2, V ) and is also equal to A2 + u1 = (U2 + u1, V ). Since
u1 belongs to U1 and u2 belongs to U2, we conclude that U1 − u1 = U2 − u2, as required.

For the second claim, assume that u2 belongs to losers(B2). Suppose (x1, z1) < (x2, z2). Then
Lemmas 10 and 3 imply that u2 belongs to winners(B3). But since u2 belongs to losers(B2),
Lemma 13 implies that u2 belongs to losers(B2+u1) = losers(B3), a contradiction. Since z1 6= z2,
we conclude that (x1, z1) > (x2, z2). Then, Lemma 10 implies that uap(B3) = uap(B1) + u2 =
(U1 +u2, V ). Since Lemma 10 also implies that uap(B3) extends uap(B2), it follows that U1 +u2
contains U2, and hence that U1 contains U2− u2. Since u1 does not belong to U2, we conclude that
U1 − u1 contains U2 − u2, as required.

We are now ready to define the threshold of an item in an IUAP, and to state Lemma 15. In
Sect. 4, Lemma 15 plays an important role in establishing that our SMIW mechanism is strate-
gyproof (Lemma 30). The proof of Lemma 15 is provided in Sect. 3.2.1.

Let B = (T, V ) be an IUAP and let v be an item in V . By Lemma 14, there is a unique subset
U of bidders(B) such that the following condition holds: for any IUAP B′ = B + u where u is of
the form (α, {(v, x)} , z) and u belongs to winners(B′), uap(B′) is equal to (U +u, V ). We define
uap(B, v) as the UAP (U, V ) and we define threshold(B, v) as threshold(uap(B, v), v).
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Lemma 15. Let B = (T, V ) be an IUAP, let t = (σ, z) be a non-reserve multibidder that belongs
to T , and let B′ denote the IUAP (T − t, V ). Suppose that (σ(k), v) is matched in some greedy
MWMCM of uap(B) for some k. Then, we have

(w(σ(k), v), z) ≥ threshold(B′, v). (1)

Furthermore, for each k′ and v′ such that 1 ≤ k′ < k and v′ ∈ items(σ(k′)), we have

(w(σ(k′), v′), z) < threshold(B′, v′). (2)

3.2.1 Proof of Lemma 15

The sole purpose of this section is to prove Lemma 15. We do so by establishing a stronger result,
namely Lemma 24 below. We start with a useful definition.

For any IUAP B, we define priorities(B) as {z | u ∈ winners(B) and priority(u) = z}.

Lemma 16. Let B = (T, V ) be an IUAP. Then |priorities(B)| = |V |.

Proof. Lemma 7 implies that distinct bidders in winners(B) have distinct priorities; the claim of
the lemma follows since |winners(B)| = |V |.

Lemma 17. Let B = (T, V ) and B′ = B+ u = (T ′, V ) be IUAPs, let Z denote priorities(B), let
Z ′ denote priorities(B′), and let z denote priority(u). Then Z ′ ⊆ Z + z.

Proof. Consider running Alg. 1 on input B′, where we avoid selecting bidder u from ready(C)
unless it is the only bidder in ready(C). (By Lemma 10, the final output is the same regardless
of which bidder we select from ready(C) at each iteration.) If u never enters ready(C), then
uap(B′) = uap(B), and so Z ′ = Z, and the claim of the lemma holds.

Now suppose that u does enter ready(C) at some point. At the start of the iteration in which u
is selected from ready(C), the UAP A = (U, V ) is equal to uap(B), so by Lemma 7, every greedy
MWMCM of A matches exactly one bidder of each priority in Z. Furthermore, letting U ′ denote
the set of all bidders u′ in bidders(B) such that priority(u′) does not belong to Z + z, we deduce
that U ′ is contained in losers(B) = U \winners(B). Then Lemma 13 implies that no bidder in U ′

is matched in any greedy MWMCM of uap(B′), and the claim of the lemma follows.

Lemma 18. Let A = (U, V ) and A′ = A + u be UAPs, and let v be an item in V . Then
threshold(A, v) ≤ threshold(A′, v).

Proof. Assume for the sake of contradiction that threshold(A, v) > threshold(A′, v). Then there
exists a bidder u′ such that u′ does not belong to U + u, bid(u′) = {(v, x)} , priority(u′) = z, and

threshold(A′, v) < (x, z) < threshold(A, v).

Since (x, z) < threshold(A, v), Lemma 6 implies that u′ is not matched in any greedy MWMCM
of A + u′. Thus Lemma 5 implies that u′ is not matched in any greedy MWMCM of A′ + u′. On
the other hand, since threshold(A′, v) < (x, z), Lemma 6 implies that u′ is matched in any greedy
MWMCM of A′ + u′, a contradiction.
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Lemma 19. Let B = (T, V ) and B′ = B + u be IUAPs where u = (α, {(v, x)} , z), v is an
item in V , and z does not belong to priorities(B). If u belongs to winners(B′), then (x, z) >
threshold(B, v). If u belongs to losers(B′), then (x, z) < threshold(B, v).
Proof. First, assume that u belongs to winners(B′). Thus u is matched in every greedy MWMCM
of uap(B′), which is equal to uap(B, v) + u by definition. Lemma 6 implies that (x, z) >
threshold(uap(B, v), v) = threshold(B, v), as required.

Now assume that u belongs to losers(B′). Thus u is not matched in any greedy MWMCM of
uap(B′). Define U so that uap(B′) = (U + u, V ), and let A denote the UAP (U, V ). Lemma 6
implies that (x, z) < threshold(A, v). Lemma 14 implies that uap(B, v)+u extends uap(B′), and
hence that uap(B, v) extends A. Lemma 18 therefore implies that

threshold(A, v) ≤ threshold(uap(B, v), v) = threshold(B, v).

Thus (x, z) < threshold(B, v), as required.

Lemma 20. Let B = (T, V ) and B′ = B + u be IUAPs, and let v be an item in V . Then
threshold(B, v) ≤ threshold(B′, v).
Proof. Let (x, z) denote threshold(B, v) and let (x′, z′) denote threshold(B′, v), and assume for
the sake of contradiction that (x, z) > (x′, z′).

Let u′ be a bidder (α, {(v, x)} , z′′) such that z′′ does not belong to priorities(B)+priority(u),
z > z′′, and (x, z′′) > (x′, z′). Let B′′ denote B + u′ and let B′′′ denote B′ + u′. Since z′′ does not
belong to priorities(B), we deduce that u′ belongs to either winners(B′′) or losers(B′′). Then,
by Lemma 19, u′ belongs to losers(B′′), and hence by Lemma 13, u′ belongs to losers(B′′′). On
the other hand, since z′′ does not belong to priorities(B) + priority(u), Lemma 17 implies that
z′′ does not belong to priorities(B′), and we deduce that u′ belongs to either winners(B′′′) or
losers(B′′′). Then, Lemma 19 implies that u′ belongs to winners(B′′′), a contradiction.

Lemma 21. Let B = (T, V ) and B′ = B + u be IUAPs where u belongs to losers(B′), and let v
be an item in V . Then threshold(B′, v) = threshold(B, v).
Proof. Suppose not. Then by Lemma 20, we have threshold(B, v) < threshold(B′, v). Let z
denote priority(u). Since B′ = B + u and u belongs to losers(B′), we deduce that z does not
belong to priorities(B). Since u belongs to losers(B′), we deduce that z does not belong to
priorities(B′). Hence Lemmas 16 and 17 imply that priorities(B′) = priorities(B).

Let B′′ denote B + u′ where u′ = (α, {(v, x′)} , z′) is a bidder such that z′ does not belong to
priorities(B) + z and threshold(B, v) < (x′, z′) < threshold(B′, v).

Let B′′′ denote B′ + u′. Since z′ does not belong to priorities(B) + z, Lemma 17 implies
that z′ does not belong to priorities(B′), and we deduce that u′ belongs to either winners(B′′′) or
losers(B′′′). Since (x′, z′) < threshold(B′, v), Lemma 19 implies that u′ belongs to losers(B′′′).
Hence Lemmas 16 and 17 imply that priorities(B′′′) = priorities(B′). Since we have established
above that priorities(B′) = priorities(B), we deduce that priorities(B′′′) = priorities(B).

Since z′ does not belong to priorities(B), we deduce that u′ belongs to either winners(B′′) or
losers(B′′). Since (x′, z′) > threshold(B, v), Lemma 19 implies that u′ belongs to winners(B′′)
and hence z′ belongs to priorities(B′′). Hence Lemmas 16 and 17 imply that there exists a real z′′

in priorities(B) that does not belong to priorities(B′′). Since z does not belong to priorities(B),
we have z 6= z′′. Since B′′′ = B′′ + u and z 6= z′′, Lemma 17 implies that z′′ does not belong to
priorities(B′′′), a contradiction since priorities(B′′′) = priorities(B).
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Lemma 22. Let B = (T, V ) and B′ = B + u be IUAPs where u = (α, β, z) and z does not
belong to priorities(B), and let v be an item in V . Assume that (v, x) belongs to β, and that
threshold(B, v) < (x, z). Then u belongs to winners(B′).

Proof. Suppose not. Let A′ = (U ′, V ) denote uap(B′). Since z does not belong to priorities(B),
we deduce that u belongs to U ′. Thus u belongs to U ′ \ winners(B′) = losers(B′), and so
threshold(B′, v) = threshold(B, v) by Lemma 21.

Let B′′ denote B′ + u′ where u′ = (α, {(v, x)} , z′) is a bidder such that z′ does not be-
long to priorities(B) + z, threshold(B, v) < (x, z′), and z′ < z. Since z′ does not belong to
priorities(B) + z, we deduce that u′ belongs to either winners(B′′) or losers(B′′). Then, by
Lemma 19, u′ belongs to winners(B′′). Let A′′ = (U ′′, V ) denote uap(B′′), and let M be a greedy
MWMCM ofA′′. Since u′ belongs to winners(B′′), the edge (u′, v) belongs toM . Since u belongs
to losers(B′), Lemma 13 implies that u belongs to losers(B′′), and hence that u is unmatched in
M . By Lemma 3, we find that (x, z) < (x, z′) and hence z < z′, a contradiction.

Lemma 23. Let B = (T, V ) and B0 = B+ u be IUAPs where u = (α, β, z), z does not belong to
priorities(B), and β = {(v1, x1), . . . , (vk, xk)}. Assume that (xi, z) < threshold(B, vi) holds for
all i such that 1 ≤ i ≤ k. Then u belongs to losers(B0).

Proof. Suppose not. Since z does not belong to priorities(B), we deduce that u belongs to
winners(B0), and hence that z belongs to priorities(B0).

For i ranging from 1 to k, let Bi denote the IUAP Bi−1 + ui where ui = (αi, {(vi, xi)} , zi)
and zi is a real number satisfying the following conditions: zi does not belong to priorities(Bi−1);
z < zi; (xi, zi) < threshold(B, vi). Since zi does not belong to priorities(Bi−1), we deduce that
ui belongs to either winners(Bi) or losers(Bi) for 1 ≤ i ≤ k. Then, by Lemmas 19 and 20, we
deduce that ui belongs to losers(Bi) for 1 ≤ i ≤ k. By repeated application of Lemma 17, we find
that priorities(Bi) = priorities(B0) for 1 ≤ i ≤ k, and hence that z belongs to priorities(Bk).

We claim that u belongs to winners(Bk). To prove this claim, let t denote the unique multi-
bidder in Bk for which priority(t) = priority(u). Let ` denote |bidders(t)|, and observe that u =
bidder(t, `). Furthermore, since z does not belong to priorities(B), we deduce that bidder(t, i)
belongs to losers(B) for 1 ≤ i < `. By repeated application of Lemma 13, we deduce that
bidder(t, i) belongs to losers(Bk) for 1 ≤ i < `. Since z belongs to priorities(Bk), the claim
follows.

Let M denote a greedy MWMCM of uap(Bk). Since u belongs to winners(Bk), there is a
unique integer i, 1 ≤ i ≤ k, such that M contains edge (u, vi). Let i denote this integer. Since
zi does not belong to priorities(Bk), we know that ui belongs to losers(Bk) and hence that ui is
not matched in any greedy MWMCM of uap(Bk). By Lemma 3, we deduce that (xi, zi) < (xi, z).
Hence zi < z, contradicting the definition of zi.

Lemma 24. Let B0 = (T, V ) be an IUAP, let z be a real that is not equal to the priority of any
multibidder in T , let k be a nonnegative integer, and for i ranging from 1 to k, let Bi denote the
IUAP Bi−1 + ui, where priority(ui) = z. Let I denote the set of all integers i in {1, . . . , k} such
that there exists an item v in V for which (w(ui, v), z) > threshold(B0, v). If I is empty, then z
does not belong to priorities(Bk). Otherwise, uj belongs to winners(Bk), where j denotes the
minimum integer in I .

14



Proof. If I is empty, then by repeated application of Lemmas 21 and 23, we find that ui belongs
to losers(Bi) for 1 ≤ i ≤ k. By repeated application of Lemma 13, we deduce that ui belongs to
losers(Bk) for 1 ≤ i ≤ k. It follows that z does not belong to priorities(Bk), as required.

Now assume that I is nonempty, and let j denote the minimum integer in I . Arguing as in the
preceding paragraph, we find that z does not belong to priorities(Bj−1). By repeated application
of Lemma 21, we deduce that threshold(Bj−1, v) = threshold(B0, v) for all items v in V . Thus
Lemma 22 implies that uj belongs to winners(Bj). Then, since uj+1, . . . , uk all have the same
priority as uj , it is easy to argue by Lemma 10 that uap(Bk) = uap(Bj), and hence uj belongs to
winners(Bk), as required.

Proof of Lemma 15. It is easy to see that the claims of the lemma follow from Lemma 24.

4 Stable Marriage with Indifferences
The stable marriage model with incomplete and weak preferences (SMIW) involves a set P of men
and a set Q of women. The preference relation of each man p in P is specified as a binary relation
�p over Q ∪ {∅} that satisfies transitivity and totality, where ∅ denotes being unmatched. Simi-
larly, the preference relation of each woman q inQ is specified as a binary relation�q over P∪{∅}
that satisfies transitivity and totality, where ∅ denotes being unmatched. To allow indifferences,
the preference relation is not required to satisfy anti-symmetry. We will use �p and �q to denote
the asymmetric part of �p and �q respectively.

A matching is a function µ from P to Q ∪ {∅} such that for any woman q in Q, there exists at
most one man p in P for which µ(p) = q. Given a matching µ and a woman q in Q, we denote

µ(q) =

p if µ(p) = q

∅ if there is no man p in P such that µ(p) = q

A matching µ is individually rational if for any man p in P and woman q in Q such that
µ(p) = q, we have q �p ∅ and p �q ∅. A pair (p, q′) in P ×Q is said to form a strongly blocking
pair for a matching µ if q′ �p µ(p) and p �q′ µ(q′). A matching is weakly stable if it is individually
rational and does not admit a strongly blocking pair.

For any matching µ and µ′, we say that the binary relation µ � µ′ holds if for every man p in P
and woman q in Q, we have µ(p) �p µ

′(p) and µ(q) �q µ
′(q). Let � be the asymmetric part of �.

We say that a matching µ Pareto-dominates another matching µ′ if µ � µ′. We say that a matching
is Pareto-optimal if it is not Pareto-dominated by any other matching. A matching is Pareto-stable
if it is Pareto-optimal and weakly stable.

A mechanism is an algorithm that, given (P,Q, (�p)p∈P , (�q)q∈Q), produces a matching µ. A
mechanism is said to be strategyproof (for the men) if for any man p in P expressing preference
�′p instead of his true preference �p, we have µ(p) �p µ

′(p), where µ and µ′ are the matchings
produced by the mechanism given �p and �′p, respectively, when all other inputs are fixed.

Without loss of generality, we may assume that the number of men is equal to the number of
women. So, P = {p1, . . . , pn} and Q = {q1, . . . , qn}.
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4.1 Algorithm
Algorithm MATCHSMIW:

1. For each 1 ≤ j ≤ n,

(a) Let pj−2n denote ∅.

(b) Convert the preference relation �qj
of woman qj into utility function ψqj

: P ∪ {∅} →
R, such that for any i and i′ in {1, . . . , n} ∪ {j − 2n}, we have pi �qj

pi′ if and only if
ψqj

(pi) ≥ ψqj
(pi′). This utility assignment should not depend on the preferences of the

men.

(c) Construct an item vj corresponding to woman qj .

(d) Construct a reserve multibidder tj−2n = (σj−2n, zj−2n) for item vj with priority zj−2n =
j − 2n, such that items(σj−2n(1)) = {vj} and w(σj−2n(1), vj) = ψqj

(pj−2n).
2. For each n < j ≤ 2n,

(a) Let qj denote ∅.

(b) Construct a dummy item vj corresponding to qj .

(c) Construct a reserve multibidder tj−2n = (σj−2n, zj−2n) for dummy item vj with priority
zj−2n = j − 2n, such that items(σj−2n(1)) = {vj} and w(σj−2n(1), vj) = 0.

3. For each 1 ≤ i ≤ n,

(a) Partition the set {1, . . . , n} ∪ {n + i} of woman indices into tiers τi(1), . . . , τi(Ki)
according to the preference relation of man pi, such that for any j in τi(k) and j′ in
τi(k′), we have qj �pi

qj′ if and only if k ≤ k′.

(b) For j in {1, . . . , n} ∪ {n + i}, denote tier number κi(qj) as the unique k such that j in
τi(k).

(c) Construct a multibidder ti = (σi, zi) with priority zi = i corresponding to man pi.
The multibidder ti has Ki bidders. For each bidder σi(k) we define items(σi(k)) as
{vj | j ∈ τi(k)} and w(σi(k), qj) as ψqj

(pi), where ψqn+i
(pi) is defined to be 0.

4. (T, V ) = ({ti | −2n < i ≤ n}, {vj | 1 ≤ j ≤ 2n}).
5. (U, V ) = uap(T, V ).
6. Compute a greedy MWMCM M0 of UAP (U, V ) as described in Sect. 2.1.

7. Output matching µ such that for all 1 ≤ i ≤ n and 1 ≤ j ≤ 2n, we have µ(pi) = qj if and
only if σi(k) is matched to item vj in M0 for some k.

4.2 Correctness
Lemma 25. Algorithm MATCHSMIW produces a valid matching.

Proof. First, we show that for any man pi where 1 ≤ i ≤ n, there exists at most one j in
{1, . . . , 2n} such that bidder σi(k) is matched to item vj in M0 for some k. For the sake of contra-
diction, suppose bidder σi(k) is matched to item vj and bidder σi(k′) is matched to item vj′ in M0
for some k and k′ where j 6= j′. By Lemma 12, we have k = k′. Therefore, bidder σi(k) = σi(k′)
is matched in M0 to both vj and vj′ , which is a contradiction.
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Next, we show that for any man pi where 1 ≤ i ≤ n, there exists at least one j in {1, . . . , 2n}
such that bidder σi(k) is matched to item vj in M0 for some k. For the sake of contradiction,
suppose bidder σi(k) is unmatched in M0 for all k. Let j denote n+ i and let k denote κi(qj). By
Lemma 12, the set U contains bidder σi(k). Since σi(k) is not matched to dummy item vj in M0,
the dummy item vj is matched to its reserve bidder σj−2n(1) in M0. So, by Lemma 11, we have

(0, zi) = (w(σi(k), vj), zi) < (w(σj−2n(1), vj), zj−2n) = (0, zj−2n),

which contradicts zi = i > j − 2n = zj−2n.
This shows that µ(pi) is well-defined for all men pi where 1 ≤ i ≤ n. Furthermore, since each

item vj where 1 ≤ j ≤ n is matched to at most one bidder in M0, each woman qj is matched to at
most one man pi in µ where 1 ≤ i ≤ n. Hence, µ is a valid matching.

Lemma 26. Algorithm MATCHSMIW produces an individually rational matching.

Proof. We have shown in Lemma 25 that µ is a valid matching. Consider man pi and woman qj

such that µ(pi) = qj , where i and j belong to {1, . . . , n}. Let k denote κi(qj) and let k′ denote
κi(qn+i). It suffices to show that k ≤ k′ and ψqj

(pi) ≥ ψqj
(pj−2n).

For the sake of contradiction, suppose k > k′. Since bidder σi(k) is matched to item vj in
M0, by Lemma 12 the set U contains bidder σi(k′). Since bidder σi(k′) is not matched to dummy
item vn+i in M0, the dummy item vn+i is matched to its reserve bidder σi−n(1) in M0. So, by
Lemma 11, we have

(0, zi) = (w(σi(k′), vn+i), zi) < (w(σi−n(1), vn+i), zi−n) = (0, zi−n),

which contradicts zi = i > i− n = zi−n.
For the sake of contradiction, suppose ψqj

(pi) < ψqj
(pj−2n). Since bidder σi(k) is matched to

item vj in M0, the reserve bidder σj−2n(1) is unmatched in M0. So, by Lemma 11, we have

(ψqj
(pj−2n), zj−2n) = (w(σj−2n(1), vj), zj−2n) < (w(σi(k), vj), zi) = (ψqj

(pi), zi),

which contradicts the assumption that ψqj
(pi) < ψqj

(pj−2n).

Lemma 27. Algorithm MATCHSMIW produces a weakly stable matching.

Proof. By Lemma 26, it remains only to show that µ does not admit a strongly blocking pair.
Consider man pi and woman qj′ , where i and j belong to {1, . . . , n}. We want to show that
(pi, qj′) does not form a strongly blocking pair. Let qj denote µ(pi) and let pi′ denote µ(qj′),
where j belongs to {1, . . . , n} ∪ {n + i} and i′ belongs to {1, . . . , n} ∪ {j′ − 2n}. It suffices to
show that either κi(qj) ≤ κi(qj′) or ψqj′ (pi′) ≥ ψqj′ (pi). For the sake of contradiction, suppose
κi(qj) > κi(qj′) and ψqj′ (pj′) < ψqj′ (pi).

Let k denote κi(qj) and let k′ denote κi(qj′). Since pi′ = µ(qj′), there exists k′′ such that bidder
σi′(k′′) is matched to vj′ in M0. Since σi(k) is matched in M0 and k′ < k, by Lemma 12 the set U
contains bidder σi(k′). Since σi(k′) is unmatched in M0, by Lemma 11 we have

(ψqj′ (pi), i) = (w(σi(k′), vj′), zi) < (w(σi′(k′′), vj′), zi′) = (ψqj′ (pi′), i′),

which contradicts the assumption that ψqj′ (pi) > ψqj′ (pj′).
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Lemma 28. Let µ be the matching produced by the algorithm MATCHSMIW and let µ′ be a match-
ing such that µ′(p) �p µ(p) for every man p in P and∑

q∈Q

ψq(µ′(q)) ≥
∑
q∈Q

ψq(µ(q)).

Then, we have µ(p) �p µ
′(p) for every man p in P and∑

q∈Q

ψq(µ′(q)) =
∑
q∈Q

ψq(µ(q)).

Proof. For any i such that 1 ≤ i ≤ n, let ki denote κi(µ(pi)) and let k′i denote κi(µ′(pi)). For any
i such that −2n < i ≤ 0, let ki and k′i denote 1.

Below we use µ′ to construct an MWMCM M ′
0 of (U, V ). We give the construction of M ′

0
first, and then argue that M ′

0 is an MWMCM of (U, V ). Let M ′
0 denote the set of bidder-item

pairs (σi(k′i), vj) such that one of the following conditions holds: 1 ≤ i ≤ n and 1 ≤ j ≤ n and
µ′(pi) = qj; 1 ≤ i ≤ n and j = n + i and µ′(pi) = ∅; −2n < i ≤ n and j = i + 2n and
µ′(qj) = ∅; −n < i ≤ 0 and j = i + 2n and µ′(pi+n) 6= ∅. It is easy to see that M ′

0 is a valid
matching that matches all of the items in V . Notice that for any 1 ≤ i ≤ n, since µ′(pi) �pi

µ(pi),
we have k′i ≤ ki. So, by Lemma 12, the set U contains all bidders σi(k′i). Hence, M ′

0 is an MCM
of (U, V ). Furthermore, it is easy to see that

w(M ′
0) =

∑
1≤j≤n

ψqj
(µ′(qj)) ≥

∑
1≤j≤n

ψqj
(µ(qj)) = w(M0).

Thus M ′
0 is an MWMCM of (U, V ), and we have∑

1≤j≤n

ψqj
(µ′(qj)) =

∑
1≤j≤n

ψqj
(µ(qj)).

To show that µ(pi) �pi
µ′(pi) for all 1 ≤ i ≤ n, it suffices to show that ki = k′i for all 1 ≤

i ≤ n. For the sake of contradiction, suppose there exists a maximum i′ such that ki′ > k′i′ . Notice
that bidder σi′(k′i′) is unmatched in every greedy MWMCM of (U, V ), for otherwise ki′ ≤ k′i′ by
Lemma 12. Since bidder σi′(k′i′) is matched in M ′

0, by Lemma 4 there exists a bidder σi(ki) with
priority zi > zi′ such that σi(ki) is matched in M0 but unmatched in M ′

0. Since i = zi > zi′ = i′,
by the maximality of i′ we have ki = k′i. Thus bidder σi(k′i) = σi(ki) is unmatched in M ′

0, a
contradiction.

Lemma 29. Let µ be the matching produced by the algorithm MATCHSMIW and µ′ be a matching
such that µ′ � µ. Then, µ � µ′.

Proof. Since µ′ � µ, we have µ′(pi) �pi
µ(pi) and ψqj

(µ′(qj)) ≥ ψqj
(µ(qj)) for every i and j in

{1, . . . , n}. So, by Lemma 28, we have µ(pi) �pi
µ′(pi) for every i in {1, . . . , n} and∑

1≤j≤n

ψqj
(µ′(qj)) =

∑
1≤j≤n

ψqj
(µ(qj)).

Therefore, ψqj
(µ′(qj)) = ψqj

(µ(qj)) for every j in {1, . . . , n}. This shows that µ � µ′.
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Lemma 30. Consider the algorithm MATCHSMIW. Suppose µ(pi) = qj , where 1 ≤ i ≤ n and j
belongs to {1, . . . , n} ∪ {n+ i}. Then, we have

(ψqj
(pi), i) ≥ threshold((T − ti, V ), vj). (3)

Furthermore, for all j′ in {1, . . . , n} ∪ {n+ i} such that κi(qj′) < κi(qj), we have

(ψqj′ (pi), i) < threshold((T − ti, V ), vj′). (4)

Proof. Let k denote κi(qj). Since µ(pi) = qj , we know that bidder σi(k) is matched to item vj in
M0. So, inequality (1) in Lemma 15 implies inequality (3), because w(σi(k), vj) = ψqj

(pi) and
zi = i.

Now, suppose κi(qj′) < κi(qj). Let k′ denote κi(qj′). Since k′ < k, inequality (2) in Lemma 15
implies inequality (4), because w(σi(k′), vj′) = ψqj′ (pi) and zi = i.

Theorem 1. The algorithm MATCHSMIW is a strategyproof Pareto-stable mechanism for the sta-
ble marriage problem with incomplete and weak preferences (for any fixed choice of utility assign-
ment).

Proof. We have shown in Lemma 27 that the algorithm produces a weakly stable matching. More-
over, Lemma 29 shows that the weakly stable matching produced is not Pareto-dominated by any
other matching. Hence, the algorithm produces a Pareto-stable matching. It remains to show that
the algorithm is a strategyproof mechanism.

Suppose man pi expresses �′pi
instead of his true preference relation �pi

, where 1 ≤ i ≤ n.
Let µ and µ′ be the resulting matchings given �pi

and �′pi
respectively. Let qj denote µ(pi) and

let qj′ denote µ′(pi), where j and j′ belong to {1, . . . , n} ∪ {n + i}. Let k denote κi(qj) and let
k′ denote κi(qj′), where κi(·) denotes the tier number with respect to �pi

. It suffices to show that
k ≤ k′. For the sake of contradiction, suppose k > k′.

Let (T, V ) be the iterated unit-demand auction, let ti be the multibidder corresponding to man
pi, and let vj′ be the item corresponding to woman qj′ constructed in the algorithm given input�pi

.
Since µ(pi) = qj , by equation (4) of Lemma 30, we have

(ψqj′ (pi), i) < threshold((T − ti, V ), vj′).

Now, consider the behavior of the algorithm when preference relation�pi
is replaced with�′pi

.
Let (T ′, V ′) be the IUAP, let t′i be the multibidder corresponding to man pi, and let v′j′ be the item
corresponding to woman qj′ constructed in the algorithm given input �′pi

. Since µ′(pi) = qj′ , by
equation (3) of Lemma 30, we have

(ψqj′ (pi), i) ≥ threshold((T ′ − t′i, V ′), v′j′).

Notice that in the algorithm MATCHSMIW, the only part of the IUAP instance that depends
on the preference of man pi is the multibidder corresponding to man pi. In particular, we have
T − ti = T ′ − t′i, V = V ′, and vj′ = v′j′ . Hence, we get

(ψqj′ (pi), i) < threshold((T − ti, V ), vj′)
= threshold((T ′ − t′i, V ′), v′j′)
≤ (ψqj′ (pi), i),

which is a contradiction.

19



5 College Admissions with Indifferences
The college admissions model with weak preferences (CAW) involves a set P of students and a
set Q of colleges. The preference relation of each student p in P is specified as a binary relation
�p over Q ∪ {∅} that satisfies transitivity and totality, where ∅ denotes being unmatched. The
preference relation of each college q in Q over individual students is specified as a binary relation
�q over P ∪ {∅} that satisfies transitivity and totality, where ∅ denotes being unmatched. Each
college q in Q has an associated integer capacity cq > 0. We will use �p and �q to denote the
asymmetric parts of �p and �q respectively.

The colleges’ preference relation over individual students can be extended to group preference
using responsiveness. We say that a transitive and reflexive relation �′q over the power set 2P is
responsive to the preference relation �q if the following conditions hold: for any S ⊆ P and p in
P \ S, we have p �q ∅ if and only if S ∪ {p} �′q S; for any S ⊆ P and any p and p′ in P \ S, we
have p � p′ if and only if S∪{p} �′q S∪{p′}. Furthermore, we say that a relation�′q is minimally
responsive to the preference relation �q if it is responsive to the preference relation �q and does
not strictly contain another relation that is responsive to the preference relation �q.

A (capacitated) matching is a function µ from P to Q ∪ {∅} such that for any college q in Q,
there exists at most cq students p in P for which µ(p) = q. Given a matching µ and a college q in
Q, we let µ(q) denote {p ∈ P |µ(p) = q}.

A matching µ is individually rational if for any student p in P and college q in Q such that
µ(p) = q, we have q �p ∅ and p �q ∅. A pair (p′, q) in P ×Q is said to form a strongly blocking
pair for a matching µ if q �p′ µ(p′) and at least one of the following two conditions holds: (1)
there exists a student p in P such that µ(p) = q and p′ �q p; (2) |µ(q)| < cq and p′ �q ∅. A
matching is weakly stable if it is individually rational and does not admit a strongly blocking pair.

Let �′q be the group preference associated with college q in Q. For any matching µ and µ′, we
say that the binary relation µ � µ′ holds if for every student p in P and college q in Q, we have
µ(p) �p µ

′(p) and µ(q) �′q µ′(q). Let � be the asymmetric part of �. We say that a matching µ
Pareto-dominates another matching µ′ if µ � µ′. We say that a matching is Pareto-optimal if it is
not Pareto-dominated by any other matching. A matching is Pareto-stable if it is Pareto-optimal
and weakly stable.

A mechanism is an algorithm that, given (P,Q, (�p)p∈P , (�q)q∈Q, (cq)q∈Q), produces a match-
ing µ. A mechanism is said to be strategyproof (for the students) if for any student p in P expressing
preference �′p instead of their true preference �p, we have µ(p) �p µ

′(p), where µ and µ′ are the
matchings produced by the mechanism given �p and �′p, respectively, when all other inputs are
fixed.

Without loss of generality, we may assume that the number of students equals the total capaci-
ties of all the colleges. So, P = {pi}1≤i≤|P | and Q = {qj}1≤j≤|Q| such that |P | = ∑

1≤j≤|Q| cqj
.

5.1 Algorithm
Algorithm MATCHCAW:

1. For each 1 ≤ i ≤ |P |, construct man p′i corresponding to student pi.

2. For each 1 ≤ j ≤ |Q|, construct women q′j1, . . . , q
′
jc corresponding to college qj with capac-

ity c = cqj
.
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3. (P ′, Q′) = ({p′i | 1 ≤ i ≤ |P |}, {q′jk | 1 ≤ j ≤ |Q| and 1 ≤ k ≤ cqj
}).

4. Let p0 denote ∅. Let p′0 denote ∅.

5. Let q0 denote ∅. Let q′00 denote ∅.

6. For each 1 ≤ i ≤ |P |, define the preference relation �p′
i

over Q′ ∪ {q′00} for man p′i using
the preference relation of his corresponding student, such that q′jk �p′

i
q′j′k′ if and only if

qj �pi
qj′ .

7. For each 1 ≤ j ≤ |Q| and 1 ≤ k ≤ cqj
, define the preference relation�q′

jk
over P ′∪{p′0} for

woman q′jk using the preference relation of her corresponding college, such that p′i �q′
jk
p′i′

if and only if pi �qj
pi′ .

8. Compute SMIW matching µ0 = MATCHSMIW(P ′, Q′, (�p′)p′∈P ′ , (�q′)q′∈Q′).
9. Output matching µ, such that for all 1 ≤ i ≤ |P | and 0 ≤ j ≤ |Q|, we have µ(pi) = qj if

and only if µ0(p′i) = q′jk for some k.

5.2 Correctness
Lemma 31. Algorithm MATCHCAW produces an individually rational matching.

Proof. It is easy to see that µ satisfies the capacity constraints because each college qj is associated
with cqj

women q′jk and each woman can be matched with at most one man in µ0 by Lemma 25.
The individual rationality of µ follows from the individual rationality of µ0. Let pi in P and qj

in Q such that µ(pi) = qj . Then µ0(p′i) = q′jk for some k. By Lemma 26, we have q′jk �p′
i
∅ and

p′i �q′
jk
∅. Hence, qj �pi

∅ and pi �qj
∅.

Lemma 32. Algorithm MATCHCAW produces a weakly stable matching.

Proof. By Lemma 31, it remains only to show that µ does not admit a strongly blocking pair.
Consider student pi′ in P and college qj in Q. We want to show that (pi′ , qj) does not form a
strongly blocking pair using the weak stability of µ0.

Let q′j′k′ denote µ0(p′i′). It is possible that q′j′k′ = ∅, in which case j′ = k′ = 0. For 1 ≤ k ≤
cqj

, let p′ik
denote µ0(q′jk), where p′ik

belongs to P ′ ∪ {p′0}. By Lemma 27, for any 1 ≤ k ≤ cqj
,

either q′j′k′ �p′
i′
q′jk or p′ik

�q′
jk
p′i′ , for otherwise (p′i′ , q′jk) forms a strongly blocking pair.

Suppose q′j′k′ �p′
i′
q′jk for some 1 ≤ k ≤ cqj

. Then, we have qj′ �pi′ qj . So, (pi′ , qj) does not
form a strongly blocking pair.

Otherwise, p′ik
�q′

jk
p′i′ for all 1 ≤ k ≤ cqj

. Then, we have pik
�qj

pi′ for all 1 ≤ k ≤ cqj
.

In particular, we have pik
�qj

pi′ for all students pik
in P such that µ(pik

) = qj . Furthermore, if
|µ(qj)| < cqj

, then pik
= ∅ for some 1 ≤ k ≤ cqj

. Hence, ∅ �qj
pi′ . This shows that (pi′ , qj) does

not form a strongly blocking pair.

Lemma 33. Suppose that for every college q in Q, the group preference relation �′q is minimally
responsive to �q. Let µ be the matching produced by the algorithm MATCHCAW and let µ′ be a
matching such that µ′ � µ. Then µ � µ′.

Proof. Since µ′ is a matching that satisfies the capacity contraints, we can construct an SMIW
matching µ′0 : P ′ → Q′∪{q′00} such that for all 1 ≤ i ≤ |P | and 0 ≤ j ≤ |Q|, we have µ′(pi) = qj

if and only if µ0(p′i) = q′jk for some k.
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Since µ′ � µ, we have µ′(pi) �pi
µ(pi) for every 1 ≤ i ≤ |P | and µ′(qj) �′qj

µ(qj) for every
1 ≤ j ≤ |Q|. So, µ′0(p′i) �p′

i
µ0(p′i) for every 1 ≤ i ≤ |P | and∑

1≤k≤cqj

ψq′
jk

(µ′0(q′jk)) ≥
∑

1≤k≤cqj

ψq′
jk

(µ0(q′jk))

for every 1 ≤ j ≤ |Q|. Hence, by Lemma 28, we have µ0(p′i) �p′
i
µ′0(p′i) for every 1 ≤ i ≤ |P |

and ∑
1≤j≤|Q|

∑
1≤k≤cqj

ψq′
jk

(µ′0(q′jk)) =
∑

1≤j≤|Q|

∑
1≤k≤cqj

ψq′
jk

(µ0(q′jk)).

Therefore, we have µ(pi) �pi
µ′(pi) for every 1 ≤ i ≤ |P | and∑

1≤k≤cqj

ψq′
jk

(µ′0(q′jk)) =
∑

1≤k≤cqj

ψq′
jk

(µ0(q′jk))

for every 1 ≤ j ≤ |Q|. This shows that µ(qj) �′qj
µ′(qj) for every 1 ≤ j ≤ |Q|. Thus, µ � µ′.

Theorem 2. Suppose that for every college q in Q, the group preference relation �′q is minimally
responsive to �q. The algorithm MATCHCAW is a strategyproof Pareto-stable mechanism for the
college admissions problem with weak preferences (for any fixed choice of utility assignment).

Proof. We have shown in Lemma 32 that the algorithm produces a weakly stable matching. More-
over, Lemma 33 shows that the weakly stable matching produced is not Pareto-dominated by any
other matching. Hence, the algorithm produces a Pareto-stable matching.

To show that the algorithm provides a strategyproof mechanism, suppose student pi expresses
�′pi

instead of their true preference relation �pi
, where 1 ≤ i ≤ |P |. Let µ and µ′ be the resulting

matchings given �pi
and �′pi

, respectively. Let µ0 and µ′0 be the SMIW matching produced by the
algorithm given �pi

and �′pi
, respectively.

Notice that in the algorithm MATCHCAW, the only part of the stable marriage instance that
depends on the preferences of student pi is the preference relation corresponding to man p′i. Since
algorithm MATCHSMIW is strategyproof by Theorem 1, we have µ0(p′i) �p′

i
µ′0(p′i) where �p′

i
is

the preference relation of man p′i in the algorithm given �pi
. Hence, µ(pi) �pi

µ′(pi).

We remark that algorithm MATCHCAW admits an O(n4)-time implementation, where n is the
sum of the number of students and the total capacities of all the colleges, because the reduction
from CAW to IUAP takes O(n2) time, and steps 5 and 6 of MATCHSMIW algorithm can be im-
plemented in O(n4) time using the version of the incremental Hungarian method discussed in
Sections 2.1 and 3.1.

5.3 Further Discussion
In our SMIW and CAW algorithms, we transform the preference relations of the women and col-
leges into real-valued utility functions. One way to do this is to set ψq(p) to the number of p′ in
P ∪ {∅} such that p �q p

′. This is by no means the only way. In fact, different ways of assigning
the utilities can affect the outcome. Nonetheless, our mechanisms remain strategyproof for the
men as long as the utility assignment is fixed and independent of the preferences of the men, as
shown in Theorems 1 and 2.
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We can also consider the scenario where each college expresses their preferences directly in
terms of a utility function instead of a preference relation. Such utility functions provide another
way to extend preferences over individuals to group preferences. If a college q expresses the utility
function ψq over individual students in P ∪ {∅}, we can define the group preference induced by
additive utility ψq as a binary relation �′q over 2P such that S �′q S ′ if and only if∑

p∈S

(ψq(p)− ψq(∅)) ≥
∑
p∈S′

(ψq(p)− ψq(∅)).

Then, our algorithm can accept the utility functions as input in lieu of constructing them by some
utility assignment method. It is not hard to see that the mechanism remains Pareto-stable and
strategyproof when the group preferences of the colleges are induced by additive utilities.
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A Modified Hungarian Step for UAPs
In this appendix, we establish Lemma 36, which enables us to modify the incremental Hungarian
step as described in Sect. 2.1 so that we can efficiently find a greedy MWMCM of a UAP.

Let A = (U, V ) and A′ = A + u be UAPs, and let M be an MWMCM of A. We define
digraph(A, u,M) as the edge-weighted digraph that may be obtained by modifying the subgraph
of A induced by the set of vertices (matched(M) + u) ∪ V as follows: for each edge that belongs
to M , we direct the edge from item to bidder and leave the weight unchanged; for each edge that
does not belong to M , we direct the edge from bidder to item and negate the weight.

Lemma 34. Let A = (U, V ) and A′ = A + u be UAPs, let M be an MWMCM of A, and let G
denote digraph(A, u,M). Then G does not contain any negative-weight cycles.

Proof. Such a cycle could not involve u (since u only has outgoing edges) so it has to be a negative-
weight cycle that already existed before u was added, a contradiction since M is an MWMCM of
A.

Let A = (U, V ) and A′ = A + u be UAPs, let M be an MWMCM of A, and let G de-
note digraph(A, u,M). Then we define a nonempty set of bidders candidates(A, u,M), and a
nonempty set of directed paths paths(A, u,M), as follows. Let U ′ denote the set of all bidders that
are reachable from u via a directed path in G. Observe that U ′ is nonempty, since u belongs to
U ′. Furthermore, by Lemma 34, for each bidder u′ in U ′, the weight of a shortest path in G from
u to u′ is well-defined. Let W denote the minimum, over all u′ in U ′, of the weight of a shortest
path in G from u to u′. Then we define candidates(A, u,M) as the set of all u′ in U ′ such that the
weight of a shortest path in G from u to u′ is equal to W , and we define paths(A, u,M) as the set
of all weight-W directed paths in G that start at u and terminate at some minimum-priority bidder
in candidates(A, u,M).

Let A = (U, V ) and A′ = A + u be UAPs, let M be a greedy MWMCM of A, and let P
be a directed path in digraph(A, u,M) from u to a bidder u′. (Note that P could be a path of
length zero from u to u.) Let X denote the edges in M corresponding to item-to-bidder edges
in P , and let Y denote the edges in A′ corresponding to bidder-to-item edges in P . Since P
alternates between item-to-bidder and bidder-to-item edges and terminates at a bidder, we deduce
that |X| = |Y | and that the set of edges (M \X) ∪ Y is an MCM of A′. We define this MCM of
A′ as augment(A, u,M, P ).

Lemma 35. Let A = (U, V ) and A′ = A + u be UAPs, let M be a greedy MWMCM of A, and
let M ′ denote a greedy MWMCM of A′ minimizing |M ⊕M ′|. Then there is a directed path P in
paths(A, u,M) such that M ′ = augment(A, u,M, P ).

Proof. Since every item in V is matched in bothM andM ′, the edges ofM⊕M ′ form a collection
S of disjoint cycles and positive-length paths.

We begin by arguing that S does not contain any cycles. Suppose there is a cycle C in S. Let
X denote the edges of C that belong to M \M ′, and let Y denote the edges of C that belong to
M ′ \M . Since C is an even-length cycle, we have |X| = |Y |. Let M ′′ denote (M ∪ Y ) \ X ,
which is a matching in A since u is unmatched in M and hence does not belong to C. Since M
is an MWMCM of A and w(M ′′) = w(M) + w(Y ) − w(X), we conclude that w(X) ≥ w(Y ).
Let M ′′′ denote (M ′ ∪ X) \ Y , which is a matching in A′. Since M ′ is an MWMCM of A′ and
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w(M ′′′) = w(M ′) + w(Y ) − w(X), we conclude that w(X) ≤ w(Y ). Thus w(X) = w(Y ) and
hence w(M ′′′) = w(M ′), implying that M ′′′ is an MWMCM of A′. Moreover, since M ′′′ matches
the same set of bidders as M ′, we find that M ′′′ is a greedy MWMCM of A′. But this contradicts
the definition of M ′ since |M ⊕M ′′′| < |M ⊕M ′|.

Next we argue that if Q is a positive-length path in S, then u is an endpoint of Q. Suppose
there is a path Q in S such that u is not an endpoint of Q. Thus u does not appear on Q since u
is unmatched in M . Let X denote the edges of Q that belong to M \M ′, and let Y denote the
edges of Q that belong to M ′ \M . Let M ′′ denote (M ∪ Y ) \X , which is a matching in A since
u does not belong to Q. Since M is an MWMCM of A and w(M ′′) = w(M) + w(Y )−w(X), we
conclude that |X| ≥ |Y | and w(X) ≥ w(Y ). Let M ′′′ denote (M ′ ∪X) \ Y , which is a matching
in A′. Since M ′ is an MWMCM of A′ and w(M ′′′) = w(M ′) + w(Y ) − w(X), we conclude that
|X| ≤ |Y | and w(X) ≤ w(Y ). Thus |X| = |Y | and w(X) = w(Y ), and hence w(M ′′) = w(M)
and w(M ′′′) = w(M ′), implying that M ′′ is an MWMCM of A and M ′′′ is an MWMCM of A′.
Since |X| = |Y |, Q is an even-length path. Since every item in V is matched in both M and M ′,
both endpoints of Q are bidders. Since Q has positive length, one endpoint, call it u0, is matched
in M but not in M ′, and the other endpoint, call it u1, is matched in M ′ but not in M . Since M
is a greedy MWMCM of A and M ′′ is an MWMCM of A, we deduce that the priority of u0 is at
least that of u1. Since M ′ is a greedy MWMCM of A′ and M ′′′ is an MWMCM of A′, we deduce
that the priority of u0 is at most that of u1. Thus the priority of u0 is equal to that of u1. It follows
that the sum of the priorities of the bidders matched by M ′′′ is equal to the sum of the priorities
of the bidders matched by M ′. Hence M ′′′ is a greedy MWMCM of A′. But this contradicts the
definition of M ′ since |M ⊕M ′′′| < |M ⊕M ′|.

From the preceding arguments, we deduce that eitherM = M ′ orM⊕M ′ is a path of positive,
even length that has u as an endpoint. Equivalently, M ⊕M ′ is the edge set of an even-length path
that has u as an endpoint. We claim that this path, with edges directed away from endpoint u, is
a suitable choice for the directed path P claimed to exist in the statement of the lemma. Let P
denote this directed path, and let P denote paths(A, u,M). Below we argue that P belongs to P .

Let G denote digraph(A, u,M), and let u′ denote the bidder at which path P terminates. (If
P is of length zero, then u′ = u.) Observe that the total weight of the edges on path P is equal
to w(M) − w(M ′), and hence is equal to w(A) − w(A′). Furthermore, P is a shortest path in G
from u to u′, because if there is a shorter path Q in G from u to u′, then augment(A, u,M,Q) is
an MCM of A′ that is heavier than M ′, a contradiction since M ′ is an MWMCM of A′.

Assume, for the sake of contradiction, that P does not belong to P . Let Q be a directed path in
P , and letM ′′ denote augment(A, u,M,Q). By the definition ofP , we deduce that w(Q) ≤ w(P ).
On the other hand, we claim that w(P ) ≤ w(Q); if not, M ′′, which is an MCM of A′, has a higher
weight than M ′, a contradiction since M ′ is an MWMCM of A′. Hence w(P ) = w(Q) and thus
w(M ′) = w(M ′′). Let u′′ denote the bidder at which path Q terminates. Since w(P ) = w(Q), Q
belongs to P , and P does not belong to P , we deduce that u′′ has a lower priority than u′. But
then M ′′, which is an MWMCM of A′ since w(M ′) = w(M ′′), has a higher priority than M ′, a
contradiction since M ′ is a greedy MWMCM of A′. Thus we conclude that P belongs to P , and
the definition of augment(A, u,M, P ) implies that M ′ = augment(A, u,M, P ).

Lemma 36. Let A = (U, V ) and A′ = A + u be UAPs, let M be a greedy MWMCM of A, let P
denote a path in paths(A, u,M), and let M ′ denote augment(A, u,M, P ). Then M ′ is a greedy
MWMCM of A′.
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Proof. Let M∗ be a greedy MWMCM of A′. By Lemma 35, there is a path Q in paths(A, u,M)
such thatM∗ = augment(A, u,M,Q). Using the definition of paths(A, u,M), we deduce thatM ′

is an MCM of A′ with w(M ′) = w(M∗) and priority(M ′) = priority(M∗). It follows that M ′ is
a greedy MWMCM of A′.
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