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Abstract. We study the three-dimensional stable matching problem
with cyclic preferences. This model involves three types of agents, with
an equal number of agents of each type. The types form a cyclic order
such that each agent has a complete preference list over the agents of
the next type. We consider the open problem of the existence of three-
dimensional matchings in which no triple of agents prefer each other to
their partners. Such matchings are said to be weakly stable. We show
that contrary to published conjectures, weakly stable three-dimensional
matchings need not exist. Furthermore, we show that it is NP-complete
to determine whether a weakly stable three-dimensional matching exists.
We achieve this by reducing from the variant of the problem where pref-
erence lists are allowed to be incomplete. Our results can be generalized
to the k-dimensional stable matching problem with cyclic preferences for
k ≥ 3.

Keywords: Stable matching · Three-dimensional matching · NP-com-
pleteness.

1 Introduction

The study of stable matchings was started by Gale and Shapley [9], who investi-
gated a market with two types of agents. The two-dimensional stable matching
problem involves an equal number of men and women, each of whom has a com-
plete preference list over the agents of the opposite sex. The goal is to �nd
a matching between the men and the women such that no man and woman
prefer each other to their partners. Matchings satisfying this property are said
to be stable. Gale and Shapley showed that a solution for the two-dimensional
stable matching problem always exists and can be computed in polynomial time.
Their result also applies to the variant where preference lists may be incomplete
due to unacceptable partners, and the number of men may be di�erent from the
number of women.

The problem of generalizing stable matchings to markets with three types
of agents was posed by Knuth [13]. In pursuit of an existence theorem and
an elegant theory analogous to those of the Gale-Shapley model, the three-
dimensional stable matching problem has been studied with respect to a number
of preference structures. When each agent has preferences over pairs of agents
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from the other two types, stable matchings need not exist [1, 16]. Furthermore,
it is NP-complete to determine whether a stable matching exists [16, 18], even
if the preferences are consistent with product orders [11]. When two types of
agents care primarily about each other and secondarily about the remaining
type, a stable matching always exists and can be obtained by computing two-
dimensional stable matchings using the Gale-Shapley algorithm in a hierarchical
manner [5]. When the types form a cyclic order such that each type of agent
cares primarily about the next type and secondarily about the other type, stable
matchings need not exist [3].

A prominent problem mentioned in several of the aforementioned papers [3,
11, 16] is the three-dimensional stable matching problem for the case where the
types form a cyclic order such that each type of agent cares only about the
next type and not the other type. Following the terminology of the survey of
Manlove [15], we call this the three-dimensional stable matching problem with
cyclic preferences (3-dsm-cyc), and refer to the three types of agents as men,
women, and dogs. A number of stability notions [11] can be considered in 3-dsm-
cyc. In this paper, we focus on weak stability, which is the most permissive one
and has received the most attention in the literature. It is known that deter-
mining whether a 3-dsm-cyc instance has a strongly stable matching is NP-
complete [2]. For the variant where ties are allowed, determining the existence of
a super-stable matching is also NP-complete [12]. However, it remained an open
problem for weakly stable matchings in 3-dsm-cyc.

In 3-dsm-cyc, there are an equal number of men, women, and dogs. Each
man has a complete preference list over the women, each woman has a complete
preference list over the dogs, and each dog has a complete preference list over the
men. A family is a triple consisting of a man, a woman, and a dog. A matching
is a set of agent-disjoint families. A family is strongly blocking if every agent in
the family prefers each other to their partners in the matching. A matching is
weakly stable if it admits no strongly blocking family. This problem is related
to applications such as kidney exchange [2] and three-sided network services [4].

The formulation of 3-dsm-cyc �rst appeared in the paper of Ng and Hirsch-
berg [16], where it is attributed to Knuth. Using a greedy approach, Boros et
al. [3] showed that every 3-dsm-cyc instance with at most 3 agents per type has
a weakly stable matching. Their result also applies to the k-dimensional gener-
alization of the problem, which we call k-dsm-cyc. For k ≥ 3, they showed that
every k-dsm-cyc instance with at most k agents per type has a weakly stable
matching. Using a case analysis, Eriksson et al. [6] showed that every 3-dsm-
cyc instance with at most 4 agents per type has a weakly stable matching, and
they conjectured that every 3-dsm-cyc instance has a weakly stable matching.
In fact, they posed the stronger conjecture that for a certain �strongest link�
generalization of 3-dsm-cyc, every instance with at least two agents per type
has at least two weakly stable matchings. Eriksson et al. also investigated and
ruled out the use of certain arguments based on �e�ectivity functions� and �bal-
anced games� for proving the 3-dsm-cyc conjecture. Using an e�cient greedy
procedure, Hofbauer [10] showed that for k ≥ 3, every k-dsm-cyc instance with
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at most k+1 agents per type has a weakly stable matching. Using a satis�ability
problem formulation and an extensive computer-assisted search, Pashkovich and
Poirrier [17] showed that every 3-dsm-cyc instance with exactly 5 agents per
type has at least two weakly stable matchings. Escamocher and O'Sullivan [7]
showed that the number of weakly stable matchings is exponential in the size of
the 3-dsm-cyc instance if agents of the same type are restricted to have the same
preferences. They also conjectured that for unrestricted 3-dsm-cyc instances,
there are exponentially many weakly stable matchings.

Hardness results are known for some related problems. For the variant of
3-dsm-cyc where preference lists are allowed to be incomplete, which we refer
to as 3-dsmi-cyc, Biró and McDermid [2] showed that determining whether
a weakly stable matching exists is NP-complete. Farczadi et al. [8] showed
that determining whether a given perfect two-dimensional matching can be ex-
tended to a three-dimensional weakly stable matching in 3-dsm-cyc is also NP-
complete. However, the existence of weakly stable matchings in 3-dsm-cyc re-
mained unresolved. Manlove [15] described it as an �intriguing open problem�,
and Woeginger [19] classi�ed it as �hard and outstanding�.

Our Techniques and Contributions. In this paper, we show that there exists
a 3-dsm-cyc instance that has no weakly stable matching. This disproves the
conjectures of Eriksson et al. [6] and Escamocher and O'Sullivan [7]. Further-
more, we show that determining whether a 3-dsm-cyc instance has a weakly
stable matching is NP-complete. We achieve this by reducing from the problem
of determining whether a 3-dsmi-cyc instance has a weakly stable matching.
Our results generalize to k-dsm-cyc for k ≥ 3.

Our main technique involves converting each agent in 3-dsmi-cyc to a gadget
consisting of one non-dummy agent and many dummy agents. The dummy agents
in our gadget give rise to chains of admirers. (See Remark 2 in Section 4.3.) By
applying the weak stability condition to the chains of admirers, we are able to
obtain some control over the partner of the non-dummy agent.

Organization of This Paper. In Section 2, we present the formal de�nitions
of k-dsm-cyc and k-dsmi-cyc. In Section 3, we show that the NP-completeness
result of Biró and McDermid [2] can be extended to k-dsmi-cyc. In Section 4,
we show that k-dsm-cyc is NP-complete by a reduction from k-dsmi-cyc. In
Section 5, we conclude by mentioning some potential future work.

2 Preliminaries

In this paper, we use 〈z ∈ Z | P(z)〉 to denote the list of all tuples z ∈ Z satisfying
predicate P(z), where the tuples are sorted in increasing lexicographical order.
Given two lists Y and Z, we denote their concatenation as Y ·Z. For any k ≥ 1,
we use ⊕k to denote addition modulo k.
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2.1 The Models

Let k ≥ 2. The k-dimensional stable matching problem with incomplete lists
and cyclic preferences (k-dsmi-cyc) involves a �nite set A = I × {0, . . . , k − 1}
of agents, where each agent α = (i, t) ∈ A is associated with an identi�er i and
a type t. (When k = 3, we can think of the sets I × {0}, I × {1}, and I × {2}
as the sets of men, women, and dogs, respectively.) Each agent α = (i, t) ∈ A
has a strict preference list Pα over a subset of agents of type t′ = t ⊕k 1. In
other words, every agent in I × {t⊕k 1} appears in Pα at most once, and every
element in Pα belongs to I × {t ⊕k 1}. For every α, α′, α′′ ∈ A, we say that α
prefers α′ to α′′ if α′ appears in Pα and either agent α′′ appears in Pα after α′

or agent α′′ does not appear in Pα. We denote this k-dsmi-cyc instance as
X = (A, {Pα}α∈A).

Given a k-dsmi-cyc instance X = (A, {Pα}α∈A), a family is a tuple

(α0, . . . , αk−1) ∈ Ak

such that αt ∈ I × {t} and αt⊕k1 appears in Pαt for every t ∈ {0, . . . , k − 1}.
A matching µ is a set of agent-disjoint families. In other words, for every t, t′ ∈
{0, . . . , k− 1} and (α0, . . . , αk−1), (α

′
0, . . . , α

′
k−1) ∈ µ, if αt = α′t, then αt′ = α′t′ .

Given a matching µ and an agent α ∈ A, if α = αt for some (α0, . . . , αk−1) ∈ µ
and t ∈ {0, . . . , k − 1}, we say that α is matched to αt⊕k1, and we write µ(α) =
αt⊕k1. Otherwise, we say that α is unmatched, and we write µ(α) = α.

Given a matching µ, we say that a family (α0, . . . , αk−1) is strongly blocking

if αt prefers αt⊕k1 to µ(αt) for every t ∈ {0, . . . , k − 1}. A matching µ is weakly
stable if it does not admit any strongly blocking family.

The k-dimensional stable matching problem with cyclic preferences (k-dsm-
cyc) is de�ned as the special case of k-dsmi-cyc in which every agent in I ×
{t⊕k 1} appears exactly once in Pα for every agent α = (i, t) ∈ A.

Notice that when incomplete lists are allowed, the case of an unequal number
of agents of each type can be handled within our k-dsmi-cyc model by padding
with dummy agents whose preference lists are empty. Hence, the results of Biró
and McDermid [2] apply to our 3-dsmi-cyc model. When preference lists are
complete, we follow the literature and focus on the case where each type has an
equal number of agents. Our result shows that even when restricted to the case
of an equal number of agents of each type, a given k-dsm-cyc instance need
not admit a weakly stable matching, and determining the existence of a weakly
stable matching is NP-complete.

2.2 Polynomial-Time Veri�cation

Given a matching µ of a k-dsmi-cyc instance with n agents per type, it is
straightforward to determine whether µ is weakly stable in O(nk) time by check-
ing that none of the O(nk) families is strongly blocking. The following theorem
shows that when k is large, there is a more e�cient method to determine whether
a given matching is weakly stable. A proof is provided in [14].
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Theorem 1. There exists a poly(n, k)-time algorithm to determine whether

a given matching µ is weakly stable for a k-dsmi-cyc instance, where n is the

number of agents per type.

3 NP-Completeness of k-DSMI-CYC

In this section, we show that for every k ≥ 3, it is NP-complete to determine
whether a given k-dsmi-cyc instance has a weakly stable matching. We achieve
this by reducing from the problem of determining whether a 3-dsmi-cyc instance
has a weakly stable matching.

3.1 The Reduction

Let k ≥ 4. Consider an input 3-dsmi-cyc instanceX = (A, {Pα}α∈A) where A =
I×{0, 1, 2}. Our reduction constructs a k-dsmi-cyc instance X̂ = (Â, {P̂α̂}α̂∈Â)
as follows.

� Let Î = I × I and Â = I × I × {0, . . . , k − 1}. For every agent (i, t) ∈ A, we
call α̂ = (i, i, t) ∈ Â the non-dummy agent corresponding to (i, t). We call
the agents

{(i, j, t) ∈ Â | t /∈ {0, 1, 2} or i 6= j}

dummy agents.

� For every agent α̂ = (i, j, t) ∈ Â, we construct the preference list P̂α̂ as
follows.

• If 0 ≤ t ≤ 1 and i = j, we list in P̂α̂ the agents

{(i′, j′, t′) ∈ I × I × {t+ 1} | i′ = j′ and (i′, t′) is in P(i,t)}

in the order in which the corresponding agent (i′, t′) appears in P(i,t).

• If t = 2 and i = j, we list in P̂α̂ the agents

{(i′, j′, t′) ∈ I × I × {3} | i′ = i and (j′, 0) is in P(i,2)}

in the order in which the corresponding agent (j′, 0) appears in P(i,2).

• If 0 ≤ t ≤ 2 and i 6= j, we de�ne P̂α̂ as the empty list.

• If 3 ≤ t ≤ k − 2 and (j, 0) is in P(i,2), we de�ne P̂α̂ as 〈(i, j, t+ 1)〉.
• If t = k − 1 and (j, 0) is in P(i,2), we de�ne P̂α̂ as 〈(j, j, 0)〉.
• If 3 ≤ t ≤ k− 1 and (j, 0) is not in P(i,2), we de�ne P̂α̂ as the empty list.

Figure 1 shows an example of the reduction when k = 5 and I = {0, 1}.
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(0, 0)

(1, 0)

(0, 1)

(1, 1)

(0, 2)

(1, 2)

(a) The input 3-dsmi-cyc instance.

(0, 0, 0) (0, 0, 1) (0, 0, 2)

(1, 1, 0) (1, 1, 1) (1, 1, 2)

(0, 0, 3)

(0, 1, 3)

(1, 1, 3)

(0, 0, 4)

(0, 1, 4)

(1, 1, 4)

(b) The output 5-dsmi-cyc instance. Agents with empty preference lists are omitted.

Fig. 1. Example of a reduction from 3-dsmi-cyc to 5-dsmi-cyc. An arrow indicates
that the target agent appears in the preference list of the source agent.

3.2 Correctness of the Reduction

Proofs of the three claims stated below are provided in [14]. We emphasize
that the important special case of Theorem 2 where k = 3 is due to Biró and
McDermid [2, Lemma 1].

Lemma 1. Let k ≥ 4. Consider the reduction given in Section 3.1. The output

k-dsmi-cyc instance X̂ has a weakly stable matching if and only if the input

3-dsmi-cyc instance X has a weakly stable matching.

Theorem 2. Let k ≥ 3. Then there exists a k-dsmi-cyc instance that has no

weakly stable matching.

Theorem 3. Let k ≥ 3. Then it is NP-complete to determine whether a k-dsmi-
cyc instance has a weakly stable matching.

4 NP-Completeness of k-DSM-CYC

In this section, we show that for every k ≥ 3, it is NP-complete to determine
whether a k-dsm-cyc instance has a weakly stable matching. We achieve this
by reducing from the problem of determining whether a k-dsmi-cyc instance
has a weakly stable matching. Since the dimensions of both the input instance
and the output instance of the reduction are equal to k, throughout this section,
we write ⊕ instead of ⊕k for better readability.



Three-Dimensional Stable Matchings with Cyclic Preferences 7

4.1 The Reduction

Let k ≥ 3. Consider an input k-dsmi-cyc instance X = (A, {Pα}α∈A) where
A = I × {0, . . . k − 1}. We may assume that I = {0, . . . , |I| − 1}, so agents
in A can be compared lexicographically. Our reduction constructs a k-dsm-cyc
instance X̂ = (Â, {P̂α̂}α̂∈Â) as follows.

� Let J = {0, . . . , (k−1)2}. Let Î = J×A and Â = J×A×{0, . . . , k−1}. For
every agent α ∈ A, we call J×{α}×{0, . . . , k−1} the gadget corresponding
to α.

� For every agent α̂ = (j, α, t) ∈ Â such that j = 0 and α ∈ I × {t}, we call α̂
the non-dummy agent corresponding to α. Let P̂ ′α be the list obtained by
replacing every α′ in Pα by (0, α′, t⊕ 1). We de�ne the preference list P̂α̂ as
P̂ ′α · 〈(j′, α′, t′) ∈ J ×A× {t⊕ 1} | α′ = α〉 followed by the remaining agents
in J ×A× {t⊕ 1} in an arbitrary order.

� For every agent α̂ = (j, α, t) ∈ Â such that j = (k−1)2, we call α̂ a boundary
dummy agent, and we de�ne the preference list P̂α̂ as

〈(j′, α′, t′) ∈ J ×A× {t⊕ 1} | α′ = α and j′ < (k − 1)2〉
· 〈(j′, α′, t′) ∈ J ×A× {t⊕ 1} | j′ = (k − 1)2〉

followed by the remaining agents in J ×A× {t⊕ 1} in an arbitrary order.
� For every agent α̂ = (j, α, t) ∈ Â such that (j, α, t) /∈ {0} × (I × {t}) × {t}

and j < (k−1)2, we call α̂ a non-boundary dummy agent, and we de�ne the
preference list P̂α̂ as 〈(j′, α′, t′) ∈ J × A× {t⊕ 1} | α′ = α〉 followed by the
remaining agents in J ×A× {t⊕ 1} in an arbitrary order.

As shown in Figure 2(a), the gadget corresponding to α ∈ I ×{t} can be visual-
ized as a grid of agents with k rows and (k−1)2+1 columns. The non-boundary
dummy agents in the same row have essentially the same preferences, which
begin with the agents in the next row from left to right. The preferences of
the boundary dummy agents are similar to those of the non-boundary dummy
agents, except that they incorporate the other boundary dummy agents in a spe-
cial manner. Meanwhile, the preferences of the non-dummy agent (0, α, t) re�ect
the preferences of agent α by starting with P̂ ′α.

Remark 1. The reason our gadget has (k − 1)2 + 1 columns will become clearer
when we present Lemmas 4 and 5 below. At a high level, Lemma 4 is invoked
k − 1 times within the proof of Lemma 5, and each such invocation leads to an
increase in the number of columns of k − 1.

4.2 Correctness of the Reduction

Lemmas 2 and 3 below show that the reduction in Section 4.1 is a correct re-
duction from k-dsmi-cyc to k-dsm-cyc. The associated proofs are presented in
Sections 4.4 and 4.5.
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(0, α, t)

(0, α, t⊕ 1)

(0, α, t⊕ 2)

(1, α, t)

(1, α, t⊕ 1)

(1, α, t⊕ 2)

(2, α, t)

(2, α, t⊕ 1)

(2, α, t⊕ 2)

(3, α, t)

(3, α, t⊕ 1)

(3, α, t⊕ 2)

(4, α, t)

(4, α, t⊕ 1)

(4, α, t⊕ 2)

non-dummy non-boundary dummy boundary dummy

(a) The structure of the gadget.

(0, α, t)

(0, α, t⊕ 1)

(0, α, t⊕ 2)

(1, α, t)

(1, α, t⊕ 1)

(1, α, t⊕ 2)

(2, α, t)

(2, α, t⊕ 1)

(2, α, t⊕ 2)

(3, α, t)

(3, α, t⊕ 1)

(3, α, t⊕ 2)

(4, α, t)

(4, α, t⊕ 1)

(4, α, t⊕ 2)

(b) The matching µ̂ induced by µ when α is unmatched in µ.

(0, α, t)

(0, α, t⊕ 1)

(0, α, t⊕ 2)

(1, α, t)

(1, α, t⊕ 1)

(1, α, t⊕ 2)

(2, α, t)

(2, α, t⊕ 1)

(2, α, t⊕ 2)

(3, α, t)

(3, α, t⊕ 1)

(3, α, t⊕ 2)

(4, α, t)

(4, α, t⊕ 1)

(4, α, t⊕ 2)

(c) The matching µ̂ induced by µ when α is matched in µ.

Fig. 2. Example of a gadget corresponding to α ∈ I × {t} when k = 3. An arrow
indicates that the source agent is matched to the target agent.

Lemma 2. Let k ≥ 3. Consider the reduction given in Section 4.1. If the input

k-dsmi-cyc instance X has no weakly stable matching, then the output k-dsm-
cyc instance X̂ has no weakly stable matching.

Lemma 3. Let k ≥ 3. Consider the reduction in Section 4.1. If the input

k-dsmi-cyc instance X has a weakly stable matching, then the output k-dsm-
cyc instance X̂ has a weakly stable matching.

Proofs of the next two theorems are provided in [14].

Theorem 4. Let k ≥ 3. Then there exists a k-dsm-cyc instance that has no

weakly stable matching.

Theorem 5. Let k ≥ 3. Then it is NP-complete to determine whether a k-dsm-
cyc instance has a weakly stable matching.
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4.3 Properties of the Gadget

In this subsection, we study the properties of the gadget in the scenario that
the non-dummy agent is not matched to a non-dummy agent corresponding to
an acceptable partner. In Lemma 4, we show that in this scenario, many agents
in the gadget are matched to agents in the same gadget. In Lemma 5, we apply
Lemma 4 inductively to show that in the same scenario, every agent in the same
family as the non-dummy agent belongs to the same gadget.

Remark 2. In the proof of Lemma 4 below, we can think of α̂0, . . . , α̂k−1 as a
chain of admirers in the gadget corresponding to α, where α̂s prefers α̂s+1 to
µ̂(α̂s). By applying the weak stability condition to this chain of admirers, we
show that α̂k−1 is matched to a partner no worse than α̂0.

Lemma 4. Let µ̂ be a weakly stable matching in X̂. Let t∗ ∈ {0, . . . , k− 1} and
α∗ ∈ I×{t∗} such that µ̂(0, α∗, t∗) is not in P̂ ′α∗ . Let t ∈ {0, . . . , k−1} and j ∈ J
such that j ≤ (k−1)·(k−2). Then µ̂(j, α∗, t) ∈ {0, . . . , j+k−1}×{α∗}×{t⊕1}.

Proof. Let Âs = 〈(j′, α′, t′) ∈ J × {α∗} × {t ⊕ s ⊕ 1} | j′ ≤ j + k − s − 1〉 for
every s ∈ {0, . . . , k − 1}. For the sake of contradiction, suppose µ̂(j, α∗, t) is not
in Â0.

For every s ∈ {0, . . . , k−2}, since the length of Âs is greater than the length of
Âs+1, there exists α̂s in Âs such that µ̂(α̂s) is not in Âs+1. Let α̂k−1 = (j, α∗, t).
Then α̂k−1 is in Âk−1 and µ̂(α̂k−1) is not in Â0. Since µ̂ is a weakly stable
matching of X̂, the family (α̂k−t−1, . . . , α̂(k−t−1)⊕(k−1)) is not strongly blocking.
So there exists s∗ ∈ {0, . . . , k−1} such that α̂s∗ does not prefer α̂s∗⊕1 to µ(α̂s∗).
Since α̂s∗ is in Âs∗ , there exists j

∗ ≤ j + k − s∗ − 1 such that α̂s∗ = (j∗, α∗, t⊕
s∗ ⊕ 1). We consider two cases.

Case 1: j∗ = 0 and t ⊕ s∗ ⊕ 1 = t∗. Then α̂s∗ = (0, α∗, t∗) is a non-dummy
agent and P̂ ′α∗ · Âs∗⊕1 is a pre�x of the preference list P̂α̂s∗ . Since µ(α̂s∗) is

not in P̂ ′α∗ · Âs∗⊕1 and α̂s∗⊕1 is in Âs∗⊕1, agent α̂s∗ prefers α̂s∗⊕1 to µ(α̂s∗), a
contradiction.

Case 2: j∗ 6= 0 or t⊕ s∗ ⊕ 1 6= t∗. We consider two subcases.
Case 2.1: j∗ = (k− 1)2. Since (k− 1)2 = j∗ ≤ j + k− s∗ − 1 ≤ (k− 1)2 − s∗,

we have s∗ = 0. Hence α̂0 = ((k − 1)2, α∗, t ⊕ 1) is a boundary dummy agent
and Â1 is a pre�x of the preference list P̂α̂0

. Since µ(α̂0) is not in Â1 and α̂1 is
in Â1, agent α̂0 prefers α̂1 to µ(α̂0), a contradiction.

Case 2.2: j∗ < (k−1)2. Then α̂s∗ is a non-boundary dummy agent and Âs∗⊕1
is a pre�x of the preference list P̂α̂s∗ . Since µ(α̂s∗) is not in Âs∗⊕1 and α̂s∗⊕1 is

in Âs∗⊕1, agent α̂s∗ prefers α̂s∗⊕1 to µ(α̂s∗), a contradiction. ut

Lemma 5. Let µ̂ be a weakly stable matching in X̂. Let j0, . . . , jk−1 ∈ J and

α0, . . . , αk−1 ∈ A such that ((j0, α0, 0), . . . , (jk−1, αk−1, k − 1)) ∈ µ̂. Let t∗ ∈
{0, . . . , k−1} such that jt∗ = 0 and αt∗ ∈ I×{t∗}. Suppose that (jt∗⊕1, αt∗⊕1, t∗⊕
1) is not in P̂ ′αt∗

. Then, for every s ∈ {0, . . . , k − 1}, we have αt∗⊕s = αt∗ and

jt∗⊕s ≤ (k − 1) · s.
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Proof. We prove the claim by induction on s. When s = 0, we have αt∗⊕s =
αt∗⊕0 = αt∗ and jt∗⊕s = jt∗ = 0 ≤ (k − 1) · s.

Suppose αt∗⊕(s−1) = αt∗ and jt∗⊕(s−1) ≤ (k − 1) · (s − 1), where s ∈
{1, . . . , k − 1}. Since (jt∗⊕1, αt∗⊕1, t∗⊕1) is not in P̂ ′αt∗

, agent µ̂(0, αt∗ , t
∗) is not

in P̂ ′αt∗
. Let t = t∗ ⊕ (s − 1). Then αt = αt∗⊕(s−1) = αt∗ and jt = jt∗⊕(s−1) ≤

(k − 1) · (s − 1) ≤ (k − 1) · (k − 2). So Lemma 4 implies that µ̂(jt, αt∗ , t) ∈
{0, . . . , jt + k − 1} × {αt∗} × {t ⊕ 1}. Hence jt⊕1 ≤ jt + k − 1 and αt⊕1 = αt∗ ,
since µ̂(jt, αt∗ , t) = µ̂(jt, αt, t) = (jt⊕1, αt⊕1, t⊕1). Thus αt∗⊕s = αt⊕1 = αt∗ and
jt∗⊕s = jt⊕1 ≤ jt+k−1 = jt∗⊕(s−1)+k−1 ≤ (k−1) · (s−1)+k−1 = (k−1) ·s.

ut

4.4 Proof of Lemma 2

The goal of this subsection is to prove Lemma 2. It su�ces to show that every
weakly stable matching µ̂ in X̂ induces a weakly stable matching µ in X.

Recall that each agent in A has a corresponding non-dummy agent in Â, and
that a family in X is a tuple of k agents in A such that each agent appears in
the preference list of another. Hence we include in µ a family of agents in X
whenever the corresponding family of non-dummy agents are matched in µ̂.
More formally, we de�ne the matching µ in X induced by µ̂ in X̂ as the set
of families (α0, . . . , αk−1) in X satisfying ((0, α0, 0), . . . , (0, αk−1, k − 1)) ∈ µ̂.
Notice that every µ induced by a matching µ̂ in X̂ is a valid matching in X
since agent-disjoint families in X̂ induce agent-disjoint families in X.

Lemma 6 below shows that if µ̂ is weakly stable and matches a non-dummy
agent to a non-dummy agent corresponding to an acceptable partner, then µ
matches the corresponding agents. Our proof relies on Lemma 5 and the weak
stability of µ̂. Notice that if µ̂ is not weakly stable, it may be the case that µ̂
matches a family consisting of k − 1 non-dummy agents and one dummy agent.
In such a case, the corresponding k − 1 agents are unmatched in the induced
matching µ.

Lemma 6. Let µ be the matching in X induced by a weakly stable matching µ̂
in X̂. Let t ∈ {0, . . . , k − 1} and α ∈ I × {t} such that µ̂(0, α, t) is in P̂ ′α. Then
µ̂(0, α, t) = (0, µ(α), t⊕ 1).

Proof. For the sake of contradiction, suppose µ̂(0, α, t) 6= (0, µ(α), t ⊕ 1). Since
µ̂(0, α, t) is in P̂ ′α, we have ((j0, α0, 0), . . . , (jk−1, αk−1, k − 1)) ∈ µ̂ for some
j0, . . . , jk−1 ∈ J and α0, . . . , αk−1 ∈ A such that (jt, αt, t) = (0, α, t) and
(jt⊕1, αt⊕1, t⊕ 1) is in P̂ ′α. Let

T = {t′ ∈ {0, . . . , k − 1} | αt′ ∈ I × {t′} and (jt′⊕1, αt′⊕1, t
′ ⊕ 1) is in P̂ ′αt′

}.

Then t ∈ T . We consider two cases.
Case 1: T = {0, . . . , k − 1}. Then for every t′ ∈ T = {0, . . . , k − 1}, we have

αt′ ∈ I×{t′} and (jt′⊕1, αt′⊕1, t
′⊕1) is in P̂ ′αt′

. So jt′⊕1 = 0 and αt′⊕1 is in Pαt′

for every t′ ∈ {0, . . . , k−1}. Hence (α0, . . . , αk−1) is a valid family inX. Since µ is
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induced by µ̂ and ((0, α0, 0), . . . , (0, αk−1, k−1)) ∈ µ̂, we have (α0, . . . , αk−1) ∈ µ.
Thus µ(α) = µ(αt) = αt⊕1, which contradicts (0, µ(α), t ⊕ 1) 6= µ̂(0, α, t) =
(0, αt⊕1, t⊕ 1).

Case 2: T 6= {0, . . . , k − 1}. Then there exists a smallest s∗ ∈ {1, . . . , k − 1}
such that t⊕ s∗ /∈ T . Then t⊕ (s∗ − 1) ∈ T . Let t∗ = t⊕ s∗. Since t∗ ⊕ (−1) =
t⊕(s∗−1) ∈ T , we have αt∗⊕(−1) ∈ I×{t∗⊕(−1)} and (jt∗ , αt∗ , t

∗) is in P̂ ′αt∗⊕(−1)
.

So jt∗ = 0 and αt∗ is in Pαt∗⊕(−1)
. Hence αt∗ ∈ I × {t∗}. Since αt∗ ∈ I × {t∗}

and t∗ = t ⊕ s∗ /∈ T , agent (jt∗⊕1, αt∗⊕1, t
∗ ⊕ 1) is not in P̂ ′αt∗

. So Lemma 5
implies αt∗⊕(k−1) = αt∗ . Hence αt∗⊕(−1) = αt∗⊕(k−1) = αt∗ ∈ I × {t∗}, which
contradicts αt∗⊕(−1) ∈ I × {t∗ ⊕ (−1)}. ut

Proof of Lemma 2. For the sake of contradiction, suppose X has no weakly sta-
ble matching and X̂ has a weakly stable matching µ̂. Let µ be the matching
in X induced by µ̂.

Since µ is not a weakly stable matching of X, there exists a strongly blocking
family (α0, . . . , αk−1). Since µ̂ is a weakly stable matching of X̂, the family

((0, α0, 0), . . . , (0, αk−1, k − 1))

is not strongly blocking. So there exists t ∈ {0, . . . , k−1} such that (0, αt, t) does
not prefer (0, αt⊕1, t ⊕ 1) to µ̂(0, αt, t). Since (α0, . . . , αk−1) is a family in X,
agent αt⊕1 is in Pαt

. So (0, αt⊕1, t⊕1) is in P̂ ′αt
. Hence µ̂(0, αt, t) appears in P̂

′
αt

no later than (0, αt⊕1, t⊕ 1), since P̂ ′αt
is a pre�x of the preference list P̂(0,αt,t).

Since µ̂(0, αt, t) is in P̂ ′αt
, Lemma 6 implies µ̂(0, αt, t) = (0, µ(αt), t ⊕ 1).

Since (0, µ(αt), t ⊕ 1) appears in P̂ ′αt
no later than (0, αt⊕1, t ⊕ 1), agent µ(αt)

appears in Pαt
no later than αt⊕1. Hence αt does not prefer αt⊕1 to µ(αt). So

(α0, . . . , αk−1) is not a strongly blocking family of µ, a contradiction. ut

4.5 Proof of Lemma 3

The goal of this subsection is to prove Lemma 3. It su�ces to show that every
weakly stable matching µ in X induces a weakly stable matching µ̂ in X̂. We
construct the matching µ̂ induced by µ as follows.

� For every (α0, . . . , αk−1) ∈ µ, we include in µ̂ the family

((0, α0, 0), . . . , (0, αk−1, k − 1)).

� For every agent α ∈ A and j ∈ J such that j < (k− 1)2, we include in µ̂ the
family ((j + δ0(α), α, 0), . . . , (j + δk−1(α), α, k − 1)), where

δt(α) =

{
1 if µ(α) 6= α and α ∈ I × {t}
0 otherwise

� For every t ∈ {0, . . . , k − 1}, let Rt be the list

〈(j′, α′, t′) ∈ {(k − 1)2} ×A× {t} | δt′(α′) = 0〉.

We include in µ̂ the family (R0[s], . . . , Rk−1[s]) for every 0 ≤ s < |A| − |µ|,
where Rt[s] denotes the (s+ 1)th element of Rt.
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Figures 2(b) and 2(c) show the gadget under the matching µ̂.
It is straightforward to check that the families in µ̂ induced by a matching µ

are agent-disjoint. Hence µ̂ is a valid matching in X̂.

Lemma 7. Let µ̂ be the matching in X̂ induced by a matching µ in X. Let

t ∈ {0, . . . , k − 1} and α ∈ A such that α ∈ I × {t}. Let j′ ∈ J and α′ ∈ A such

that non-dummy agent (0, α, t) prefers (j′, α′, t⊕1) to µ̂(0, α, t). Then (j′, α′, t⊕1)
is in P̂ ′α and α prefers α′ to µ(α).

Proof. Notice that P̂ ′α · 〈(0, α, t ⊕ 1)〉 is a pre�x of the preference list P̂(0,α,t) of
non-dummy agent (0, α, t). We consider two cases.

Case 1: µ(α) 6= α. Then µ̂(0, α, t) = (0, µ(α), t ⊕ 1). Since (0, α, t) prefers
(j′, α′, t⊕1) to (0, µ(α), t⊕1), agent (j′, α′, t⊕1) appears in P̂ ′α before (0, µ(α), t⊕
1). Hence α prefers α′ to µ(α).

Case 2: µ(α) = α. Then µ̂(0, α, t) = (0, α, t ⊕ 1). Since (0, α, t) prefers
(j′, α′, t ⊕ 1) to (0, α, t⊕ 1), agent (j′, α′, t ⊕ 1) is in P̂ ′α. Then α′ is in Pα,
and hence α prefers α′ to µ(α). ut

Lemma 8. Let µ̂ be the matching in X̂ induced by a weakly stable matching µ
in X. Let j0, . . . , jk−1 ∈ J and α0, . . . , αk−1 ∈ A such that

((j0, α0, 0), . . . , (jk−1, αk−1, k − 1))

is a strongly blocking family of µ̂. Then jt − δt(αt) ≥ (k − 1)2 for every t ∈
{0, . . . , k − 1}.

Proof. Let t∗ ∈ {0, . . . , k − 1} such that

jt∗ − δt∗(αt∗) = min
t∈{0,...,k−1}

(jt − δt(αt)).

For the sake of contradiction, suppose jt∗ − δt∗(αt∗) < (k−1)2. We consider two
cases.

Case 1: jt∗ = 0 and αt∗ ∈ I × {t∗}. Let T = {t | jt = 0 and αt ∈ I × {t}}.
Then t∗ ∈ T . We consider two subcases.

Case 1.1: T = {0, . . . , k − 1}. Then for every t ∈ {0, . . . , k − 1} = T , since
(0, αt, t) prefers (0, αt⊕1, t⊕1) to µ̂(0, αt, t), Lemma 7 implies that αt prefers αt⊕1
to µ(αt). Hence (α0, . . . , αk−1) is a strongly blocking family of µ, which contra-
dicts the stability of µ.

Case 1.2: {t∗} ⊆ T ( {0, . . . , k − 1}. Then there exists s∗ such that s∗ ∈ T
and s∗ ⊕ 1 /∈ T . Since s∗ ∈ T , we have js∗ = 0 and αs∗ ∈ I × {s∗}. Since
(0, αs∗ , s

∗) prefers (js∗⊕1, αs∗⊕1, s
∗ ⊕ 1) to µ̂(0, αs∗ , s

∗), Lemma 7 implies that
(js∗⊕1, αs∗⊕1, s

∗⊕1) is in P̂ ′αs∗
. Hence js∗⊕1 = 0 and αs∗⊕1 ∈ I×{s∗⊕1}, which

contradicts s∗ ⊕ 1 /∈ T .
Case 2: Either jt∗ 6= 0 or αt∗ /∈ I×{t∗}. Thus (jt∗ , αt∗ , t∗) is a dummy agent.

We consider two subcases.
Case 2.1: jt∗ < (k − 1)2. Since

µ̂(jt∗ , αt∗ , t
∗) = (jt∗ + δt∗⊕1(αt∗)− δt∗(αt∗), αt∗ , t∗ ⊕ 1),
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and the non-boundary dummy agent (jt∗ , αt∗ , t
∗) prefers (jt∗⊕1, αt∗⊕1, t

∗⊕1) to
µ̂(jt∗ , αt∗ , t

∗), we have jt∗⊕1 < jt∗ + δt∗⊕1(αt∗)− δt∗(αt∗), which contradicts the
de�nition of t∗.

Case 2.2: jt∗ = (k − 1)2. Then δt∗(αt∗) = 1 since jt∗ − δt∗(αt∗) < (k − 1)2.
So αt∗ ∈ I × {t∗}, and hence δt∗⊕1(αt∗) = 0. Since

µ̂(jt∗ , αt∗ , t
∗) = (jt∗ − 1, αt∗ , t

∗ ⊕ 1)

and the boundary dummy agent (jt∗ , αt∗ , t
∗) prefers (jt∗⊕1, αt∗⊕1, t

∗ ⊕ 1) to
µ̂(jt∗ , αt∗ , t

∗), we have jt∗⊕1 < jt∗ − 1 = jt∗ + δt∗⊕1(αt∗) − δt∗(αt∗), which
contradicts the de�nition of t∗. ut
Proof of Lemma 3. Suppose X has a weakly stable matching µ. Let µ̂ be the
matching in X̂ induced by µ. It su�ces to show that µ̂ does not admit a strongly
blocking family.

For the sake of contradiction, suppose µ̂ admits a strongly blocking family

((j0, α0, 0), . . . , (jk−1, αk−1, k − 1)).

Lemma 8 implies that for every t ∈ {0, . . . , k−1}, we have jt−δt(αt) ≥ (k−1)2.
Since jt ≤ (k − 1)2 and δt(αt) ≥ 0, we deduce that jt = (k − 1)2 and δt(αt) = 0
for every t ∈ {0, . . . , k − 1}. Hence for every t ∈ {0, . . . , k − 1}, there exists st
such that (jt, αt, t) = Rt[st].

Let t∗ ∈ {0, . . . , k − 1} such that

st∗ = min
t∈{0,...,k−1}

st.

Since µ̂(Rt∗ [st∗ ]) = Rt∗⊕1[st∗ ] and the boundary dummy agent Rt∗ [st∗ ] prefers
boundary dummy agent Rt∗⊕1[st∗⊕1] to boundary dummy agent µ̂(Rt∗ [st∗ ]),
we deduce that Rt∗⊕1[st∗⊕1] is lexicographically smaller than Rt∗⊕1[st∗ ]. Hence
st∗⊕1 < st∗ , which contradicts the de�nition of t∗. ut

5 Concluding Remarks

We have shown that a 3-dsm-cyc instance need not admit a weakly stable
matching, and that it is NP-complete to determine whether a given 3-dsm-
cyc instance admits a weakly stable matching. It seems that for the three-
dimensional stable matching problem, none of the preference structures studied
in the literature admits a non-trivial generalization of the existence theorem
of Gale and Shapley. (The existence result in Danilov's model [5] follows from
applying the Gale-Shapley algorithm in a straightforward manner.) It would be
interesting to consider solution concepts such as popular matchings instead of
stable matchings in the multi-dimensional matching context.

The 3-dsmi-cyc instance with no weakly stable matching presented by Biró
and McDermid [2, Lemma 1] has 6 agents of each type. The reduction of Sec-
tion 4.1 blows up the number of agents by a factor of k[(k − 1)2 + 1]. Thus, for
k = 3, we obtain an explicit construction of a 3-dsm-cyc instance with no weakly
stable matching and 6 · 15 = 90 agents of each type. It would be interesting to
identify smaller 3-dsm-cyc instances with no weakly stable matching.
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