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Abstract. We study the problem of finding maximum weakly stable
matchings when preference lists are incomplete and contain one-sided
ties of bounded length. We show that if the tie length is at most L, then
it is possible to achieve an approximation ratio of 1+ (1 — %)L We also
show that the same ratio is an upper bound on the integrality gap, which
matches the known lower bound. In the case where the tie length is at
most 2, our result implies an approximation ratio and integrality gap
of g, which matches the known UG-hardness result.

Keywords: Stable matching - Approximation algorithm - Integrality

gap.

1 Introduction

The stable matching model of Gale and Shapley [4] involves a two-sided market
in which the agents are typically called men and women. Each agent has ordinal
preferences over the agents on the opposite side. A matching is said to be stable
if no man and woman prefer each other to their partners. Stable matchings
always exist and can be computed efficiently by the proposal algorithm of Gale
and Shapley. Their algorithm is also applicable when the preference lists are
incomplete. In other words, agents are allowed to omit from their preference
lists any unacceptable agent on the opposite side. If ties are allowed in the
preference lists, the notion of stability can be generalized in several ways [9].
This paper focuses on weakly stable matchings, which always exist and can
be obtained by invoking the Gale-Shapley algorithm after breaking all the ties
arbitrarily. When incomplete lists are absent, every weakly stable matching is
a maximum matching and hence has the same size. When ties are absent, the
Rural Hospital Theorem guarantees that all stable matchings have the same
size [5,17]. However, when both ties and incomplete lists are present, weakly
stable matchings can vary in size.

The problem of finding maximum weakly stable matchings with ties and
incomplete lists has been studied in various settings. When ties and incomplete
lists are allowed on both sides, there exist polynomial-time algorithms [11, 14,
15] that achieve an approximation ratio of 3 (= 1.5). Meanwhile, it is known [20]
that getting an approximation ratio of g—g — ¢ (= 1.1379) is NP-hard, and that
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getting an approximation ratio % — ¢ (=~ 1.3333) is UG-hard. These hardness
results hold in the case of two-sided ties even when the maximium tie length is
two. The associated linear programming (LP) formulation has an integrality gap
of at least 32=2 where L is the maximum tie length [10].

For the case where ties appear only on one side of the market, algorithms
with better approximation ratios have been developed using an LP-based ap-
proach [3,10, 12] or the idea of rounding half-integral stable matchings [1, 8, 16].
The current best approximation ratio of 1 + % (= 1.3679) is attained by the
LP-based algorithm that the authors recently presented in [12]. Meanwhile, it is
known [7] that getting an approximation ratio of 25 — ¢ (& 1.1053) is NP-hard,
and that getting an approximation ratio of g — ¢ (=~ 1.25) is UG-hard. These
hardness results hold in the case of one-sided ties even when the maximum tie
length is two. The associated LP formulation has an integrality gap of at least
1+ (1— 1), where L is the maximum tie length [10]. Furthermore, for the case
of one-sided ties with unbounded tie length, the integrality gap equals 1+% and
matches the attainable approximation ratio [12].

For the case of two-sided ties where the maximum tie length is two, Chi-
ang and Pashkovich [2] showed that the algorithm of Huang and Kavitha [8]
attains an approximation ratio of % (=~ 1.3333), which matches the UG-hardness
result [20] and the lower bound of the integrality gap [10]. A couple of results [6,
7] are known for the case of one-sided ties with bounded tie length, but they are
subsumed by the approximation ratio of 1+ % for the case of one-sided ties with
unbounded tie length.

Our Techniques and Contributions. In this paper, we focus on the problem
of finding maximum weakly stable matchings with one-sided ties and incomplete
lists when the tie length is bounded. We show that the algorithm of [12] achieves
an approximation ratio of 1+ (1 — %)L, where L is the maximum tie length. We
also show that the same ratio is an upper bound on the integrality gap, which
matches the lower bound of Iwama et al. [10]. For the case where L = 2, our
result implies an approximation ratio and integrality gap of %, which matches
the UG-hardness result of Halldorsson et al. [7].

Our analysis is based on four key properties established in [12]. Using these
key properties, we extend the analysis of the approximation ratio to the case of
bounded tie length. Moreover, we present a new, simpler charging argument. The
main idea is to decompose the LP solution associated with each man-woman pair
into a charge incurred by the man and a charge incurred by the woman based
on an exchange function. We derive an upper bound for the charges incurred
by a man using the strict ordering of his preferences, and an upper bound for
the charges incurred by a woman using the bounded tie length assumption.
By choosing a good exchange function, we show that every matched couple
incurs a total charge of at most 14 (1 — 4)%, providing an upper bound on the
approximation ratio.

In Section 2, we review the key properties of the algorithm of [12] after
presenting the stable matching model and its LP formulation. In Section 3, we
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present our simpler charging argument and use it to analyze the approximation
ratio for the case of bounded tie length.

2 Stable Matching with One-Sided Ties

2.1 The Model

The formal definition of the stable matching problem with one-sided ties and
incomplete lists (SMOTI) below follows the notations of [12].

In sMOTI, there are a set I of men and a set J of women. We assume that
the sets I and J are disjoint and do not contain the element 0, which we use to
denote being unmatched. Each man 7 € I has a preference relation >; over the
set J U {0} that satisfies antisymmetry, transitivity, and totality. Each woman
j € J has a preference relation >; over the set I U {0} that satisfies transitivity
and totality. We denote this SMOTI instance as (I, J, {>;}icr, {>;}je7)-

For every man 7 € I and woman j € J, man ¢ is said to be acceptable to
woman j if ¢ >; 0. Similarly, woman j is said to be acceptable to man ¢ if j >; 0.
The preference lists are allowed to be incomplete. In other words, there may
exist ¢ € I and j € J such that 0 >; i or 0 >; j.

Notice that the preference relations {>;};cs of the women are not required to
be antisymmetric, while the preference relations {>;};c of the men are required
to be antisymmetric. For every man ¢ € I, we write >; to denote the asymmetric
part of >;. For every woman j € J, we write >; and =; to denote the asymmetric
part and the symmetric part of >;, respectively. A tie in the preference list of
woman j is an equivalence class of size at least 2 with respect to the equivalence
relation =;, and the length of a tie is the size of this equivalence class.! We
assume that there is at least one tie in the SMOTI instance, for otherwise every
stable matching has the same size. We use L to denote the maximum length of
the ties in the preference lists of the women, where 2 < L < |I| + 1.

A matching is a subset u C I x J such that for every (i,7),(i',5') € u, we
have ¢ = ¢’ if and only if j = j'. For every man ¢ € I, if (i,7) € p for some
woman j € J, we say that man 7 is matched to woman j in matching u, and we
write p(i) = j. Otherwise, we say that man 4 is unmatched in matching p, and
we write p(¢) = 0. Similarly, for every woman j € J, if (4,j) € p for some man
1 € I, we say that woman j is matched to man ¢ in matching p, and we write
wu(7) = i. Otherwise, we say that woman j is unmatched in matching u, and we
write u(j) = 0.

A matching p is individually rational if for every (i,7) € p, we have j >; 0
and ¢ >; 0. An individually rational matching p is weakly stable if for every man
i € I and woman j € J, either pu(i) >; j or pu(j) >; i. Otherwise, (i, j) forms a
strongly blocking pair.

! Some of the literature on stable matching with indifferences does not allow an agent
to be indifferent between being matched to an agent and being unmatched. Our
formulation of the sMOTI problem allows for this possibility, since we can have i =; 0
for any man ¢ and woman j.
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The goal of the maximum stable matching problem with one-sided ties and
incomplete lists is to find a maximum-cardinality weakly stable matching for a
given SMOTI instance.

2.2 The LP Formulation

The following LP formulation is based on that of Rothblum [18], which extends
that of Vande Vate [19].

maximize Z T
(i,4)eIxJ
subject to Zwu <1 Viel (C1)
jeJ
in’j <1 Vj eJ (02)
iel
Z xi i + Z Ty > 1 V(i,4) € I x J such that (C3)
j'ed i'el j>;0andi>;0
3> i'2;5i
x;; =0 V(4,4) € I x J such that (C4)
0>;jor0>;1
T j >0 V(l,]) elxJ (C5)

It is known [12,18] that an integral solution x = {;}« j)erxs corresponds
to the indicator variables of a weakly stable matching if and only if x satisfies
constraints (C1)—(C5).

Given x which satisfies constraints (C1)—(C5), it is useful to define auxiliary
variables

1 ifj=0
wi,j = Z l‘i’jl lf] 75 0

j'ed

>

for every (i,7) € I x (JU{0}), and

Zig= Y T
i'el
i>ji/
for every (i,j) € (I U{0}) x J. The following lemma presents some simple
properties of the auxiliary variables; see [13] for a proof.

Lemma 1. The auxiliary variables satisify the following conditions.

(1) For everyi € I and j € J, we have w; j + x; ; < 1.

(2) For everyi €I and j,j' € J such that j >; j', we have w; ; + x; ; < w; j.
(8) For every i,i' € IU{0} and j € J such that i =; i/, we have z; ; = zy ;.
(4) For everyi eI and j € J such that j >; 0 and i >, 0, we have z; ; < w; ;.



Maximum Stable Matching with One-Sided Ties of Bounded Length 5

2.3 The LP-Based Algorithm

Using the LP formulation of Section 2.2, the authors have previously established
in [12] that there exists a polynomial-time algorithm with an approximation
ratio of 1 + é The algorithm is based on a proposal process in which every
man ¢ maintains a priority p; that gradually increases from 0 to 1. Between two
successive increases of the priority of a man ¢, he attempts to propose to the set
of women {j € J: j >; 0 and p; > w; ;} in decreasing order of his preference,
where w; ; is the auxiliary variable corresponding to a fixed optimal fractional
solution x of the LP. Each woman compares the men based on her preferences and
breaks the ties by favoring men with higher priorities. The algorithm simulates
this process in which the step size of the priority increases is infinitesimally small.
More precisely, the algorithm runs in polynomial time and produces a weakly
stable matching p and priority values p = {p; };cs satisfying the following key
properties [12, Lemmas 3.1 and 3.3].

(P1) Let (4,5) € p. Then j >; 0 and ¢ >; 0.

(P2) Let i € I be aman and j € J be a woman such that j >; p(i) and ¢ >; 0.
Then 1(j) # 0 and 4(j) >; i.

(P3) Let i € I be a man. Then w; ;) <p; < 1.

(P4) Let ¢ € I be aman and j € J be a woman such that j >, 0 and ¢ >; 0.
Suppose p; — 1 > w; ;. Then p(j) # 0 and p(j) >, ¢. Furthermore, if

In [12], a rather complicated charging argument is used to obtain an approxima-
tion ratio of 1 + é by showing that the optimal fractional value of the LP is at
most 1+ % times the size of any matching p satisfying (P1)—(P4) with respect
to some p.

3 Analysis of the Approximation Ratio

In this section, we analyze the approximation ratio of the algorithm of [12] for
the case where the maximum tie length is L. Throughout this section, whenever
we mention i and p, we are referring to their values produced by their algorithm.
We use x to refer to the optimal fractional solution of the LP in their algorithm,
and we use {w; ; } @i j)erx(sufoy) and {zi;} . jyerufoyus to refer to the auxiliary
variables associated with x as defined in Section 2.2.

3.1 The Charging Argument

Our charging argument is based on an exchange function h: [0,1] x [0,1] = R
that satisfies the following properties.

(H1) For every &1,& € [0,1], we have 0 = h(0,&) < h(£1,&) < 1.
(H2) For every &1,&; € [0, 1] such that & > &, we have h(£1,&) = 1.
(H3) The function h(&1,&2) is non-decreasing in &; and non-increasing in &5.



6 Chi-Kit Lam and C. Gregory Plaxton

(H4) For every &;,&2 € [0,1], we have
&2
b —h dé < max(& — &1,0).
/52‘(11/L) (1 (§I’§)> ¢ < max(& —&,0)

Given an exchange function h which satisfies (H1)—(H4), our charging argument
is as follows. For every (i,7) € I x J, we assign to man ¢ a charge of

X, j
05, Z/ h(1 = pi, 1 —w;; — &) d§
0
and to woman j a charge of

0 if u(j) = 0 or i >; p(j)

by = d i if u(j) # 0 and pu(j) >; @
,j — Ti
Tij — /0 h(1 = puijy, 1 = 2u(j),; — € d§  if p(j) # 0 and u(j) =; i

The following lemma shows that the charges are non-negative and cover the
value of LP solution.

Lemma 2. Leti € I and j € J. Then 0; ; and ¢, ; satisfy the following condi-
tions.

(1) Qi,j Z 0 and gbl"j 2 0.
(2) wij <0ij+ ¢y

Proof.  Part (1) is relatively straightforward to establish; see [13] for a proof.
We prove part (2) by considering two cases.
Case 1: p; < w; j. Then (H3) implies

0< /Oxi'j (h(l —pi 1 —wij =& —h(1—pi,1—p; —f)) d§

= /Omi,j (h(l —pi, 1 —w;; — &) — 1) dg

=i — i
< bij+ i — Tij,

where the first equality follows from (H2), the second equality follows from the
definition of 6, ;, and the last inequality follows from part (1).

Case 2: p; > w; j. We may assume that x, ; # 0, for otherwise part (1) implies
0;; + ¢ij > 0 =x; ;. Since x; ; # 0, constraint (C4) implies j >; 0 and 7 >, 0.
So (P4) implies p(j) # 0 and p(j) >, i. We consider two subcases.

Case 2.1: p(j) >, @. Then the definition of ¢, ; implies

0=0i; —xi; <0ij+dij —xij
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where the inequality follows from part (1).

Case 2.2: u(j) =; i. Then (P4) implies p; < p,(;). Also, since u(j) =; i,
parts (3) and (4) of Lemma 1 imply z,(;); = 2i,; < w; ;. Since p; < p,(;) and
wij > Zu(5),5, (H3) implies

T, j
0< / (h(l —pi, L —w; j — &) — (L = puiy, 1L — 2u0)5 — f)) dg
0
=0i;+ ¢ij — ®ij,

where the equality follows from the definitions of §; ; and ¢; ;. O

3.2 Bounding the Charges

To bound the approximation ratio, Lemma 2 implies that it is sufficient to bound
the charges. In Lemma 3, we derive an upper bound for the charges incurred by
a man using the strict ordering in his preferences. In Lemma 4, we derive an
upper bound for the charges incurred by a woman due to indifferences using
the bounded tie length assumption. In Lemma 5, we derive an upper bound
for the total charges incurred by a matched couple by combining the results of
Lemmas 3 and 4.

Lemma 3. Leti € I be a man. Then

1
Z@,j S/O h(1 — p;, &) d€.

jeJ

Proof. Let Jis--Jg) € J such that j1 >; jo >; -+ > Jra- Then parts (1)
and (2) of Lemma 1 imply

W; i if1<k<|J|
i 4 T < 2Jk+1 — 1
wi e x,jk_{l th ] (1)

Hence the definitions of {6; j, }1<k<|s imply
a:,iyjk
i, = / h(1 = piy 1 —wij, —§)d§
0

Wi, j, +Ti, g
:/ h(1 —pi,1—¢§)d§

Wi, g5,

/ A - p1—g)de 1<k < ||

Wi,y

>~ 1
/ W1 - pil—&)de  ifk=]|J]

wi,j“]‘
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where the inequality follows from (1) and (H1). Thus

Dbij= > b

jeJ 1<EL|J|
1 w,;,ijrl
<[ na-pi-gas Y[R p- g
Wiy g 1<k<|J| Y Wik
1
= [ ha-pi-ga

4,31

1

g/o Bl pi,1— €)de
1

=/0 h(1 =i, €) de,

where the second inequality follows from w; j, > 0 and (H1). 0

Lemma 4. Let j € J be a woman such that p(j) # 0. Then

D iy <max(pug) — 2u(),00)-
icl
()=

Proof. Let
, L=2u().g
)= [ (1B~ D) de
I=2u(5),;—€

for every & € [0,1]. Then (H1) and (H3) imply that H is concave and non-
decreasing. Also (H4) implies

1— Zu(i).d 1=2u35).4
L~H<——f——>:L~/ @*hﬂfﬂm»0>@
(1=2(4),5)(1-1/L)
< max(pu(j) — Zu().j: 0)- (2)

Let I' = {i € I: pu(j) =; i}. Then |I'| < L since L is the maximum tie-length.
Let i1,...,4p| € I such that I' = {iy,...,4;}. Let

"Tlo i <k<L

Then the definition of z,;) ; implies

iel iel i€l iel 1<k<L
p(g)>;i w(d)>;i p(g)=;i
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where the first inequality follows from constraint (C2), and the second equality
follows from the definitions of {&x}1<k<r. Hence the monotonicity and concavity
of H imply

N N (E I B M )

1<k<L 1<k<L

Thus the definitions of {¢; ;}ics imply

PRCTENDY (% - /: h(L = pugi), L = 2zug)g =€) d€>

iel icl
p(g)=;i w(g)=;i
1=2u0).4
= Z / (1—h(1—p;¢(j)7f)) d¢
icl  Y17zu). i~ %
n(g)=ji
= > Hwij)
el
n(j)=yi
= ) H(&)
1<k<L
1— 2,004
< L H( H(J)v])
- L

< max(pu(j) = Zu(j),j0);

where the third equality follows from the definition of H, the fourth equality
follows from the definitions of {&;}1<k<r, the first inequality follows from (3),
and the second inequality follows from (2). O

Lemma 5. Let i € I and j € JU {0} such that u(i) = j. Then the following
conditions hold.
(1) If j #0, then

1

Sty Ybrs <1t [ h1-pgde,

j'et i'el 1=pi
(2) If j =0, then 0; jy =0 for every j' € J.
Proof.
(1) Suppose j # 0. Then (P1) implies j >; 0 and ¢ >; 0. So part (4) of Lemma 1
implies

Zij < Wi < Py
where the second inequality follows from (P3). So the definitions of {¢;/ ; }ircr
imply

Z¢i’7j = Z bir g+ Z ry ; <max(p; — 2i5,0) + zi; =pi, (4)

i'el i'el , i'el
p(g)=;i p(g)>;i
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where the first inequality follows from Lemma 4 and the definition of z; ;,
and the last equality follows from p; > z; ;. Also, by Lemma 3, we have

1
S 0, < /O h(1 - pi, €) d

j'eJ

1-p; 1
_ / h(1 — pi. €) d +/ h(1 - pi, ) de
O 1

—Pi

:/OH”MH/; B~ i) de

—Di

1
—1opk [ B 5)
1-p;
where the second equality follows from (H2). Combining (4) and (5) gives
the desired inequality.
(2) Suppose j =0. Let j/ € J. Since pu(i) = j = 0, (P3) implies

1>p; >wio=1,

where the last equality follows from the definition of w; ¢. Hence the defini-
tion of §; ;» implies

01-4-,:/ h(1—pi,1—wi7j/—g)d5:/ R(0,1 = wp — €)dE =0,
0 0

where the second equality follows from p; = 1, and the third equality follows
from (H1). O

3.3 The Approximation Ratio

To obtain the approximation ratio, it remains to pick a good exchange function h
satisfying (H1)—(H4) such that the right hand side of part (1) of Lemma 5 is
small. Using a similar technique as in [12], we can formulate this as an infinite-
dimensional factor-revealing linear program. More specifically, we can minimize

1
sup / h(&1,€)d¢

£1€[0,1] J¢

over the set of all functions h which satisfies (H1)—(H4). Notice that the objective
value and the constraints induced by (H1)—(H4) are linear in h. However, the
space of all feasible solutions is infinite-dimensional. One possible approach to the
infinite-dimensional factor-revealing linear program is to obtaining a numerical
solution via a suitable discretization. Using the numerical results as guidance,
we obtain the candidate exchange function

h(€1, &) = max ({0}u{(17%)’€: ke{0,1,2,...} and & > 52.(1—%)’“}). (6)
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The following lemma provides a formal analytical proof that it satisfies (H1)-
(H4) and achieves an objective value of (1 — 1)%.

Lemma 6. Let h be the function defined by (6). Then the following conditions
hold.

(1) The function h satisfies (H1)-(H4).
1

1\ L
(2) For every & € [0,1], we have h(&1,8)de < (1 — f) .
&1

Proof.

(1) Tt is straightforward to see that (H1)—(H3) hold by inspecting the definition
of h. To show that (H4) holds, let &,& € [0, 1]. We consider three cases.
Case 1: & < &;. Then

&2 &2
L[ (1-he)a=2- [ (1-1)de =0
2-(1-1/L) 2-(1-1/L)
= max(& — &1,0).
Case 2: & > & = 0. Then
&2 &2
p [ (ema)a-r [ a-od-g
2+(1-1/L) 2-(1-1/L)
= max(fg - 51,0).
Case 3: & > & > 0. Let k € {0,1,2,...} such that (1 — )" < & <
(1 — £)". Then

L /( le/% (1 - her. € dc)

1)
=52—L-/( h(er,€) de

1-1/L)-&2
&1/(1-1/L)" &2

=§2—L-/ h(éhé)dé—b/ h(er, ) de
(1-1/L)-& &1/(1-1/L)*

€1/(1-1/L)" 1\ K & 1\ k+1
=¢ —L-/ i dg—L-/ 1— =) de
? (1-1/L) & ( L) &/(1-1/L)* ( L>
=&H-L-(G-&-(1-p)F) L (&-(1-pF'—&-(1-17)
=& —&
= max(& — 51, 0)
(2) Let & € [0,1]. We may assume that & > 0, for otherwise

1 1
/1 h(€r, €) dé = §1°d50§<12)L'
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Let k € {0,1,

/1 h(E.€) d
1
/51/(1 1/L)k

1 1\ k+1
/ (1-7) a+
€1/(1-1/L)k L

(-0 e ()4
(1— Lkl &k —L+1).

T
We consider three cases.
Case 1: k = L — 1. Then (7) implies

2,...} such that (1

1

h(fhg) g ( -
S

Case 2: k > L. Then (7) implies

)+

1
/ W &) de=(1— 1

IN

IN
— e — e

Sl= S Sl s

(

(1
(1-
(

where the first inequality follows from & <

1

~

S <a (-

B, €) de + Z/

0<k’'<k

0<k'<k

. Then

&/(-1/0)"
h(&1,€) d¢

& /(1=1/L)F

/51/(1_1/L)k'+1 ( 1\ K +1
1- 7) de
€/(1-1/L)¥ L

Z§1

0<k'<k

S(k-L+1)=(1-1L

(1 — 1), and the second in-
1

equality follows from /=1 > £ and e=¥/E >1 -1
Case 3: k < L — 2. Then (7) implies

/ W6y, €)dE = (1— L)+
< ( %)k+

—(1- Ly

<(1-4)*-

=(1- )",

where the first inequality follows from &; >
inequality follows from e(*+1)/(L-1)—1 >

1

1

+8(k-L+1)

- (L k-1~

k£l
L1
p(k+1)/(L=1)—1 |

)k+1

1, (1+ m)L k—2
o(L—k=2)/(L-1)

(1 — 4)k*1, and the second
EfLand /-0 > 14 L
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1\L
Lemma 7. | Z i < (1+ (1 - Z) ) - |pl-
(t,7)€IxJ

Proof. Consider the charging argument with the exchange function h as defined
by (6). By part (1) of Lemma 6, the function h satisfies (H1)-(H4). Lemma 2
implies

Yoowmg< Y (0t i)
(i,9)€IxJ (i,5)eIxJ
SN OIS L) EED DD SUFEED DD DL
(i.g)ep  j'eJ i'el el jed jed el

u(9)=0 1(5)=0

(8)

Part (1) of Lemma 5 implies

> (Z 0 + Zqﬁj) < Y (1+/1 h(1 = p;, €) dg)
(i.7)€En  j'ed i'el (i,j)En 1—p;
© ¥ (0
(i.5)en

=1+ =) ul, (9)

L
where the second inequality follows from part (2) of Lemma 6. Part (2) of

Lemma 5 implies
> > 0 =0. (10)
icl jeJ
p(i)=0

The definitions of {¢; ;} i j)erxs imply

> > iy =0. (11)

jEJ el
n(3)=0

Combining (8)—(11) gives the desired inequality. a

Using Lemma 7, it is straightforward to establish the following two theorems;
see [13] for proof details.

Theorem 1. There exists a (1 + (1 — 1)%)-approzimation algorithm for the
mazimum stable matching problem with one-sided ties and incomplete lists where
the maximum tie length is L.

Theorem 2. For the mazximum stable matching problem with one-sided ties
where the mazimum tie length is L, the integrality gap of the LP formulation
in Section 2.2 is 1 + (1 — $)%.
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