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Collective decision making arises in many real life situations, such as

elections, matching applicants to job openings, and partitioning students into

working groups. Over the past three decades, computer scientists have used

techniques from the design and analysis of algorithms and complexity theory

to develop social choice theory from a computational perspective, leading to

the new research area of computational social choice theory. Broadly speaking,

this dissertation makes two kinds of contributions to this new research area.

First, we provide new algorithms and hardness results for two settings.

In our first setting, we revisit the classical housing markets model in which we

seek to compute a suitable reallocation of n houses to n agents, each of whom

initially owns a particular house and has strict preferences over the set of n

houses. In the variants of this model that we study, graph-based restrictions

are imposed on the exchange of houses. More specifically, we consider two

cases. In the first case, we are given a graph where the vertex set corresponds

to the set of agents, and we assume that two agents can only swap houses

if they are adjacent in the graph and the swap is Pareto-improving; thus, in

this case, the locations of the agents remain fixed in the graph, while the

houses can move around. The second case is similar except we assume that

the locations of the houses remain fixed (i.e., each vertex now corresponds to

a house) and the agents move around. In our second setting, we consider a

variant of the classical coalition formation game, the fractional hedonic game.

Such a game can be represented by a directed weighted graph where the set

of vertices corresponds to the set of players, and where the weight of an edge
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(i, j) from player i to player j denotes the value that player i has for player

j. Given a partitioning of the players into coalitions, the utility of player i is

defined to be the average value that player i assigns to the members of their

coalition. We assume that there is a limit on the number of coalitions that can

be formed. In this setting, we study the problem of computing a social welfare

maximizing partition and the problem of computing a Nash stable partition.

We study these two problems for a variety of different graph classes.

Second, we design mechanisms without money for new games related

to facility location and resource sharing. In the facility location game that we

consider, a central planner plans to build a heterogeneous set of facilities (e.g., a

school, a water treatment plant) and each agent reports which of these facilities

they consider to be “obnoxious”. The location of each agent is assumed to be

fixed, and the utility of an agent is based on the minimum distance of the

agent to an obnoxious facility. The goal is to design strategyproof mechanisms

that maximize either the sum of the agent utilities or the minimum utility

of any agent. In the resource sharing game that we consider, agents pool

their computational resources in order to better accommodate fluctuations in

individual demand over a sequence of rounds, and the agents specify their

demand for each round at the outset. We present a group-strategyproof and

non-wasteful mechanism that guarantees each agent at least half of the utility

they could achieve without sharing their resources.
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Chapter 1

Introduction

Collective decision making arises in many real-life situations, such as

political election, assigning positions to applicants, and partitioning students

into working groups. In such situations, we are given a set of agents with

individual and possibly conflicting preferences, and we seek to aggregate their

preferences to reach a satisfactory collective decisions. This is the fundamental

challenge that has given rise to the field of social choice theory. Social choice

theory dates back to Condorcet’s voting paradox in the 18th century, and was

significantly influenced by the seminal work of Kenneth Arrow in the 1950s.

Arrow proved that there does not exist a reasonable preference aggregation

rule that satisfies a small set of basic requirements [13]. To prove this, Arrow

introduced the axiomatic method into the study of aggregation methods Since

then, much of the work in social choice theory has used axiomatic methods

to study the formal possibility and impossibility of aggregation methods that

achieve certain combinations of desirable properties. We refer to a two-volume

book by Arrow, Sen, and Suzumura [14, 15] for a detailed reference on classical

social choice theory.

Over the past few decades, computer scientists have developed social
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choice theory from a computational perspective, leading to the new research

area of computational social choice theory. There are at least two reasons

for this development. First, the practical utility of an aggregation method

depends not only on the game-theoretic properties it provides, but also on its

implementation complexity. The field of computer science offers powerful tools,

including algorithm design, complexity theory, and communication complexity,

for analyzing the implementation complexity of an aggregation method. Com-

puter scientists have also identified new applications for social choice theory.

One example of such an application is Internet search. A preference aggrega-

tion method can be used to aggregate the output of several search engines that

rank web pages by relevance. Google’s PageRank algorithm uses this idea and

has been analyzed in terms of the axiomatic method [140]. Another important

application is associated with cloud computing. The cloud can be viewed as

a new paradigm for delivering computing as a utility, and it is often impos-

sible for cloud providers to satisfy all of the demands of their users. Under

such overloaded condition, it is important to allocate cloud resources fairly.

Many researchers have used social choice theory to systematically study vari-

ous cloud resource allocation mechanisms. These new application areas have

inspired researchers to propose many new problems, and to consider social

choice from new perspectives. For a detailed survey of computational social

choice theory, we refer the reader to the book by Brandt et al. [44].

A lot of the current research in computational social choice theory is

motivated by emerging applications in the modern era of networked communi-
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cation and big data. The Internet enables agents (e.g., computers or people)

all over the world to communicate with one another at high speed. This en-

courages agents to engage with ever larger and more widespread groups. These

groups of agents often make collective decisions subject to both external and

internal constraints; relevant examples include kidney exchange [64], match-

ing students to seats in schools [2], and distributing food to charities [8]. The

Internet has also enabled the collection of agent-specific data on a massive

scale. For certain applications, this data makes it easier than ever before to

infer agent preferences. However, to capture the full potential of such data,

more efficient algorithms are needed for collecting and processing agent-specific

data.

Mechanisms are often partitioned into two broad categories: those

based on money, and those that do not involve money. An example of a

mechanism based on money is the celebrated Vickrey-Clarke-Groves (VCG)

mechanism for combinatorial auctions [163, 58, 92]. One strength of the VCG

mechanism is that it follows an intuitively clear rule: It charges each agent the

harm that they cause to other agents. A second strength of the VCG mecha-

nism is that it satisfies a property called strategyproofness: no agent benefits

by misreporting their preferences, regardless of the reports of the other agents.

Mechanisms without money are motivated by certain real-world applications

in which the usage of money is undesirable. For example, monetary transfers

may be considered unethical or illegal in the context of kidney exchange, or

the assignment of students to seats in public schools.
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This dissertation focuses on mechanisms without money, and studies

both the design and the computational complexity of such mechanisms. In all

of the settings that we address, a set of self-interested agents formulate and

report preferences to a (centralized or decentralized) coordination mechanism,

which uses the agent preferences to allocate (or reallocate) a limited number of

resources. The coordination mechanism chooses outcomes in order to achieve

one or more social objectives, such as strategyproofness or Pareto-optimality.

In particular, this dissertation focuses primarily on questions related

to the following four topics in computational social choice theory: housing

markets, hedonic games, facility location games, and resource sharing. Below

we briefly introduce each of these topics.

1.1 Housing Markets

Resource allocation is the process of distributing a set of resources

among a group of agents, such that the outcome is efficient for society and

reasonably fair to each agent. Problems related to resource allocation un-

der preferences are widely studied in both computer science and economics.

Research in this area seeks to gain mathematical insight into the structure

of resource allocation problems, and to exploit this structure to design pro-

cedures that satisfy some guarantee of efficiency or fairness. For example,

envy-freeness is a natural fairness criterion requiring that no agent prefers the

share assigned to another agent to the own share. Regarding efficiency, a basic

requirement is Pareto-efficiency, imposing that it is impossible to improve the
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satisfaction of some agents without harming another.

In one important class of resource allocation problems, sometimes re-

ferred to as one-sided matching problems [125], we seek to allocate indivisible

objects to a set of agents, where each agent has preferences over the objects

and wants to receive at most one object (unit demand). The allocation should

enjoy one or more strong game-theoretic properties, such as Pareto-efficiency.

In a seminal work, Shapley and Scarf [154] introduced the notion of a

housing market, which corresponds to the special case of one-sided matching in

which there are an equal number of agents and objects, each agent is initially

endowed with a distinct object, and each agent is required to be matched to

exactly one object. They present an elegant algorithm (attributed to David

Gale) for housing markets called the top trading cycles (TTC) algorithm.

The TTC algorithm enjoys a number of strong game-theoretic properties. For

example, when agents have strict preferences, the output of the TTC algorithm

is the unique matching in the core. It has subsequently been generalized to

handle more complex variants of the original housing market problem (e.g., [16,

57, 73, 149, 152]).

1.2 Hedonic Games

Coalition formation is a field analyzing one or more groups of agents,

called coalitions, that get together to jointly determine their actions. Hedonic

games are a notable type of games on studying coalition formation (see [22] for

a survey). A hedonic game is specified by a set of players who have preferences
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over the set of all possible players’ coalitions. The outcome of a hedonic

game consists a partition of the players into disjoint coalitions. The main

requirement in hedonic games is the stability of the solution. Different notions

of stability can be established. The basic one is Nash stability where no agent

would prefer to belong to another group.

1.3 Facility Location Games

Facility location problem is a classical commerce optimization problem.

A facility may be an outlet, workstation, hospital, and school. In facility

location problem, with reported locations or preference of agents, an authority

needs to decide where to place the facilities for minimizing social cost. Later

on, Procaccia and Tannenholtz introduced a game-theoretic version of this

problem which is known as the facility location game [147]. In facility location

games, each agent is self-interested, i.e., who may misreport in order to change

the outcome of the construction sites and hence benefit from the outcome.

Facility location games aim to design mechanisms that minimize the social cost

on the condition that agents will not gain by misreporting their information.

1.4 Resource Sharing

The proliferation of Internet-based technologies has allowed sharing-

related applications to flourish. As the ”sharing economy” continues to ex-

pand, it will be important to develop clear rules to support the true joint

ownership of scarce resources. As devices are increasingly connected and con-
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trolled by algorithms, an attractive option is to use algorithms to formally

encode such rules. For example, Freeman et al. [83] investigated a sharing-

related setting in which agents pool their computational resources to improve

utilization and efficiency. In this setting, the authors strive to develop mech-

anisms that incentive sharing and achieve other desirable properties such as

nonwastefulness and strategyproofness. For a dynamic version of this setting,

it is shown to be impossible to simultaneously maintain all of these properties;

consequently, trade-offs are investigated. For more details on algorithmically-

driven shared ownership economies, we refer to the article by Conitzer and

Freeman [60].

1.5 Organization of the Rest of the Dissertation

This section gives a brief overview of our contributions. We remark

that the results presented in Chapters 2, 5, and 6 are based on joint work

with Greg Plaxton and Vaibhav Sinha [119, 117, 118], the results presented

in Chapter 3 are based on joint work with Xiong Zheng [120], and the results

presented in Chapter 4 are based on a single-authored paper [116]. In order

to minimize duplication, the results coauthored with Vaibhav Sinha have been

partititoned between his thesis [156] and this disseration. This partitioning is

discussed in greater detail in the relevant chapters.
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1.5.1 Results Related to Housing Markets

In recent work, Gourvès, Lesca, and Wilczynski propose a variant of the

classic housing markets model where the matching between agents and objects

evolves through Pareto-improving swaps between pairs of adjacent agents in

a social network. To explore the swap dynamics of their model, they pose

several basic questions concerning the set of reachable matchings. In their

work and other follow-up works, these questions have been studied for various

classes of graphs: stars, paths, generalized stars (i.e., trees where at most one

vertex has degree greater than two), trees, and cliques. For generalized stars

and trees, it remains open whether a Pareto-efficient reachable matching can

be found in polynomial time.

We first pursue the same set of questions under a natural variant of

their model. In our model, the social network is replaced by a network of

objects, and a swap is allowed to take place between two agents if it is Pareto-

improving and the associated objects are adjacent in the network. In those

cases where the question of polynomial-time solvability versus NP-hardness

has been resolved for the social network model, we are able to show that the

same result holds for the network-of-objects model. In addition, for our model,

we present a polynomial-time algorithm for computing a Pareto-efficient reach-

able matching in generalized star networks. Moreover, the object reachability

algorithm that we present for path networks is significantly faster than the

known polynomial-time algorithms for the same question in the social net-

work model. These results are presented in details in Chapter 2.
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We next study how to direct the agents to swap objects with each other

in order to arrive at a reachable matching that is both efficient and most agree-

able in the social network model. In particular, we study the computational

complexity of reaching a Pareto-efficient matching that maximizes the num-

ber of agents who prefer their match to their initial endowments. We consider

the same graph structures of the social network studied before: stars, paths,

generalized stars, trees, and cliques. Additionally, we consider two assump-

tions regarding preference relations of agents: strict (ties among objects not

allowed) or weak (ties among objects allowed). By designing two polynomial-

time algorithms and two NP-hardness reductions, we resolve the complexity

of all cases not yet known. Our main contributions include a polynomial-time

algorithm for path networks with strict preferences and an NP-hardness result

in a star network with weak preferences.

1.5.2 Results Related to Hedonic Games

Recently, fractional hedonic games have received considerable atten-

tion. Such a game can be represented by directed weighted graph where the

weight of edge (i, j) denotes the value player i has for player j. The utility of

player i is the average value that player i assigns to the members of i’s coalition.

We study a variant of this game where there is a specific upper bound k on the

number of coalitions that can be formed. We first consider how to find a coali-

tion partition that maximizes the social welfare, i.e., the sum of the utilities.

Computing social welfare maximizing partitions for these games of all agents

20



on undirected unweighted graphs is known to be NP-hard. Here, we study the

parameterized complexity in terms of k. For all fixed k ≥ 2, we show that it

remains NP-hard to find a social welfare maximizing k-partition for undirected

unweighted graphs. For undirected unweighted trees, we present an algorithm

finding a social welfare maximizing k-partition in polynomial time. Moreover,

we consider Nash stable outcomes. We show that for all k ≥ 2, if a fractional

hedonic game on a directed unweighted graph with bounded maximum out-

degree admits a Nash stable k-partition, then the stable partition is almost

balanced. However, we prove that determining whether a fractional hedonic

game admits a Nash stable k-partition is NP-complete for all k ≥ 2. These

results are presented in details in Chapter 4.

1.5.3 Results Related to Facility Location Games

We consider a facility location game in which n agents reside at known

locations on a path, and k heterogeneous facilities are to be constructed on the

path. Each agent is adversely affected by some subset of the facilities, and is

unaffected by the others. We design two classes of mechanisms for choosing the

facility locations given the reported agent preferences: utilitarian mechanisms

that strive to maximize social welfare (i.e., to be efficient), and egalitarian

mechanisms that strive to maximize the minimum welfare. For the utilitar-

ian objective, we present a weakly group-strategyproof efficient mechanism for

up to three facilities, we give a strongly group-strategyproof mechanism that

guarantees at least half of the optimal social welfare for arbitrary k, and we
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prove that no strongly group-strategyproof mechanism achieves an approxi-

mation ratio of 5/4 for one facility. For the egalitarian objective, we present

a strategyproof egalitarian mechanism for arbitrary k, and we prove that no

weakly group-strategyproof mechanism achieves a o(
√
n) approximation ratio

for two facilities. We extend our egalitarian results to the case where the agents

are located on a cycle, and we extend our first egalitarian result to the case

where the agents are located in the unit square. These results are presented

in details in Chapter 5.

1.5.4 Results Related to Resource Sharing

It is often beneficial for agents to pool their resources in order to better

accommodate fluctuations in individual demand. Many multi-round resource

allocation mechanisms operate in an online manner: in each round, the agents

specify their demands for that round, and the mechanism determines a cor-

responding allocation. In this dissertation, we focus instead on the offline

setting in which the agents specify their demand for each round at the out-

set. We formulate a specific resource allocation problem in this setting, and

design and analyze an associated mechanism based on the solution concept

of lexicographic maximin fairness. We present an efficient implementation of

our mechanism, and prove that it is Pareto-efficient, envy-free, non-wasteful,

resource monotonic, population monotonic, and group strategyproof. We also

prove that our mechanism guarantees each agent at least half of the utility

that they can obtain by not sharing their resources. We complement these
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positive results by proving that no maximin fair mechanism can improve on

the aforementioned factor of one-half. These results are presented in details

in Chapter 6.
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Chapter 2

Object Allocation Over a Network of Objects

2.1 Introduction

Problems related to resource allocation under preferences are widely

studied in both computer science and economics. Research in this area seeks

to gain mathematical insight into the structure of resource allocation problems,

and to exploit this structure to design fast algorithms. In one important class

of resource allocation problems, sometimes referred to as one-sided matching

problems [125], we seek to allocate indivisible objects to a set of agents, where

each agent has preferences over the objects and wants to receive at most one

object (unit demand). The allocation should enjoy one or more strong game-

theoretic properties, such as Pareto-efficiency.

In a seminal work, Shapley and Scarf [154] introduced the notion of a

housing market, which corresponds to the special case of one-sided matching in

which there are an equal number of agents and objects, each agent is initially

endowed with a distinct object, and each agent is required to be matched to

A part of the contents of this chapter appeared in [119]. The hardness results presented
in Section 2.5 are primarily due to Vaibhav Sinha, and are included in his M.Sc. thesis;
these results are included here for the sake of completeness. Except these hardness results,
this chapter presents the results for which I was the primary contributor.
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exactly one object. They present an elegant algorithm (attributed to David

Gale) for housing markets called the top trading cycles (TTC) algorithm.

The TTC algorithm enjoys a number of strong game-theoretic properties. For

example, when agents have strict preferences, the output of the TTC algorithm

is the unique matching in the core. The TTC algorithm has subsequently been

generalized to handle more complex variants of the original housing market

problem (e.g., [16, 73, 149]).

Like many one-sided matching algorithms, the TTC algorithm is cen-

tralized: it takes all of the agent preference information as input and computes

the output matching. In some resource allocation scenarios of practical inter-

est, it may be difficult or impossible to coordinate such a global recomputa-

tion of the matching. Accordingly, researchers have studied decentralized (or

distributed) variants of one-sided matching problems in which the initial allo-

cation gradually evolves as “local” trading opportunities arise. In this setting,

restrictions are imposed on the sets of agents that are allowed to participate

in a single trade. For example, we might only allow (certain) pairs of agents to

trade. In addition, all trades are required to be Pareto-improving. Locality-

based restrictions on trade are generally enforced through graph-theoretic con-

straints.

Of particular relevance to the present chapter is the line of research

initiated by Gourvès et al. [91] on decentralized allocation in housing mar-

kets. They propose a model in which agents have strict preferences and are

embedded in an underlying social network. A pair of agents are allowed to
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swap objects with each other only if (1) they will be better off after the swap,

and (2) they are directly connected (socially tied) via the network. The un-

derlying social network is modeled as an undirected graph, and five different

graph classes are considered: paths, stars, generalized stars, trees, and general

graphs. The swap dynamics of the model are investigated by considering three

computational questions. The first question, Reachable Object, asks whether

there is a sequence of swaps that results in a given agent being matched to a

given target object. The second question, Reachable Matching, asks whether

there is a sequence of swaps that results in a given target matching. The third

question, Pareto Efficiency, asks how to find a sequence of swaps that results

in a Pareto-efficient matching with respect to the set of reachable matchings.

Gourvès et al. [91] studied each of the three questions in the con-

text of the aforementioned graph classes, with the goal of either exhibiting

a polynomial-time algorithm or establishing NP-hardness. For some of these

problems, it is a relatively straightforward exercise to design a polynomial-

time algorithm (even for the search version). In particular, this is the case

for all three reachability questions on stars, for Pareto Efficiency on paths, and

for Reachable Matching on trees (which subsumes Reachable Matching on gen-

eralized stars, and hence also on paths). Gourvès et al. present an elegant

reduction from 2P1N-SAT [167] to establish the NP-completeness of Reach-

able Object on generalized stars (and hence also on trees and general graphs).

They establish the NP-completeness of Reachable Matching on general graphs

via a reduction from Reachable Object on trees. The latter reduction has the
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property that for any given instance of Reachable Object on trees, the target

matching in the instance of Reachable Matching on general graphs produced

by the transformation matches each agent to its most preferred object. Conse-

quently, the same reduction establishes the NP-hardness of Pareto Efficiency on

general graphs. The work of Gourvès et al. left three of these problems open:

Reachable Object on paths and Pareto Efficiency on generalized stars and trees.

Subsequently, two sets of authors independently presented polynomial-time

algorithms for Reachable Object on paths [28, 95]. Both groups obtained an

O(n4)-time algorithm by carefully studying the structure of swap dynamics on

paths and then reducing the problem to 2-SAT. The complexity of Pareto Ef-

ficiency remains open for generalized stars and for trees. Gourvès et al. noted,

“It appears interesting to see if Pareto (Efficiency) is polynomial time solvable

in a generalized star by a combination of the techniques used to solve the cases

of paths and stars.”

Bentert et al. [28] established that Reachable Object on cliques is NP-

complete, and Müller and Bentert [130] established that Reachable Matching

on cliques is NP-complete. It is easy to extend the latter result to show that

Pareto Efficiency on cliques is NP-hard. These three hardness results for cliques

subsume the corresponding results obtained previously for general graphs by

Gourvès et al.

We study a natural variant of the decentralized housing markets model

of Gourvès et al. [91]. Instead of enforcing locality constraints on trade via a

network where the locations of the agents are fixed (since they correspond to
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the vertices of the network) and the objects move around (due to swaps), we

consider a network where the locations of the objects are fixed and the agents

move around. We refer to these two models as the object-moving model and

the agent-moving model. Table 2.1 summarizes the current state of the art for

the object-moving model.

To motivate the study of the agent-moving model, consider a cloud

computing environment with a large number of servers (objects) connected by

a network that are available to rent. A set of customers (agents) are each inter-

ested in renting one server. The servers vary in CPU capacity, storage capacity,

physical security, and rental cost. Varying customer workloads and require-

ments result in varying customer preferences over the servers. Rather than

attempting to globally optimize the entire matching of customers to servers,

it might be preferable to allow local swaps between adjacent servers to grad-

ually optimize the matching. Given that customer workloads are likely to

vary significantly over time, an optimization strategy based on frequent local

updates might outperform a strategy based on less frequent global updates.

Alternatively, one can envision a system that performs occasional global up-

dates to optimize the matching, and that relies on local updates to maintain

a reasonable matching between successive global updates.

Our Results. We initiate the study of the agent-moving model by

revisiting each of the questions associated with Table 2.1 in the context of the

agent-moving model. We emphasize that the sole difference between the agent-

moving model and the object-moving model is that the locality constraint pre-
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Reachable Object Reachable Matching Pareto Efficiency

Star poly-time (poly-time) poly-time
Path poly-time (poly-time) poly-time

Generalized Star NP-complete (poly-time) open
Tree (NP-complete) poly-time open

Clique NP-complete NP-complete NP-hard

Table 2.1: This table presents known complexity results for various questions
related to the object-moving model of Gourvès et al. [91]. The results in
parentheses follow directly from other table entries. For the agent-moving
model, we obtain the same results, except that we also give a polynomial-time
algorithm for Pareto Efficiency on generalized stars.

vents an agent a currently matched to an object b from trading with an agent

a′ currently matched to an object b′ unless objects b and b′ (two vertices in a

given network of objects) are adjacent, rather than requiring agents a and a′

(two vertices in a given network of agents) to be adjacent. Both models also

require swaps to be Pareto-improving. The two models have strong similari-

ties. In fact, for all of the questions in Table 1 for which a polynomial-time

algorithm or hardness result has been established in the object-moving model,

we establish a corresponding result in the agent-moving model. Moreover,

for Pareto Efficiency on generalized stars, which is open in the object-moving

model, we provide a polynomial-time algorithm in the agent-moving model.

In some cases, it is relatively straightforward to adapt known results for the

object-moving model to the agent-moving model. Below we highlight our four

main technical contributions, which address more challenging cases.

Our first main technical result is an O(n2) time algorithm for Reachable

Object on paths in the agent-moving model, which is much faster than the

29



known O(n4)-time algorithms for Reachable Object on paths in the object-

moving model. (Here n denotes the number of agents/objects; the size of

the input is quadratic in n since the preference list of each agent is of length

n.) The speedup is due to a simpler local characterization of the reachable

matchings on a path in the agent-moving model.

In our second main technical result, we obtain the same O(n2) time

bound for Pareto Efficiency on paths. Our algorithms for Reachable Object and

Pareto Efficiency are based on an efficient subroutine for solving a certain con-

strained reachability problem. Roughly speaking, this subroutine determines

all of the possible matches for a given agent when certain agent-object pairs are

required to be matched to one another. Our implementation involves a trivial

O(n2)-time preprocessing phase followed by an O(n)-time greedy phase. The

preferences of the agents are only examined during the preprocessing phase.

The proof of correctness of the greedy phase is somewhat nontrivial. We solve

Reachable Object on paths using a single application of the subroutine, yielding

an O(n2) bound. Our polynomial-time algorithm for Pareto Efficiency on paths

uses n applications of our algorithm for Reachable Object on paths. Since the

preprocessing phase only needs to be performed once, the overall running time

remains O(n2).

In our third main technical result, we present a polynomial-time al-

gorithm for Pareto Efficiency on generalized stars, which remains open in the

object-moving model. To tackle this problem, we use the serial dictatorship

algorithm with the novel idea of dynamically choosing the dictator sequence.
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We also leverage our techniques for solving Pareto Efficiency on paths.

The faster time bounds discussed above for the case of paths suggest

that the agent-moving model is simpler than the object-moving model, at

least from an upper bound perspective. Accordingly, we can expect it to be

a bit more challenging to establish the NP-completeness results stated in Ta-

ble 2.1 for the agent-moving model than for the object-moving model. In

our fourth main technical result, we adapt an NP-completeness proof devel-

oped by Bentert et al. [28] in the context of the object-moving model to the

more challenging setting of the agent-moving model. Specifically, we modify

their reduction from 2P1N-SAT to establish that Reachable Object on cliques

remains NP-complete in the agent-moving model.

Related work. For the object-moving model, Huang and Xiao [94]

study Reachable Object with weak preferences, i.e., where an agent can be

indifferent between different objects. Bentert et al. [28] establish NP-hardness

for Reachable Object on cliques, and consider the case where the preference

lists have bounded length. Saffidine and Wilczynski [151] propose a variant

of Reachable Object where we ask whether a given agent is guaranteed to

achieve a specified level of satisfaction after any maximal sequence of rational

exchanges. Müller and Bentert [130] study Reachable Matching on cliques and

cycles. Aspects related to social connectivity are also addressed in recent

work on envy-free allocations [30, 33] and on trade-offs between efficiency and

fairness [97].

Our agent-moving model can be viewed as a game in which each agent
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seeks to be matched to an object that is as high as possible on its preference

list. If the game reaches a state in which no further swaps can be performed, we

say that an equilibrium matching has been reached. Agarwal et al. [7] study

a similar game motivated by Schelling’s well-known residential segregation

model. As in our game, there are an equal number of agents and objects, the

objects correspond to the nodes of a graph, a matching is maintained between

the agents and the objects, and the matching evolves via Pareto-improving,

agent-moving swaps. There are also some significant differences. In our model,

each agent has static preferences over the set of objects, and swaps can only

occur between adjacent agents (i.e, agents matched to adjacent objects). In

the Agarwal et al. game, each agent has a type, the desirability of an object b to

an agent a depends on the current fraction of agents in the “neighborhood” of

b (i.e., the set of agents matched to an object adjacent to b) with the same type

as a, and swaps can occur between any pair of agents. Agarwal et al. study

the existence, computational complexity, and quality of equilibrium matchings

in such games. Bilò et. al [32] further investigated the influence of the graph

structure on the resulting strategic multi-agent system.

Organization of the chapter. The remainder of the chapter is orga-

nized as follows. Section 2.2 provides formal definitions. Section 2.3 presents

our polynomial-time algorithms for Reachable Object and Pareto Efficiency on

paths. Section 2.4 presents our polynomial-time algorithm for Pareto Effi-

ciency on generalized stars. Section 2.5 presents our NP-completeness result for

Reachable Object on cliques. Section 2.6 presents our other NP-completeness
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and NP-hardness results. Section 2.7 briefly discusses simple algorithms for

justifying the other polynomial-time entries in Table 2.1.

The hardness results presented in Section 2.5 are primarily due to Vaib-

hav Sinha, and are included in his M.Sc. thesis; these results are included here

for the sake of completeness.

2.2 Preliminaries

We define an object allocation framework (OAF) as a 4-tuple F =

(A,B,�, E) where A is a set of agents, B is a set of objects such that |A| = |B|,

� is a collection of strict linear orderings {�a}a∈A over B such that �a specifies

the preferences of agent a over B, and E is the edge set of some undirected

graph (B,E).

We define a matching µ of given OAF F = (A,B,�, E) as a subset

of A × B such that no agent or object belongs to more than one pair in µ.

(Put differently, µ is a matching in the complete bipartite graph of agents

and objects.) We say that such a matching is perfect if |µ| = |A|. For any

matching µ, we define agents(µ) (resp., objects(µ)) as the set of all matched

agents (resp., objects) with respect to µ. For any matching µ and any agent a

that is matched in µ, we use the shorthand notation µ(a) to refer to the object

matched to agent a. For any matching µ and any object b that is matched in

µ, we use the notation µ−1(b) to refer to the agent matched to object b.

For any OAF F = (A,B,�, E), any perfect matching µ of F , and any

33



edge e = (b, b′) in E such that b′ �a b and b �a′ b′ where a = µ−1(b) and

a′ = µ−1(b′), we say that a swap operation is applicable to µ across edge e,

and we write µ→F,e µ
′ where

µ′ = (µ \ {(a, b), (a′, b′)}) ∪ {(a, b′), (a′, b)},

is the matching of F that results from applying this operation. We write

µ→F µ
′ to denote that µ→F,e µ

′ for some edge e. We write µ F µ
′ if there

exists a sequence µ = µ0, . . . , µk = µ′ of matchings of F such that µi−1 →F µi

for 1 ≤ i ≤ k.

We define a configuration as a pair χ = (F, µ) where F is an OAF and

µ is a perfect matching of F .

For any configuration χ = (F, µ) where F = (A,B,�, E), any agent a

in A, and any object b in B, we define χ(a) as a shorthand for the object µ(a),

and we define χ−1(b) as a shorthand for the agent µ−1(b).

For any configuration χ = (F, µ) where F = (A,B,�, E), and any

matching µ′ of F such that µ→F,e µ
′ for some edge e in E, we say that a swap

is applicable to χ across edge e, and the result of applying this operation is

the configuration (F, µ′).

For any configuration χ = (F, µ), we define reach(χ) as the set of all

perfect matchings µ′ of F such that µ F µ
′. For any configuration χ = (F, µ)

and any matching µ′ of F , we define reach(χ, µ′) as the set of all matchings

µ′′ in reach(χ) such that µ′′ contains µ′.

We now state the three reachability problems studied in this chapter.
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• The reachable matching problem: Given a configuration χ = (F, µ) and

a perfect matching µ′ of F , determine whether µ′ belongs to reach(χ).

• The reachable object problem: Given a configuration χ = (F, µ) where

F = (A,B,�, E), an agent a in A, and an object b in B, determine

whether there is a matching µ′ in reach(χ) such that µ′(a) = b.

• The Pareto-efficient matching problem: Given a configuration χ, find a

matching in reach(χ) that is not Pareto-dominated by any other match-

ing in reach(χ).

2.3 Reachability Over a Path Network

We begin by introducing some notation.

For any non-negative integer n, we define [n] as {1, . . . , n}. Without

loss of generality, in this section we restrict attention to OAFs of the form

([n], [n],�, {(b, b + 1) | 1 ≤ b < n}) for some positive integer n. We use the

notation (n,�) to refer to such an OAF.

For any non-negative integer n, we define Φ(n) as the set of all match-

ings µ such that agents(µ) = [|µ|] and objects(µ) ⊆ [n].

For any matching µ in Φ(n), we define max(µ) as the maximum matched

object in objects(µ), or as 0 if µ = ∅.

For any matching µ in Φ(n), we define hole(µ) as the minimum positive

integer that does not belong to objects(µ).

35



For any matching µ in Φ(n) and any agent a in agents(µ), define

span(µ, a) as {b ∈ [n] | µ(a) ≤ b ≤ a} ∪ {b ∈ [n] | a ≤ b ≤ µ(a)}.

For any OAF F = (n,�), we define µF as the matching {(i, i) | i ∈ [n]},

and we define χF as the configuration (F, µF ).

For any OAF F = (n,�) and any agent a in [n], we define left(�, a) as

the minimum object b in [n] such that b �a b+ 1 �a · · · �a µF (a) = a, and we

define right(�, a) as the maximum object b in [n] such that b �a b−1 �a · · · �a

a. Thus if a matching µ belongs to reach(χF ), then the match µ(a) of agent

a is at least left(�, a) and at most right(�, a), regardless of the preferences of

the remaining agents.

For any OAF F = (n,�), any matching µ in Φ(n), and any agent a

in agents(µ), we say that the predicate IR(�, µ, a) holds (where “IR” stands

for “individually rational”) if left(�, a) ≤ µ(a) ≤ right(�, a). We say that the

predicate IR(�, µ) holds if IR(�, µ, a) holds for all agents a in agents(µ).

2.3.1 A Useful Subroutine

This section presents Algorithm 1, a greedy subroutine that we use in

Sections 2.3.3 and 2.3.4 to solve reachability problems over a path network.

Recall that the reachable object problem with path configuration χF is

to check whether an object b is reachable for an agent a. Algorithm 1 addresses

a variant of this problem in which the agents less than a are all required to

be matched to specific objects. The input matching µ0 specifies the required

match for each of these agents.
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Algorithm 1: A greedy path reachability subroutine.

Input: An OAF F = (n,�), a matching µ0 in Φ(n) such that
|µ0| < n and reach(χF , µ0) 6= ∅, and a matching
µ1 = µ0 + (|µ1|, b0) where max(µ0) < b0 ≤ right(�, |µ1|)

Output: A matching µ in reach(χF , µ1), or ∅ if this set is empty
µ = µ1;
while 0 < |µ| < n do

if left(�, |µ|+ 1) ≤ hole(µ) then
µ = µ+ (|µ|+ 1, hole(µ));

else if max(µ) < right(�, |µ|+ 1) then
µ = µ+ (|µ|+ 1,max(µ) + 1);

else
µ = ∅;

end

end
return µ

2.3.2 Proof of Correctness of Algorithm 1

In this section, we establish the correctness of Algorithm 1.

We begin by defining a specific subset Φ∗(n) of Φ(n). For any matching

µ in Φ(n) and any integer i in [|µ|], let µi be the matching such that µi ⊆ µ

and agents(µ) = [i]. Then Φ∗(n) is the set of all matchings µ such that µ

belongs to Φ(n) and for each i in [|µ| − 1], either µ(i + 1) = hole(µi) or

max(µi) < µ(i+ 1) ≤ n.

We now present a number of useful structural properties of matchings

in Φ∗(n).
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Representing a Matching as a Pair of Binary Strings

For any binary string α, we let |α| denote the length of α, and we

let w(α) denote the Hamming weight of α. For any binary string α and any

integer i in [|α|], we let αi denote bit i of α. For any binary string α, and any

integers i and j in [|α|], we let αi,j denote the substring αi · · ·αj of α.

For any integers m and n such that 0 ≤ m ≤ n, we let Ψ(m,n) denote

the set of all pairs of binary strings (α, β) such that |α| = m, |β| = n, w(α1,i) ≥

w(β1,i) holds for all i in [m], w(α) = w(β), and m < n implies βn = 1.

For any (α, β) in Ψ(m,n), we define [α, β] as the cardinality-mmatching

µ in Φ(n) constructed as follows: for any agent a in [m] such that αa is the

ith 0 (resp., 1) in α, we define µ(a) as the index of the ith 0 (resp., 1) in β.

Observation 2.3.1. Let (α, β) belong to Ψ(m,n), let µ denote [α, β], and let

b belong to [n]. If b is unmatched in µ, then βb = 0. Otherwise, the following

conditions hold, where a denotes µ−1(b): a > b implies αa = βb = 0, a < b

implies αa = βb = 1, and a = b implies αa = βa.

Observation 2.3.2. Let (α, β) belong to Ψ(m,n) and let µ denote [α, β]. If

m < n then (α0, β) belongs to Ψ(m+ 1, n) and [α0, β] = µ+ (m+ 1, hole(µ)).

Furthermore, for any non-negative integer k, (α1, β0k1) belongs to Ψ(m+1, n+

k + 1) and [α1, β0k1] = µ+ (m+ 1, n+ k + 1).

For any (α, β) in Ψ(m,n), and any agent a in [m] such that αa = βa

and w(α1,a) = w(β1,a), we say that a complement operation is applicable to
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(α, β) at agent a. The result of applying this operation is the pair of binary

strings (α′, β′) that is the same as (α, β) except α′a = β′a = 1 − αa. It is easy

to see that (α′, β′) belongs to Ψ(m,n).

For any (α, β) and (α′, β′) in Ψ(m,n), we write (α, β) ' (α′, β′) to de-

note that (α, β) can be transformed into (α′, β′) via a sequence of complement

operations.

Observation 2.3.3. Let (α, β) and (α′, β′) belong to Ψ(m,n). Then [α, β] =

[α′, β′] if and only if (α, β) ' (α′, β′).

Observation 2.3.4. Let (α, β) belong to Ψ(m,n), and let (α′, β′) belong to

Ψ(m′, n′) where m ≤ m′ and n ≤ n′. Then [α, β] ⊆ [α′, β′] if and only if

(α, β) ' (α′1,|α|, β
′
1,|β|).

For any (α, β) in Ψ(m,n), and any object b in [n− 1] such that βb = 1

and βb+1 = 0, we say that a sort operation is applicable to (α, β) across objects

b and b+ 1. The result of applying this operation is the pair of binary strings

(α, β′) that is the same as (α, β) except β′b = 0 and β′b+1 = 1.

Observation 2.3.5. Let (α, β) belong to Ψ(m,n) and let (α, β′) be the result

of applying a sort operation to (α, β) across objects b and b + 1. Then (α, β′)

belongs to Ψ(m,n). Furthermore, if m = n then

[α, β′] = (µ \ {(a, b), (a′, b+ 1)}) ∪ {(a′, b), (a, b+ 1)}

where µ denotes [α, β], a denotes µ−1(b), and a′ denotes µ−1(b+ 1).
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For any (α, β) and (α′, β′) in Ψ(m,n), we write (α, β) (α′, β′) to de-

note that (α, β) can be transformed into (α′, β′) via a sequence of complement

and sort operations.

Observation 2.3.6. Let α be a binary string of length m, and let β be a binary

string of length n such that m ≤ n. Then (α, β) belongs to Ψ(m,n) if and only

if (0m, 0n) (α, β).

For any non-negative integer n, we define Φ′(n) as the set of all match-

ings µ in Φ(n) such that µ = [α, β] for some (α, β) in Ψ(|µ|,max(µ)).

For any (α, β) in Ψ(n, n), and any agent a in [n−1] such that w(α1,a) >

w(β1,a) and αa = 1, we say that a pivot operation is applicable to (α, β) at

agent a. The result of applying this operation is the pair of binary strings

(α′, β) that is the same as (α, β) except α′a = 0 and α′a′ = 1, where a′ denotes

the minimum agent greater than a for which w(α1,a′) = w(β1,a′). (The agent

a′ is well-defined since w(α) = w(β).)

Observation 2.3.7. Let (α, β) belong to Ψ(n, n), and let (α′, β) be the result

of applying a pivot operation to (α, β) at agent a. Then (α′, β) belongs to

Ψ(n, n) and span([α′, β], a′) is contained in span([α, β], a′) for all agents a′ in

[n]− a.

For any (α, β) in Ψ(n, n), and any object b in [n−1] such that w(α1,b) >

w(β1,b), βb = 0, and βb+1 = 1, we say that an unsort operation is applicable

to (α, β) across objects b and b + 1. The result of applying this operation is
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the pair of binary strings (α, β′) that is the same as (α, β) except β′b = 1 and

β′b+1 = 0.

Observation 2.3.8. Let (α, β) belong to Ψ(n, n), and let (α, β′) be the result

of applying an unsort operation to (α, β) across objects b and b + 1. Then

(α, β′) belongs to Ψ(n, n) and span([α, β′], a) is contained in span([α, β], a) for

all agents a in [n].

Structural Properties of Matchings in Φ∗(n)

Claim 2.3.9 below gives a a simple characterization of matchings in

Φ′(n), and hence implies that Φ′(n) = Φ∗(n).

Claim 2.3.9. Let µ be a matching in Φ′(n) such that |µ| < n, let a denote |µ|,

let a′ denote a + 1, let b denote max(µ), and let µ′ denote µ + (a′, b∗). Then

µ′ belongs to Φ′(n) if and only if b∗ = hole(µ) or b < b∗ ≤ n.

Proof. Since µ belongs to Φ′(n), there exists (α, β) in Ψ(a, b) such that µ =

[α, β]. Let b′ denote max(µ′).

For the “if” direction, we need to prove that there exists (α′, β′) in

Ψ(a′, b′) such that µ′ = [α′, β′]. We consider two cases.

Case 1: b∗ = hole(µ) ≤ b. Observation 2.3.2 implies that (α0, β)

belongs to Ψ(a′, b′) and µ′ = [α0, β].

Case 2: b < b∗ ≤ n. Let k denote b∗ − b− 1. Observation 2.3.2 implies

that (α1, β0k1) belongs to Ψ(a′, b′) and µ′ = [α1, β0k1].
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We now address the “only if” direction. Assume that µ′ belongs to

Φ′(n). Since µ′ = µ+ (a′, b∗), we deduce that b∗ belongs to [n] \ objects(µ). It

remains to prove that b∗ = hole(µ) or b < b∗. Let B denote the set of objects

[b] \ objects(µ). We consider two cases.

Case 1: a = b. Thus B = ∅ and since b∗ is unmatched in µ, we have

b < b∗.

Case 2: a < b. Since µ′ belongs to Φ′(n), there exists (α′, β′) in Ψ(a′, b′)

such that µ′ = [α′, β′]. Observation 2.3.4 implies that (α′1,a, β
′
1,b) belongs to

Ψ(a, b) and (α′1,a, β
′
1,b) ' (α, β). Since (α′1,a, β

′
1,b) ' (α, β), Observation 2.3.3

implies that [α′1,a, β
′
1,b] = [α, β] = µ. Let B0 denote the set of all objects i in

B such that β′i = 0. Observation 2.3.1 implies that B0 = B. We consider two

cases.

Case 2.1: α′a′ = 1. Since µ′(a′) = b∗, Observation 2.3.1 implies that

β′b∗ = 1. Thus b∗ does not belong to B = B0. Since b∗ is unmatched in µ, we

conclude that b < b∗.

Case 2.2: α′a′ = 0. Since a < b and (α′1,a, β
′
1,b) belongs to Ψ(a, b), we

have β′b = 1 and w(α′1,a) = w(β′1,b) > w(β′1,a). Let k denote the number of 0’s

in α′1,a, and let ` denote the number of 0’s in β′1,a. Since w(α′1,a) > w(β′1,a),

we have ` > k. Let B′ denote the indices of the first k 0’s in β′1,a, and let B′′

denote the indices of the remaining `− k 0’s in β′1,a. Since µ = [α′1,a, β
′
1,b], we

deduce that the objects in B′ are all matched in µ and the objects in B′′ are all

unmatched in µ. Thus B ∩ [a] = B0 ∩ [a] = B′′ 6= ∅, It follows that hole(µ) is
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the minimum object in B′′. Since µ′ = [α′, β′], α′a′ = 0, and there are k+ 1 0’s

in α′, we deduce that b∗ is the minimum object in B′′. Thus b∗ = hole(µ).

Lemma 2.3.10 below establishes a one-to-one correspondence between

matchings that are reachable from χF and matchings in Φ∗(n).

Lemma 2.3.10. Let F = (n,�) be an OAF. Then µ belongs to reach(χF ) if

and only if µ belongs to Φ∗(n), |µ| = n, and IR(�, µ) holds.

Proof. First we prove the “only if” direction. Suppose that µ belongs to

reach(χF ). Then there is a sequence µF = µ0, . . . , µk = µ of perfect matchings

of F such that µi−1 →F µi for all i in [k].

For any i such that 0 ≤ i ≤ k, let P (i) denote the predicate asserting

that the following conditions hold: µi belongs to Φ∗(n); |µi| = n; IR(�, µi)

holds. We prove by induction on i that P (i) holds for all i in {0, . . . , k}.

Using the definition of µF , it is easy to see that P (0) holds. Now consider the

induction step. Fix i in [k] and assume that P (i− 1) holds. We need to prove

that P (i) holds. Since P (i − 1) holds, we know that µi−1 belongs to Φ∗(n),

|µi−1| = n, and IR(�, µi−1). Since µi−1 belongs to Φ∗(n) and |µi−1| = n, there

exists (α, β) in Ψ(n, n) such that µi−1 = [α, β]. Let b denote the object in

[n− 1] such that µi−1 →F,(b,b+1) µi.

Let (α′, β′) and (α′′, β′′) be defined as follows. First, if a complement

operation is applicable to (α, β) at agent b and βb = 0, then (α′, β′) is the result

of applying this operation to (α, β), and otherwise (α′, β′) is equal to (α, β).
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Second, if a complement operation is applicable to (α, β) at agent b + 1 and

βb+1 = 1, then (α′′, β′′) is the result of applying this operation to (α′, β′), and

otherwise (α′′, β′′) is equal to (α′, β′). Observation 2.3.3 implies that (α′′, β′′)

belongs to Ψ(n, n) and µi−1 = [α′′, β′′].

Using Observation 2.3.1, it is straightforward to prove that β′′b = 1

and β′′b+1 = 0. Thus a sort operation is applicable to (α′′, β′′) across objects

b and b + 1; let (α′′, β′′′) denote the result of applying this sort operation.

Observation 2.3.5 implies that (α′′, β′′′) belongs to Ψ(n, n) and µi = [α′′, β′′′].

Thus µi belongs to Φ∗(n) and |µi| = n. Since IR(�, µi−1) holds and µi−1 →F

µi, we deduce that IR(�, µi) holds. We conclude that P (i) holds, completing

the proof by induction.

We now prove the “if” direction. Assume that µ belongs to Φ∗(n), |µ| =

n, and IR(�, µ) holds. Observation 2.3.6 implies there exists (α, β) in Ψ(n, n)

such that (0n, 0n)  (α, β). It follows that there is a sequence (0n, 0n) =

(α(0), β(0)), . . . , (α(k), β(k)) = (α, β) of pairs in Ψ(n, n) such that an applicable

complement or sort operation transforms (α(i−1), β(i−1)) into (α(i), β(i)) for all

i in [k]. Let µi denote [α(i), β(i)] for all i such that 0 ≤ i ≤ k. Thus µ0 = µF

and µk = µ.

Observations 2.3.3 and 2.3.5 imply that for all i in [k], either µi =

µi−1 or µi is obtained from µi−1 via an exchange across two adjacent objects.

It remains to prove that any such exchanges are swaps, i.e., do not violate

individual rationality. Below we accomplish this by proving that IR(�, µi)

holds for 0 ≤ i ≤ k.
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For any i in [k], let P (i) denote the predicate span(µi−1, a) ⊆ span(µi, a)

for all agents a in [n]. We claim that P (i) holds for all i in [k]. To prove the

claim, fix an integer i in [k]. We consider two cases.

Case 1: A complement operation transforms (α(i−1), β(i−1)) into (α(i), β(i)).

In this case, Observation 2.3.3 implies that µi = µi−1. Thus span(µi−1, a) =

span(µi, a) for all agents a in [n].

Case 2: A sort operation transforms (α(i−1), β(i−1)) into (α(i), β(i)). As-

sume that the sort operation is applied to (α(i−1), β(i−1)) across objects b

and b + 1. Then β
(i−1)
b = 1 and β

(i)
b+1 = 0, and Observation 2.3.1 implies

that µ−1
i−1(b) ≤ b and µ−1

i−1(b + 1) ≥ b + 1. Thus Observation 2.3.5 implies

span(µi−1, a) ⊆ span(µi, a) for all agents a in [n].

Since P (i) holds for all i in [k] and IR(�, µk) holds, we deduce that

IR(�, µi) holds for all i such that 0 ≤ i ≤ k, as required.

The next three lemmas are concerned with enlarging a given matching

µ in Φ∗(n) such that |µ| < n by introducing a suitable match for agent |µ|+ 1.

Lemma 2.3.11 (resp., Lemma 2.3.12) addresses the case where agent |µ|+ 1 is

matched to an object that is at most (resp., at least) |µ| + 1. By combining

these two lemmas, we obtain Lemma 2.3.13, which shows that it is sufficient

to consider matching agent |µ|+ 1 with an object in {hole(µ),max(µ) + 1}.

Lemma 2.3.11. Let F = (n,�) be an OAF, let µ be a matching in Φ∗(n)

such that |µ| < n, let a denote |µ|, let a′ denote a + 1, let b denote max(µ),
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and let µ′ denote µ + (a′, hole(µ)). Assume that a < b, reach(χF , µ) 6= ∅, and

left(�, a′) ≤ hole(µ). Then reach(χF , µ
′) 6= ∅.

Proof. Let µ∗ be a matching in reach(χF , µ). Lemma 2.3.10 implies that IR(�

, µ∗) holds and there exists (α∗, β∗) in Ψ(n, n) such that µ∗ = [α∗, β∗]. Using

Observations 2.3.3 and 2.3.4, we deduce that [α∗1,a, β
∗
1,b] is equal to µ. We

consider two cases.

Case 1: α∗a′ = 0. Using Observation 2.3.2, we deduce that [α∗1,a′ , β
∗
1,b]

is equal to µ′. Hence Observation 2.3.4 implies that µ∗ contains µ′. Thus

reach(χF , µ
′) 6= ∅, as required.

Case 2: α∗a′ = 1. In this case, it is straightforward to prove that a pivot

operation is applicable to (α∗, β∗) at agent a′; let (α∗∗, β∗) denote the result of

this operation. Observation 2.3.7 implies that (α∗∗, β∗) belongs to Ψ(n, n). Let

µ∗∗ denote [α∗∗, β∗]. Thus µ∗∗ belongs to Φ∗(n). Observation 2.3.7 implies that

IR(�, µ∗∗, a′′) holds for all agents a′′ in [n] − a′. Since the inequality left(�

, a′) ≤ hole(µ) implies that IR(�, µ∗∗, a′) holds, we deduce that IR(�, µ∗∗)

holds. Thus Lemma 2.3.10 implies that µ∗∗ belongs to reach(χF ). Since α∗∗1,a =

α∗1,a, Observation 2.3.4 implies that µ∗∗ contains µ. Using Observation 2.3.2,

we deduce that [α∗∗1,a′ , β
∗
1,b] is equal to µ′. Hence Observation 2.3.4 implies

that µ∗∗ contains µ′. Since µ∗∗ belongs to reach(χF ) and µ∗∗ contains µ′, we

conclude that µ∗∗ is contained in reach(χF , µ
′).

Lemma 2.3.12. Let F = (n,�) be an OAF, let µ be a matching in Φ∗(n)

such that |µ| < n, let a denote |µ|, let a′ denote a + 1, let b denote max(µ),
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let µ′ denote µ+ (a′, b′) where b′ belongs to [n] \ [b+ 1] and reach(χF , µ
′) 6= ∅,

and let µ′′ denote µ+ (a′, b+ 1). Then reach(χF , µ
′′) 6= ∅.

Proof. Let µ∗ be a matching in reach(χF , µ
′). Lemma 2.3.10 implies that

IR(�, µ∗) holds and there exists (α∗, β∗) in Ψ(n, n) such that µ∗ = [α∗, β∗].

Using Observations 2.3.1 and 2.3.4, we find that α∗a′ = β∗b′ = 1 and β∗b+k = 0 for

all k in [b′− b− 1]. Using Observation 2.3.8, we deduce that a sequence of b′−

b− 1 unsort operations can be used to transform (α∗, β∗) into a pair of binary

strings (α∗, β∗∗) in Ψ(n, n) such that β∗∗1,b = β∗1,b and IR(�, [α∗, β∗∗]) holds.

Let µ∗∗ denote [α∗, β∗∗]; thus µ∗∗ belongs to Φ∗(n). Lemma 2.3.10 implies

that µ∗∗ belongs to reach(χF ). Since β∗∗1,b = β∗1,b, Observation 2.3.4 implies

that µ∗∗ contains µ. Using Observation 2.3.2, we deduce that [α∗1,a′ , β
∗∗
1,b+1] is

equal to µ′′. Hence Observation 2.3.4 implies that µ∗∗ contains µ′′. Since µ∗∗

belongs to reach(χF ) and µ∗∗ contains µ′′, we conclude that µ∗∗ belongs to

reach(χF , µ
′′).

Lemma 2.3.13. Let F = (n,�) be an OAF, let µ be a matching in Φ∗(n) such

that |µ| < n, let a denote |µ|, let a′ denote a + 1, let b denote max(µ), and

assume that reach(χF , µ) 6= ∅. Then there exists a matching in reach(χF , µ)

that matches agent a′ to an object in {hole(µ), b+ 1}.

Proof. Let µ∗ belong to reach(χF , µ) and let b∗ denote µ∗(a′). Lemma 2.3.10

implies that µ∗ belongs to Φ∗(n) and IR(�, µ∗) holds.

Since µ∗ belongs to Φ∗(n), the definition of Φ∗(n) implies that b∗ =

hole(µ) or b < b∗. We consider two cases.
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Case 1: b∗ = hole(µ). Since IR(�, µ∗) holds, we deduce that left(�

, a′) ≤ b∗. Hence the claim of the lemma follows from Lemma 2.3.11.

Case 2: b < b∗. Since IR(�, µ∗) holds, we deduce that b∗ ≤ right(�, a′).

If b∗ = b+ 1, the claim of the lemma is immediate. Otherwise, it follows from

Lemma 2.3.12.

We are now ready to prove the main technical lemma of this section,

Lemma 2.3.14 below.

Lemma 2.3.14. Consider an execution of Algorithm 1 with inputs F = (n,�),

µ0, and µ1. If the guard of the while loop is evaluated in a state where µ 6= ∅,

then the following conditions hold in that state: (1) µ belongs to Φ∗(n); (2)

IR(�, µ) holds; (3) reach(χF , µ1) 6= ∅ implies reach(χF , µ) 6= ∅. Further-

more, if the guard of the while loop is evaluated in a state where µ = ∅, then

reach(χF , µ1) = ∅.

Proof. We prove the claim by induction on the number of iterations of the

loop. For the base case, we verify that the stated conditions hold the first time

the loop is reached. The initialization of µ ensures that µ 6= ∅, so we need

to verify conditions (1) through (3). Since reach(χF , µ0) 6= ∅, Lemma 2.3.10

implies that IR(�, µ0) holds, and Lemma 2.3.10 and the definition of Φ∗(n)

together imply that µ0 belongs to Φ∗(n). Since b0 ≤ right(�, |µ1|) ≤ n, the

definition of Φ∗(n) implies that µ1 belongs to Φ∗(n). Since IR(�, µ0) holds

and the preconditions associated with Algorithm 1 ensure that IR(�, µ1, |µ1|)
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holds, we deduce that IR(�, µ1) holds. Since µ is initialized to µ1, we conclude

that conditions (1) through (3) hold the first time the loop is reached.

For the induction step, consider an arbitrary iteration of the loop. Such

an iteration begins in a state where the guard of the while loop evaluates to

true, so we can assume that 0 < |µ| < n and that conditions (1) through (3)

hold in this state. Let a denote |µ|, let a′ denote a + 1, let b denote max(µ),

and let µ′ denote the value of the program variable µ immediately after this

iteration of the loop body. We consider two cases.

Case 1: µ′ = ∅. In this case, we need to prove that reach(χF , µ1) = ∅.

Assume for the sake of contradiction that reach(χF , µ1) 6= ∅. Condition (3)

implies that reach(χF , µ) 6= ∅. Thus Lemma 2.3.13 implies there exists a

matching µ∗ in reach(χF , µ) such that left(�, a′) ≤ hole(µ) or b+ 1 ≤ right(�

, a′). It follows by inspection of the code that µ′ 6= ∅, a contradiction.

Case 2: µ′ 6= ∅. In this case, we need to prove that conditions (1)

through (3) hold with µ replaced by µ′; we refer to these conditions as post-

conditions (1) through (3). Since µ′(a′) ≤ right(�, a′) ≤ n and condition (1)

implies that µ belongs to Φ∗(n), the definition of Φ∗(n)implies that µ′ be-

longs to Φ∗(n). Thus postcondition (1) holds. Since condition (2) implies that

IR(�, µ) holds, and IR(�, µ′, a′) holds by inspection of the code, we deduce

that postcondition (2) holds. It remains to establish postcondition (3). In

order to do so, we may assume that reach(χF , µ1) 6= ∅. Condition (3) implies

that reach(χF , µ) 6= ∅. To establish postcondition (3), we need to prove that

reach(χF , µ
′) 6= ∅. We consider two cases.
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Case 2.1: a < b and left(�, a′) ≤ hole(µ). In this case, µ′ = µ +

(a′, hole(µ)), and Lemma 2.3.11 implies that reach(χF , µ
′) 6= ∅.

Case 2.2: a = b or hole(µ) < left(�, a′). In this case, µ′ = µ+(a′, b+1),

and Lemma 2.3.13 implies there exists a matching µ∗ in reach(χF , µ) such that

µ∗(a′) is either hole(µ) or b+ 1. Since IR(�, µ∗) holds, the Case 2.2 condition

implies that if µ∗(a′) = hole(µ), then a = b, in which case objects(µ) = [b]

and hence hole(µ) = b + 1. It follows that µ∗(a′) = b + 1, and hence that

reach(χF , µ
′) 6= ∅.

Using Lemma 2.3.14, it is straightforward to establish the correctness

of Algorithm 1.

Lemma 2.3.15. Consider an execution of Algorithm 1 with inputs F = (n,�),

µ0, and µ1. The execution terminates correctly within n− |µ1| iterations.

Proof. Lemma 2.3.14 implies that each iteration of Algorithm 1 either incre-

ments the cardinality of matching µ or reduces it to zero. In the latter case,

the algorithm terminates immediately. It follows that the algorithm termi-

nates within n−|µ1| iterations. Next, we argue that the algorithm terminates

correctly. In what follows, let µ∗ denote the final value of the program variable

µ. We consider two cases.

Case 1: Algorithm 1 terminates with µ∗ = ∅. In this case, Lemma 2.3.14

implies that reach(χF , µ1) = ∅, as required.

Case 2: Algorithm 1 terminates with µ∗ 6= ∅. Lemma 2.3.14 implies

that conditions (1) through (3) in the statement of Lemma 2.3.14 hold with µ
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replaced by µ∗; we refer to these conditions as postconditions (1) through (3).

Since µ∗ 6= ∅, no agent-object pairs are removed from µ during the execution

of Algorithm 1. Since Algorithm 1 initializes µ to µ1, we deduce that µ1 is

contained in µ∗. Since the guard of the loop evaluates to false when µ is equal

to µ∗ and postcondition (1) holds, we deduce that µ∗ belongs to Φ∗(n) and

|µ∗| = n. Since postconditions (1) and (2) hold, Lemma 2.3.10 implies that µ∗

belongs to reach(χF ). Since µ1 is contained in µ∗, we deduce that µ∗ belongs

to reach(χF , µ1), as required.

2.3.3 Object Reachability

We now describe how to use Algorithm 1 to solve the reachable object

problem on paths in O(n2) time. Let F = (n,�) be a given OAF, let a∗

be an agent in [n], and let b∗ be an object in [n]. Assume without loss of

generality that a∗ < b∗. We wish to determine whether there is a matching in

reach(χF ) that matches a∗ to b∗, and if so, to compute such a matching. We

begin by using a preprocessing phase to compute left(�, a) and right(�, a) for

all agents a in [n]. We start with agent a∗, and check whether left(�, a∗) ≤

b∗ ≤ right(�, a∗). If this check fails, we halt and report failure. Otherwise,

we proceed to the remaining agents. Barring failure, the overall cost of the

preprocessing phase is O(n2). We now describe how to proceed in the special

case where a∗ is the leftmost agent on the path, i.e., where a∗ = 1. Later

we will see how to efficiently reduce the general case to this special case. In

the special case a∗ = 1, we call Algorithm 1 with µ0 = ∅ and µ1 = {(1, b∗)}.
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If there is a matching in reach(χF ) that matches agent 1 to object b, then

Algorithm 1 returns such a matching. If not, Algorithm 1 returns the empty

matching. Excluding the cost of the preprocessing phase, the time complexity

of Algorithm 1 is O(n). So the overall running time is O(n2), as it is dominated

by the preprocessing phase. We now discuss how to reduce the case of general

a∗ to the special case a∗ = 1. The key is Lemma 2.3.16 below. Informally,

Lemma 2.3.16 tells us that we can ignore all of the agents and objects in [a∗−1].

Doing this, a∗ is once again leftmost, and we can proceed as in the special case

a∗ = 1. Alternatively, we can run Algorithm 1 with µ0 = {(i, i) | i ∈ [a∗ − 1]}

and µ1 = µ0 + {(a∗, b∗)}. We now proceed to prove Lemma 2.3.16.

Lemma 2.3.16. Let F = (n,�) be an OAF, let µ be a matching in reach(χF ),

let a belong to agents(µ), let b denote µ(a), and assume that a < b. Then there

is a matching µ′ in reach(χF ) such that µ′(a) = b and µ′(a′) = a′ for all agents

a′ in [a− 1].

For any (α, β) in Ψ(n, n), we say that a cancel operation is applicable to

(α, β) if w(α) > 0. The result of applying this operation is the pair of binary

strings (α′, β′) that is the same as (α, β) except that the first appearing 1 in

α (resp., β) is changed to a 0 in α′ (resp., β′). It is easy to see that (α′, β′)

belongs to Ψ(n, n).

Observation 2.3.17. Let (α, β) belong to Ψ(n, n), let a and a′ be agents in

[n] such that αa = αa′ = 1 and a > a′, let (α′, β′) be the result of applying a

cancel operation to (α, β), let µ denote [α, β], and let µ′ denote [α′, β′], Then
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µ′(a) = µ(a) and span(µ′, a′′) is contained in span(µ, a′′) for all agents a′′ in

[n].

Proof. Lemma 2.3.10 implies that IR(�, µ) holds and there exists (α, β) in

Ψ(n, n) such that µ = [α, β]. Since a < b, Observation 2.3.1 implies that

αa = βb = 1. Let the number of 1 bits to the left of position a in α be equal to

k. Thus the number of 1 bits to the left of position b in β is also k. Let (α′, β′)

be the pair of binary strings in Ψ(n, n) that results from applying k cancel

operations to (α, β). Using Observation 2.3.17, it is straightforward to check

that the matching µ′ = [α′, β′] satisfies the requirements of the lemma.

Theorem 2.3.18 below summarizes the main result of this section.

Theorem 2.3.18. Reachable object on paths can be solved in O(n2) time.

2.3.4 Pareto-Efficient Reachability

Let F = (n,�) be an OAF, and let χ = (F, µ0) be a configuration for

which we wish to compute a Pareto-efficient matching. Below we describe a

simple way to use Algorithm 1 to solve Pareto-efficient matching on paths in

O(n3) time. We then explain how to improve the time bound to O(n2 log n),

and then to O(n2). In all cases we employ the same high-level strategy based

on serial dictatorship. We begin by performing the O(n2)-time preprocessing

phase discussed in Section 2.3.3; we only need to perform this computation

once. After the preprocessing phase, the output matching is computed in n

stages numbered from 1 to n. In stage k, we determine the best possible match
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that we can provide to agent k while continuing to maintain the previously-

determined matches for agents 1 through k − 1. We now describe how to

use Algorithm 1 to implement any given stage k in O(n2) time. In stage k,

we call Algorithm 1 O(n) times. In each of these calls, the input matching

µ0 contains the k − 1 previously-determined agent-object pairs involving the

agents in [k − 1]. The calls to Algorithm 1 differ only in terms of the value

assigned to the input object b0 which, together with µ0, determines µ1. We

vary b0 over all values meeting the precondition max(µ0) < b0 ≤ right(�, |µ1|)

associated with Algorithm 1; the number of such values is O(n).

This allows us to determine, in O(n2) time, the rightmost feasible

match, if any, for agent k. By Lemma 2.3.13, the leftmost potential match for

agent k is hole(µ0), and this option is only feasible if left(�, k) ≤ hole(µ0).

Since reach(χF , µ0) 6= ∅, we are guaranteed to find at least one candidate

match for agent k in this process. If there is exactly one candidate, then we

select it as the match of agent k. Otherwise, there are two candidates (leftmost

and rightmost), and we select the candidate that agent k prefers.

The simple algorithm described above has a running time of O(n2) per

stage, and hence O(n3) overall. To understand how to implement a stage

more efficiently, it is useful to assign a color to the program state each time

the condition of the while loop is evaluated. We color such a state red if

µ = ∅. If the state is red, then the execution is guaranteed to fail (i.e., return

∅) immediately. We color such a state green if |µ| = max(µ) > 0. If the

state is green, it is straightforward to prove that the program will proceed
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to assign every agent a in {|µ| + 1, . . . , n} to object a, and then will succeed

(i.e., return a nonempty matching). This observation also implies that if the

state is green after a given number of iterations, it remains green after each

subsequent iteration. If a state is neither red nor green, we color it yellow.

We are now ready to see how to improve the running time of stage k to

O(n log n). As a thought experiment, consider running the O(n) executions of

Algorithm 1 associated with the simple algorithm, but now in parallel. Within

each of these executions, we color each successive agent in the set {k, . . . , n}

white or black as follows: agent k is colored black; agent |µ| + 1 is colored

white if left(�, |µ|+ 1) ≤ hole(µ), and black otherwise. The key observation is

that as long as none of the parallel executions have terminated, they all agree

on the coloring of the processed agents. It follows that if we compare two of

the parallel executions, say executions A and B where execution A has a lower

value for b0 than execution B, then execution A can only transition to a green

state at a strictly earlier iteration than execution B, and execution A cannot

transition to a red state earlier than execution B. This implies that there is

a threshold b1 such that all executions with b0 ≤ b1 succeed, and all of the

remaining executions fail. This in turn means that we do not need to run all

O(n) of the parallel executions of Algorithm 1. Instead, we can use binary

search to determine the threshold b1 in O(log n) executions. This observation

reduces the running time of a stage from O(n2) to O(n log n).

We now sketch how to further improve the running time of stage k

to O(n). To do so, we will use a single execution of a modified version of
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Algorithm 1 to compute the threshold b1 discussed above. The high-level

idea is to treat b0 as a variable instead of a fixed value. Initially, we set b0

to max(µ0) + 1, the minimum value satisfying the associated precondition of

Algorithm 1. We also maintain a lower bound b′1 on the threshold b1. We

initialize b′1 to a low dummy value, such as 0. Each time the condition of

the while loop is evaluated, we check whether the color of the current state is

red, green, or yellow. If the color is yellow, we continue the execution without

altering b0 or b′1. If the color is red, then we halt and output the threshold

b1 = b′1. If the color is green, then we assign b′1 to the current value of b0, and

we increment b0.

Unfortunately, we cannot simply increment b0 and continue the execu-

tion. While incrementing b0 has no impact on the white-black categorization of

the agents processed so far, and on the matches of the white agents, it causes

the match of each black agent to be incremented. This leads to two difficulties

that we now discuss.

The first difficulty is that there can be a lot of black agents, making

it expensive to maintain an explicit match for each black agent. Accordingly,

when we color an agent black, we do not explicitly match that agent to a

particular object. Instead, we maintain an ordered list of the black agents. At

any given point in the execution, the black agents are implicitly matched (in

the order specified by the list) to the contiguous block of objects that starts

with the current value of b0. Thus, when b0 is incremented, the matches of the

black agents are implicitly updated in constant time.
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The second difficulty associated with incrementing b0 is that if a black

agent a is matched to object right(�, a) just before the increment, then it is

infeasible to shift the match of agent a to the right. If this happens, we need to

recognize that executing Algorithm 1 from the beginning with the new higher

value of b0 results in a red state, and so we should terminate. To recognize

such events, we introduce an integer variable called slack. We maintain the

invariant that slack is equal to the maximum number of positions we can shift

the list of black agents to the right without violating a constraint. We initialize

slack to right(�, |µ1|) minus the initial value max(µ0)+1 of b0. When we color

an agent a black, we update slack to the minimum of its current value and

right(�, a)− b0− `, where ` denotes the number of previously-identified black

agents. When we increment b0, we decrement slack in order to maintain the

invariant. If slack becomes negative, we recognize that the program should be

in a red state, and we terminate.

Upon termination, it is straightforward to argue that the output thresh-

old b1 is correct. If b1 is equal to the initial dummy value, then the sole candi-

date match for agent k is object hole(µ0). If not, object b1 is a candidate, and

if hole(µ0) is not equal to b1 and left(�, k) ≤ hole(µ0) then hole(µ0) is a second

candidate. If there are two candidates, we use the preferences of agent k to

select between them.

Theorem 2.3.19 below summarizes the main result of this section.

Theorem 2.3.19. Pareto-efficient matching on paths can be solved in O(n2)

time.
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2.4 Pareto-Efficient Reachability on Generalized Stars

Throughout this section, let F denote an OAF associated with a gen-

eralized star G, let o denote the center object of G, let m denote the number

of branches of G, and assume that the branches are indexed from 1 to m. For

any i in [m], let `i > 0 denote the number of vertices on branch i. We refer

to the objects on branch i as 〈i, 1〉, . . . , 〈i, `i〉, where object 〈i, j〉 is at distance

j from the center. Let χ0 = (F, µ0) denote the initial configuration, and let

n = 1 +
∑

1≤i≤m `i denote the total number of vertices in G.

Our algorithm uses serial dictatorship to compute a Pareto-efficient

matching for configuration χ0. For any sequence of agents σ = a1, . . . , as we

define serial(σ) as the cardinality-s matching of F in which agent a1 (the first

dictator) is matched to its best match b1 in reach(χ0, τ0) where τ0 = ∅, agent

a2 (the second dictator) is matched to its best match b2 in reach(χ0, τ1) where

τ1 = τ0 + (a1, b1), . . . , and agent as (the sth dictator) is matched to its best

match bs in reach(χ0, τs−1) where τs−1 = τs−2 + (as−1, bs−1). Observe that for

any permutation σ of the entire set of agents in F , serial(σ) is a Pareto-efficient

matching of χ0.

We iteratively grow a dictator sequence σ. We find it convenient to

partition the iterations into two phases. The first phase ends when the current

dictator is matched to the center object. The second phase reduces to solving

a collection of disjoint path problems, one for each branch.

We begin by discussing the design and analysis of the first phase. We
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find it useful to introduce the concept of a “nice pair” for OAF F . For any

configuration χ of the form (F, µ) and any matching τ of F , we say that the

pair (χ, τ) is nice for F if the following conditions hold:

• The set reach(χ, τ) is nonempty.

• For any branch i in [m], there is a (possibly empty) sequence of integers

1 ≤ j1 < · · · < js ≤ `i such that τ(χ(〈i, t〉)) = 〈i, jt〉 for 1 ≤ t ≤ s

and χ(〈i, t〉) is unmatched in τ for s < t ≤ `i. We refer to this (unique)

sequence as indices(χ, τ, i).

The first phase iteratively updates a dictator sequence σ, a configura-

tion χ, and a matching τ . We initialize the configuration χ to χ0, the initial

configuration of F . We initialize σ to the singleton sequence containing agent

χ(o), the first dictator. We use Subroutine 1 of Section 2.4.1 to determine the

best match of agent χ(o) in reach(χ), call it b, and we initialize τ to {(χ(o), b)}.

We then execute the while loop described below, which we claim sat-

isfies the following loop invariant I: (χ, τ) is a nice pair for F , agent χ(o) is

matched in τ , reach(χ, τ) = reach(χ0, τ), and τ = serial(σ). It is straight-

forward to verify that invariant I holds after initialization of σ, χ, and τ . In

Section 2.4.2, we prove that if I holds at the start of an iteration of the while

loop, then I holds at the end of the iteration.

While τ(χ(o)) 6= o, we use the following steps to update σ, χ, and τ .
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1. Since τ(χ(o)) 6= o, object τ(χ(o)) is of the form 〈i, j0〉 for some i in [m]

and j0 in [`i]. Let j1 < · · · < js denote indices(χ, τ, i), and let a denote

the agent χ(〈i, s+ 1〉).

2. Append agent a to the dictator sequence σ.

3. Use Subroutine 2 of Section 2.4.1 to set k to the maximum j such that

object 〈i, j〉 is a possible match of agent a in reach(χ, τ), or to 0 if no

such j exists.

4. If 〈i, s+ 1〉 ≺a · · · ≺a 〈i, 1〉 ≺a o, then perform the following steps.

(a) Let µ denote the matching of F such that χ = (F, µ), let µ∗ denote

the matching obtained from µ by applying s + 1 swaps to move

agent a from object 〈i, s + 1〉 to the center object o, and let χ∗

denote the configuration (F, µ∗).

(b) Use Subroutine 1 of Section 2.4.1 to set b to the best match of agent

a in reach(χ∗, τ).

(c) If k = 0 or b �a 〈i, k〉, then set χ to χ∗, τ to τ + (a, b), and k to −1.

5. If k > 0, then set τ to τ + (a, 〈i, k〉).

Upon termination of the first phase, invariant I holds and τ(χ(o)) = o.

Thus, letting χ1 denote the value of program variable χ at the end of the first

phase, we know that (χ1, τ) is a nice pair for F , τ(χ1(o)) = o, reach(χ1, τ) =

reach(χ0, τ), and τ = serial(σ).
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In the second phase, we perform the following computation for each

branch i (in arbitrary order). First, we let j1 < · · · < js denote indices(χ1, τ, i).

Second, we perform the following steps for j ranging from s+ 1 to `i.

1. Let a denote agent χ1(〈i, j〉), and append a to σ.

2. Use Subroutine 3 of Section 2.4.1 to set b to the best match of agent a

in reach(χ1, τ).

3. Set τ to τ + (a, b).

At the end of the second phase, we output the matching τ .

Let I ′ denote the invariant “reach(χ1, τ) = reach(χ0, τ) and τ = serial(σ)”.

Thus invariant I ′ holds at the end of the first phase. Moreover, it is easy to see

that invariant I ′ continues to hold immediately after each execution of step 3

in the second phase.

Since invariant I holds in the first phase and invariant I ′ holds in the

second phase, the overall algorithm faithfully implements the serial dictator-

ship framework discussed at the beginning of this section. Thus the algorithm

correctly computes a Pareto-efficient matching for configuration χ0. In Sec-

tion 2.4.1, we explain how to implement Subroutines 1, 2, and 3 so that the

overall running time of the algorithm is O(n2 log n).
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2.4.1 Polynomial-Time Implementation

In this section we describe an efficient implementation of the two-phase

algorithm presented in Section 2.4. Our description of the first phase make use

of Subroutines 1 and 2, while our description of the second phase makes use

of Subroutine 3. Below we discuss how to implement Subroutines 1, 2, and 3

efficiently. Our analysis of the time complexity of these subroutines assumes

that a certain preprocessing phase has been performed. Specifically, for each

agent a in F , we precompute the set of all objects b such that the sequence of

objects χ0(a) = b1, . . . , bk = b on the unique simple path from χ0(a) (the initial

object of agent a) to b in G satisfies b1 ≺a · · · ≺a bk. It is straightforward to

compute each such set in O(n) time, and hence the overall time complexity of

the preprocessing phase is O(n2).

We now describe Subroutine 1. The input to Subroutine 1 is a nice

pair (χ, τ) for F such that agent a = χ(o) is unmatched in τ . The output

of Subroutine 1 is the best match of a in reach(χ, τ). Subroutine 1 works

by considering each branch i in turn to compute the best branch-i match of

a in reach(χ, τ). For a fixed i in [m], the latter problem can be solved as

follows. Consider the path P of objects consisting of the center object o plus

branch i. By restricting the generalized star configuration χ to path P , we

obtain a path configuration χP . Similarly, by restricting the matching τ to

the agents associated with path P , we obtain a matching τP defined on path

P . For any given j in [`i], it is easy to argue that object 〈i, j〉 is a possible

match of a in reach(χ, τ) if and only if object 〈i, j〉 is a possible match of a in
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reach(χP , τP ). Moreover, we can determine whether 〈i, j〉 is a possible match

of a in reach(χP , τP ) by performing at most one call to Algorithm 1 on path P .

Given the results of the preprocessing phase, the additional time complexity

required to determine whether 〈i, j〉 is a possible match of a in reach(χP , τP )

is O(`i). Using binary search, we can determine the maximum j (if any)

such that 〈i, j〉 is a possible match of a in reach(χP , τP ) in O(`i log `i) time.

(Remark: Letting j1 < · · · < js denote indices(χ, τ, i), we can restrict the

binary search to the interval {1, . . . , j1 − 1} if s > 0.) Thus we can determine

the best branch-i match of a (if any) in reach(χ, τ) in O(`i log `i) time, and

hence we can determine the best match of a in reach(χ, τ) in O(n log n) time.

We now describe Subroutine 2. The input to Subroutine 2 is a nice pair

(χ, τ) for F and an integer i in [m] such that s < `i where j1 < · · · < js denotes

indices(χ, τ, i). The output k of Subroutine 2 is the maximum j such that 〈i, j〉

is a possible match of agent a = 〈i, s+1〉 in reach(χ, τ), or 0 if no such j exists.

As in Subroutine 1, we can reduce this task to a path problem. In the present

case, we can restrict χ and τ to branch i, that is, we do not need to consider

the extended path that includes the center object. Moreover, if s > 0 we can

restrict the binary search for j to the interval {js + 1, . . . , `i}. Each iteration

of the binary search involves a single call to Algorithm 1. Given the results

of the preprocessing phase, the additional time complexity required for each

such call is O(`i). Taking into account the binary search, this approach yields

a time complexity of O(`i log `i).

Having discussed Subroutines 1 and 2, we can now establish an upper
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bound on the time complexity of the first phase. The first phase performs at

most n iterations. The worst-case running time of each iteration is dominated

by the cost of a possible call to Subroutine 1, and hence is O(n log n). Thus

the overall running time of the first phase is O(n2 log n).

We now discuss Subroutine 3 and the time complexity of the second

phase. Since τ(χ(o)) = o throughout the second phase, the sequence of calls to

Subroutine 3 that we make for a given value of i can be resolved by restricting

attention to the branch-i objects and their matched agents under configuration

χ1. Because (χ1, τ) is a nice pair for F at the end of the first phase, and

because we iterate over increasing values of j from s + 1 to `i, the approach

of Section 2.3.4 can be used to implement each successive call to Subroutine 3

in O(`i) time. Thus the time required to process branch i is O(`2
i ), and the

overall time complexity of the second phase is
∑

i∈[m] O(`2
i ) = O(n2).

Since the time complexity of the preprocessing phase is O(n2), the

time complexity of the first phase is O(n2 log n), and the time complexity of

the second phase is O(n2), we conclude that the overall time complexity of the

algorithm is O(n2 log n).

2.4.2 The First Phase Invariant

The following sequence of lemmas pertain to an arbitrary iteration in

the first phase. We assume that invariant I holds before the iteration, and we

seek to prove that invariant I holds after the iteration. We use the symbols σ,

χ, and τ (resp., σ′, χ′, τ ′) to refer to the values of the corresponding program
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variables at the start (resp., end) of the iteration. We use the symbols i, j0,

s, j1, . . . , js, a, µ, µ∗, and χ∗ to refer to the corresponding program variables;

these variables do not change in value during the iteration. We use the symbol

k to refer to the initial value of the corresponding program variable. The value

of the program variable k can change at most once (see step 4(c)). We use

the symbol k′ to refer to the value of program variable k at the end of the

iteration.

Lemma 2.4.1. We have jt > t for all t in [s].

Proof. Since (χ, τ) is nice, we have reach(χ, τ) 6= ∅. Let µ′ denote a matching

in reach(χ, τ). Since τ(χ(〈i, 1〉)) = 〈i, j1〉 and agent χ(o) cannot overtake

agent χ(〈i, 1〉) as we transform the matching associated with χ to µ′, we have

1 ≤ j0 < j1. Since j1 < · · · < js, we deduce that j2 > 2, . . . , js > s.

It follows from Lemma 2.4.1 that s < `i and hence that agent a is

well-defined. Agent a serves as the dictator in this iteration.

Throughout the remainder of this section, let R denote the set of all

matchings in reach(χ, τ) that match a to an object in branch i, and let J

denote the set of all integers j in [`i] such that object 〈i, j〉 is a possible match

of agent a in R. Thus k is the maximum integer in J , or 0 if J is empty.

Lemma 2.4.2. The following statements hold: (1) if 〈i, s + 1〉 ≺a · · · ≺a

〈i, 1〉 ≺a o does not hold, then reach(χ, τ) = R; (2) if j belongs to J and s = 0,

then j > 1; (3) if j belongs to J and s > 0 then j > js; (4) if k > 0 then 〈i, k〉 is
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the best match of agent a in R; (5) if k = 0 then 〈i, s+1〉 ≺a · · · ≺a 〈i, 1〉 ≺a o

holds.

Proof. We begin by proving part (1). Assume that 〈i, s+1〉 ≺a · · · ≺a 〈i, 1〉 ≺a

o does not hold. It follows agent a cannot be matched to an object outside of

branch i in reach(χ, τ). Hence reach(χ, τ) = R, as required.

To establish parts (2) through (5), we consider two cases.

Case 1: J = ∅. In this case, k = 0 and hence parts (2), (3), and (4) hold

vacuously. It remains to prove part (5). Assume for the sake of contradiction

that 〈i, s+ 1〉 ≺a · · · ≺a 〈i, 1〉 ≺a o does not hold. It follows from part (1) that

reach(χ, τ) = R = ∅, contradicting invariant I.

Case 2: J 6= ∅. Thus k > 0 and hence part (5) holds vacuously. In

the proofs of parts (2), (3), and (4) below, let j belong to J , and let µ′ be a

matching in R such that µ′(a) = 〈i, j〉.

We first argue that part (2) holds. Assume for the sake of contradiction

that s = 0 and j = 1. Thus µ′(a) = χ(a) = 〈i, 1〉, and hence j0 > 1. It follows

that agent χ(o) overtakes the stationary agent a as we transform the matching

associated with χ to µ′, a contradiction.

Now we argue that part (3) holds. Assume that s > 0. We begin by

proving that j ≥ s + 1. Assume for the sake of contradiction that j < s + 1.

Since (χ, τ) is nice, a is the closest branch-i agent to the center that is “inward-

moving” in the sense that µ′(a) is closer to the center than χ(a). Since no

inward-moving agent can overtake another inward-moving agent, and since
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agent χ(o) moves into branch i, we deduce that agent a moves out of branch

i, a contradiction since j belongs to J . Thus j ≥ s + 1. Now we argue that

j > js. Lemma 2.4.1 implies that agent χ(〈i, s〉) moves outward to object

〈i, js〉. Since j ≥ s + 1, agent a is either stationary or outward-moving, and

hence cannot be overtaken by the outward-moving agent χ(〈i, s〉). It follows

that j > js, as required.

Now we argue that part (4) holds. Since j > js and Lemma 2.4.1

implies js > s, we have j > s+ 1. Thus agent a is outward-moving on branch

i. It follows that 〈i, k〉 is the best match of agent a in R, as required.

Lemma 2.4.3. Assume that 〈i, s + 1〉 ≺a · · · ≺a 〈i, 1〉 ≺a o holds. Then

µ F µ
∗ and

reach(χ, τ) \R = reach(χ∗, τ) 6= ∅.

Proof. Since (χ, τ) is nice and 〈i, s+1〉 ≺a · · · ≺a 〈i, 1〉 ≺a o holds, Lemma 2.4.1

implies that the s + 1 exchanges used to transform µ to µ∗ are all Pareto-

improving. Hence µ F µ
∗,

The set reach(χ∗, τ) is nonempty since it includes µ∗. It remains to

prove that reach(χ, τ) \R = reach(χ∗, τ).

We first argue that reach(χ∗, τ) ⊆ reach(χ, τ) \ R. Let µ∗∗ belong to

reach(χ∗, τ). Thus µ∗  F µ∗∗. Since µ  F µ∗, we conclude that µ  F

µ∗∗ and hence µ∗∗ belongs to reach(χ, τ). Since χ∗(o) = a and 〈i, 1〉 ≺a o,

we deduce that µ∗∗(a) does not belong to branch i. Since µ∗∗ belongs to
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reach(χ, τ) and µ∗∗(a) does not belong to branch i, we conclude that µ∗∗

belongs to reach(χ, τ) \R.

Now we argue that reach(χ, τ) \ R ⊆ reach(χ∗, τ). Let µ∗∗ belong to

reach(χ∗, τ) \ R. From our discussion of the reachable matching problem on

trees in Section 2.7.1, we can obtain a sequence of swaps that transforms µ

to µ∗∗ by repeatedly performing any swap that moves the two participating

agents closer to their matched objects under µ∗∗. Since µ∗∗(a) does not belong

to branch i, this means that we can begin by performing the s+ 1 swaps that

transform µ to µ∗. It follows that µ∗∗ belongs to reach(χ∗, τ), as required.

Lemma 2.4.3 implies that if line 4(b) is executed, then reach(χ∗, τ) 6= ∅,

and hence object b is well-defined.

Lemma 2.4.4. Assume that 〈i, s+ 1〉 ≺a · · · ≺a 〈i, 1〉 ≺a o holds. If k = 0 or

b �a 〈i, k〉, then b is the best match of agent a in reach(χ, τ) and

reach(χ, τ ′) = reach(χ′, τ ′).

Otherwise, 〈i, k〉 is the best match of agent a in reach(χ, τ).

Proof. We consider two cases.

Case 1: k = 0. In this case, R = ∅ and χ′ = χ∗. Hence Lemma 2.4.3

implies reach(χ∗, τ) = reach(χ, τ). Thus object b is the best match of agent a

in reach(χ, τ) and reach(χ, τ ′) = reach(χ′, τ ′).
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Case 2: k > 0. Since k > 0, object 〈i, k〉 is the best match of agent a in

R. Lemma 2.4.3 implies that b is the best match of agent a in reach(χ∗, τ) =

reach(χ, τ) \R. We consider two subcases.

Case 2.1: b �a 〈i, k〉. Thus b is the best match of agent a in reach(χ, τ),

χ′ = χ∗, τ ′ = τ + (a, b), and reach(χ, τ ′) = reach(χ′, τ ′).

Case 2.2: b ≺a 〈i, k〉. Thus object 〈i, k〉 is the best match of agent a in

reach(χ, τ).

The next lemma establishes that invariant I holds at the end of the

iteration.

Lemma 2.4.5. At the end of the iteration, (χ′, τ ′) is a nice pair for F , agent

χ′(o) is matched in τ ′, reach(χ′, τ ′) = reach(χ0, τ
′), and τ ′ = serial(σ′).

Proof. Observe that either k′ = −1 or k′ = k. Below we consider these two

cases separately.

Case 1: k′ = −1. In this case, step 4(c) is executed and the associated

if condition evaluates to true. Furthermore, the if condition associated with

step 5 evaluates to false. Thus χ′ = χ∗ and τ ′ = τ + (a, b). It is straightfor-

ward to verify that the pair (χ′, τ ′) is nice for F with indices(χ′, τ ′, i) equal

to j0 < · · · < js, and that χ′(o) = a is matched in τ ′. By Lemma 2.4.4,

object b is the best match of agent a in reach(χ, τ). Since invariant I im-

plies τ = serial(σ) and reach(χ, τ) = reach(χ0, τ), we deduce that τ ′ =

serial(σ′). By Lemma 2.4.4, reach(χ, τ ′) = reach(χ′, τ ′). Invariant I implies

69



reach(χ, τ) = reach(χ0, τ) and hence reach(χ, τ ′) = reach(χ0, τ
′). We conclude

that reach(χ′, τ ′) = reach(χ0, τ
′), as required.

Case 2: k′ = k. We begin by proving that k > 0. Assume for the sake

of contradiction that k = 0. Part (5) of Lemma 2.4.2 implies that 〈i, s+ 1〉 ≺a

· · · ≺a 〈i, 1〉 ≺a o holds. Hence step 4(c) is executed, and since k = 0, the

associated if condition evaluates to true. Hence k′ = −1, contradicting the

Case 2 assumption.

Since k′ = k > 0, we deduce that χ′ = χ and τ ′ = τ + (a, 〈i, k〉). It is

straightforward to verify that (χ′, τ ′) is nice for F with indices(χ′, τ ′, i) equal

to j1 < · · · < js < k. Since χ′ = χ and invariant I holds, we deduce that agent

χ′(o) is matched in τ ′.

We claim that 〈i, k〉 is the best match of agent a in reach(χ, τ). If

〈i, s + 1〉 ≺a · · · ≺a 〈i, 1〉 ≺a o does not hold, the claim follows from parts (1)

and (4) of Lemma 2.4.2, so assume that 〈i, s + 1〉 ≺a · · · ≺a 〈i, 1〉 ≺a o holds.

Thus the if condition of step 4 evaluates to true, and hence the if condition of

step 4(c) is evaluated. Since k′ = k > 0, the latter if condition evaluates to

false, and hence Lemma 2.4.4 implies that the claim holds.

Invariant I implies reach(χ, τ) = reach(χ0, τ) and τ = serial(σ). Thus

the claim of the preceding paragraph implies τ ′ = serial(σ′).

Since χ′ = χ, invariant I implies reach(χ′, τ) = reach(χ0, τ) and hence

reach(χ′, τ ′) = reach(χ0, τ
′).
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2.5 NP-Completeness of Reachable Object on Cliques

It is easy to see that the reachable object on cliques problem belongs

to NP. In this section, we prove that the problem is NP-hard by presenting a

polynomial-time reduction from the known NP-complete problem 2P1N-SAT

to reachable object on cliques.

An instance of 2P1N-SAT is a propositional formula f over n variables

x1, . . . , xn with the following properties: f is the conjunction of a number of

clauses, where each clause is the disjunction of a number of literals, and each

literal is either a variable or the negation of a variable; each variable occurs

exactly three times in f , once in each of three distinct clauses; each variable

xi occurs twice as a positive literal (i.e., xi) and once as a negative literal (i.e.,

¬xi).

Throughout the remainder of Section 2.5, let f denote a given instance

of 2P1N-SAT with n variables x1, . . . , xn and m clauses C1, . . . , Cm.

In Section 2.5.1, we describe a polynomial-time procedure for trans-

forming f into an instance I of reachable object on cliques. In Section 2.5.2,

we prove that f is a positive instance of 2P1N-SAT if and only if I is a positive

instance of reachable object on cliques.

2.5.1 Description of the Reduction

We now describe how we transform a 2P1N-SAT instance f into a

corresponding instance I of reachable object on cliques. For each variable xi
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in f , there are two agents x̂1
i and x̂2

i in I. For each clause Cj in f , there are

three agents ûj, v̂j and ŵj in I. Note that the name we use to refer to each

agent in I includes a hat symbol. We adopt the convention that if the hat

symbol is removed from the name of such an agent, we obtain the name of the

initial endowment of that agent. For example, agents ûj and x̂1
i are initially

endowed with objects uj and x1
i , respectively. For convenience, we define Û

as the set of agents {ûj | j ∈ [m]}, and we define U as the set of objects

{uj | j ∈ [m]}. We define V̂ , V , Ŵ , W , X̂, and X similarly.

Let A (resp., B) denote the set of all agents (resp., objects) in I. Let

N denote |B|. Thus N = 3m + 2n. Let KN denote the complete graph with

vertex set B, and let E denote the edge set of KN . Let µ0 denote the initial

matching of agents with objects.

Below we describe the preferences � of the agents in A over the objects

in B. Let χ = (F, µ0) denote the initial configuration of I, where F = (A,B,�

, E). Instance I asks the following reachability question: Is there a matching

µ in reach(χ) such that µ(ŵm) = u1?

Let variable xi appear in clauses Cp1i and Cp2i as a positive literal, where

p1
i < p2

i , and in clause Cni
as a negative literal. The definition of 2P1N-SAT

implies that p1
i , p

2
i , and ni are distinct.

Below we list the preferences of each agent in A. In doing so, we specify

only the objects that an agent prefers to its initial endowment; the order of

the remaining objects is immaterial. The initial endowment is shown in a box.
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For any i in [n], the preferences of agent x̂1
i are

x̂1
i : x2

i � wp1i � vp1i � x1
i

and the preferences of agent x̂2
i are

x̂2
i : wni

� vni
� wp2i � vp2i � x1

i � x2
i

if ni < p2
i , and are

x̂2
i : wp2i � vp2i � wni

� vni
� x1

i � x2
i

otherwise.

For any j in [m], the preferences of agent ûj are

ûj : vj � uj .

For any j in [m− 1], the preferences of agent ŵj are

ŵj : uj+1 � wj .

The preferences of agent ŵm are

ŵm : u1 � v1 � w1 � u2 � v2 � w2 � . . . � um � vm � wm .

For any j in [m], the preferences of agent v̂j are

v̂j : {x1
i | j ∈ {p1

i , ni}} ∪ {x2
i | j = p2

i } � vj ,

where the set of objects preceding vj may be ordered arbitrarily.

This completes the description of the reachable object on cliques in-

stance I.
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2.5.2 Correctness of the Reduction

In this section, we prove that f is a positive instance of 2P1N-SAT if

and only if I is a positive instance of reachable object on cliques. Lemma 2.5.4

establishes the only if direction. Lemmas 2.5.11 through 2.5.17 lay the ground-

work for Lemma 2.5.18, which establishes the if direction.

For the purposes of our analysis, it is convenient to assign a non-

negative integer rank to each object in B, as follows. For any j in [m], we

define rank(uj) as 3j − 2, rank(vj) as 3j − 1, and rank(wj) as 3j. The rank of

any object in X is defined to be 0.

Observation 2.5.1 below can be justified by enumerating all those agents

who like object x1
i at least as well as their initial endowment. Observa-

tions 2.5.2 and 2.5.3 can be justified in a similar manner.

Observation 2.5.1. For any i in [n] and any matching µ in reach(χ), agent

µ−1(x1
i ) belongs to {x̂1

i , x̂
2
i , v̂p1i , v̂ni

}.

Observation 2.5.2. For any i in [n] and any matching µ in reach(χ), agent

µ−1(x2
i ) belongs to {x̂1

i , x̂
2
i , v̂p2i }.

Observation 2.5.3. For any j in [m] and any matching µ in reach(χ), agents

µ−1(vj) and µ−1(wj) belong to {ûj, v̂j, ŵm}∪Aj and {ŵj, ŵm}∪Aj, respectively,

where Aj denotes

{x̂1
i | j = p1

i } ∪ {x̂2
i | j ∈ {p2

i , ni}}.
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Lemma 2.5.4. Assume that 2P1N-SAT instance f is satisfiable. Then there

is a matching µ in reach(χ) such that µ(ŵm) = u1 in the reachable object on

cliques instance I.

Proof. Let σ : {x1, . . . , xn} → {0, 1} denote a satisfying assignment for f . We

specify a sequence of matchings µ0, . . . , µ3n+3m−1, which depends on σ, such

that (1) µ3n+3m−1(ŵm) = u1 and (2) µk−1 = µk or µk−1 →F µk for all k in

[3n+ 3m− 1]. We obtain this sequence in two phases.

In the first phase, we perform the following three steps for each i from

1 to n.

1. If σ(xi) = 1 and µ3i−3(v̂p1i ) = vp1i , we set µ3i−2 to the matching obtained

by swapping v̂p1i with x̂1
i in µ3i−3. Otherwise, we set µ3i−2 to µ3i−3.

2. If σ(xi) = 1 and µ3i−2(v̂p2i ) = vp2i , we set µ3i−1 to the matching obtained

by swapping v̂p2i with x̂2
i in µ3i−2. Otherwise, we set µ3i−1 to µ3i−2.

3. If σ(xi) = 0 and µ3i−1(v̂ni
) = vni

, we set µ3i to the matching obtained

by first swapping x̂1
i with x̂2

i , and then swapping v̂ni
with x̂2

i , in µ3i−1.

Otherwise, we set µ3i to µ3i−1.

It is easy to check that all of the swaps in the first phase are valid.

Let Aj be as defined in the statement of Observation 2.5.3. We claim

that at the end of the first phase, agent µ−1
3n (vj) belongs to Aj for all j in [m].

Assume for the sake of contradiction that for some j in [m], agent µ−1
3n (vj) does
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not belong to Aj. Since agents ûj and ŵm do not participate in any swap in the

first phase, µ3n(ûj) = uj and µ3n(ŵm) = wm. Since µ−1
3n (vj) does not belong

to {ûj, ŵm} ∪ Aj, Observation 2.5.3 implies that µ3n(v̂j) = vj. Let variable

xi satisfy clause Cj. The swaps in the ith iteration of first phase imply that

µ−1
3i (vj) 6= v̂j. Since no agent in V̂ participates in more than one swap in the

first phase, we have µ−1
3n (vj) 6= v̂j, a contradiction since µ3n(v̂j) = vj. This

completes the proof of the claim.

Note that there is a unique object of rank k for each k in [3m]. Using the

claim stated above, together with the fact that no agent in Û ∪Ŵ participates

in a swap in the first phase, it is easy to verify that for any rank k in [3m− 1],

there is an agent a such that rank(µ3n(a)) = k and a prefers the object of

rank k+ 1 to the object of rank k. The preferences of agent ŵm imply that for

any rank k in [3m− 1], agent ŵm prefers the object of rank k to the object of

rank k + 1. Moreover, rank(µ3n(ŵm)) = 3m. In the second phase we perform

3m− 1 swaps, each involving agent ŵm. For k running from 3m− 1 down to

1, we set µ3n+3m−k to the matching obtained by swapping ŵm with the agent

matched to the object of rank k in µ3n+3m−k−1. The foregoing arguments show

that all of these 3m − 1 swaps are valid and rank(µ3n+3m−1(ŵm)) = 1. Thus

µ3n+3m−1(ŵm) = u1.

Observation 2.5.5 below can be justified by using the preferences of

agent ŵm and the fact that if any agent a swaps from object b to b′ then

b′ �a b. Observations 2.5.6 through 2.5.10 can be justified similarly.
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Observation 2.5.5. For any matchings µ1 and µ2 in reach(χ) such that

µ1 →F µ2, we have rank(µ2(ŵm)) ≤ rank(µ1(ŵm)).

Observation 2.5.6. For any j in [m − 1] and any matchings µ1 and µ2 in

reach(χ) such that µ1 →F µ2, we have rank(µ2(ŵj)) ≤ rank(µ1(ŵj)) + 1.

Observation 2.5.7. For any j in [m] and any matchings µ1 and µ2 in reach(χ)

such that µ1 →F µ2, we have rank(µ2(ûj)) ≤ rank(µ1(ûj)) + 1.

Observation 2.5.8. For any j in [m] and any matchings µ1 and µ2 in reach(χ)

such that µ1 →F µ2, we have rank(µ2(v̂j)) ≤ rank(µ1(v̂j)).

Observation 2.5.9. For any i in [n] and any matchings µ1 and µ2 in reach(χ)

such that µ1 →F µ2 and µ1(x̂1
i ) belongs to B \ X, we have rank(µ2(x̂1

i )) ≤

rank(µ1(x̂1
i )) + 1.

Observation 2.5.10. For any i in [n] and any matchings µ1 and µ2 in

reach(χ) such that µ1 →F µ2 and µ1(x̂2
i ) belongs to B\X, we have rank(µ2(x̂2

i )) ≤

rank(µ1(x̂2
i )) + 1.

Lemma 2.5.11 below follows from Observations 2.5.5 through 2.5.10.

Lemma 2.5.11. For any agent a in A and any matchings µ1 and µ2 in

reach(χ) such that µ1 →F µ2 and µ1(a) belongs to B\X, we have rank(µ2(a)) ≤

rank(µ1(a)) + 1.

Lemma 2.5.12. Let µ1 and µ2 be matchings in reach(χ) such that µ1 →F µ2.

Then

rank(µ2(ŵm)) ≥ rank(µ1(ŵm))− 1.
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Proof. Assume for the sake of contradiction that rank(µ2(ŵm)) < rank(µ1(ŵm))−

1. The preferences of ŵm imply that µ1(ŵm) and µ2(ŵm) belong to B \ X.

Thus there is an agent a such that µ1(a) belongs to B \X and rank(µ2(a)) >

rank(µ1(a)) + 1, contradicting Lemma 2.5.11.

Lemma 2.5.13. Let i belong to [n] and j belong to [m]. If v̂j prefers x1
i to vj,

then v̂j prefers vj to x2
i . Similarly, if v̂j prefers x2

i to vj, then v̂j prefers vj to

x1
i .

Proof. Assume that v̂j prefers x1
i to vj. The preferences of v̂j imply that

j ∈ {p1
i , ni}. Since p1

i , p
2
i , and ni are distinct, j 6= p2

i . Hence the preferences

of v̂j imply that v̂j prefers vj to x2
i . We can use a similar argument to prove

that if v̂j prefers x2
i to vj, then v̂j prefers vj to x1

i .

Lemma 2.5.14. Let µ1 and µ2 be matchings in reach(χ) such that µ1 →F µ2

and µ1(x̂2
i ) = x2

i . Then µ2(x̂2
i ) belongs to {x1

i , x
2
i , vp2i }.

Proof. By examining the preferences of x̂2
i we deduce that object µ2(x̂2

i ) be-

longs to

{wni
, wp2i , vni

, vp2i , x
1
i , x

2
i }.

Assume for the sake of contradiction that µ2(x̂2
i ) belongs to {wni

, wp2i , vni
}.

We consider three cases.

Case 1: µ2(x̂2
i ) = wni

. Thus µ−1
1 (wni

) = µ−1
2 (x2

i ). Since µ−1
2 (x2

i ) 6= x̂2
i ,

Observation 2.5.2 implies that µ−1
2 (x2

i ) belongs to {x̂1
i , v̂p2i }. We consider two

cases.
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Case 1.1: µ−1
2 (x2

i ) = x̂1
i . Thus µ−1

1 (wni
) = x̂1

i . By examining the

preferences of x̂1
i , we deduce that µ1(x̂1

i ) 6= wni
, a contradiction.

Case 1.2: µ−1
2 (x2

i ) = v̂p2i . A contradiction follows using a similar argu-

ment as in Case 1.1.

Case 2: µ2(x̂2
i ) = wp2i . A contradiction follows using a similar argument

as in Case 1.

Case 3: µ2(x̂2
i ) = vni

. A contradiction follows using a similar argument

as in Case 1.

Thus µ2(x̂2
i ) belongs to {x1

i , x
2
i , vp2i }.

Throughout the remainder of Section 2.5.2, we say that an agent a

is satisfied in a matching µ if µ(a) is the most preferred object of a. In

Lemmas 2.5.15 through 2.5.18 below, let µ0, . . . , µt be a sequence of matching

such that µs−1 →F µs for all s in [t], and for each i in [n] let P (i), (resp.,

Q(i) and R(i)) denote the predicate that holds if there is an integer s in [t]

such that µs(x̂
1
i ) = vp1i (resp., µs(x̂

2
i ) = vp2i , µs(x̂

2
i ) = vni

). Lemmas 2.5.15

and 2.5.16 below present useful properties of these predicates.

Lemma 2.5.15. Let i be an element of [n] such that R(i) holds. Then Q(i)

does not hold.

Proof. Let s be an element of [t] such that µs(x̂
2
i ) = vni

; such an s exists since

R(i) holds. Assume that Q(i) holds. Let s′ be an element of [t] such that

µs′(x̂
2
i ) = vp2i ; such an s′ exists as Q(i) holds. We consider two cases.
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Case 1: s′ > s. Let s′′ be an integer such that s ≤ s′′ ≤ s′. The prefer-

ences of agent x̂2
i imply that p2

i < ni and µs′′(x̂
2
i ) belongs to {wp2i , vp2i , wni

, vni
}.

Hence rank(µs′′(x̂
2
i )) belongs to {3p2

i , 3p
2
i−1, 3ni, 3ni−1}. Note that rank(µs(x̂

2
i )) =

3ni−1, and rank(µs′(x̂
2
i )) = 3p2

i−1. Hence there is an s′′′ such that s ≤ s′′′ < s′

and rank(µs′′′+1(x̂2
i )) ≤ rank(µs′′′(x̂

2
i ))− 2. It follows that there is an agent a

such that µs′′′(a) belongs to B \ X and rank(µs′′′+1(a)) ≥ rank(µs′′′(a)) + 2,

contradicting Lemma 2.5.11.

Case 2: s′ < s. We can derive a contradiction using a similar argument

as in Case 1.

Lemma 2.5.16. Let i be an element of [n] such that R(i) holds. Then P (i)

does not hold.

Proof. Let s be an element of [t] such that µs(x̂
2
i ) = vni

; such an s exists since

R(i) holds. We begin by proving the following claim: There is an integer s′′ in

[s−1] such that µs′′(x̂
2
i ) = x1

i . Assume for the sake of contradiction that there

is no s′′ in [s− 1] such that µs′′(x̂
2
i ) = x1

i . Let s′′ be the least index in [s] such

that µs′′(x̂
2
i ) 6= x2

i . Since µs′′(x̂
2
i ) does not belong to {x1

i , x
2
i }, Lemma 2.5.14

implies that µs′′(x̂
2
i ) = vp2i . Thus Q(i) holds, contradicting Lemma 2.5.15.

This completes the proof of the claim.

Having established the claim, we let s′′ denote the least integer in [s−1]

such that µs′′(x̂
2
i ) = x1

i . The preferences of agent x̂2
i imply that µs′′−1(x̂2

i ) = x2
i .

Let a be the agent µ−1
s′′−1(x1

i ). Since a 6= x̂2
i , Observation 2.5.1 implies that a

belongs to {x̂1
i , v̂p1i , v̂ni

}. We consider two cases.
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Case 1: a ∈ {v̂p1i , v̂ni
}. Lemma 2.5.13 implies that a does not prefer x2

i

to their initially endowment. Hence µ−1
s′′ (x

2
i ) 6= a, a contradiction.

Case 2: a = x̂1
i . Since µ0(x̂1

i ) = µs′′−1(x̂1
i ) = x1

i , we deduce that

µs(x̂
1
i ) = x1

i 6= vp1i for all s′ such that 0 ≤ s′ < s′′. Moreover, x̂1
i is satisfied

in µs′′ and hence µs′(x̂
1
i ) = x2

i 6= vp1i for all s′ such that s′′ ≤ s′ ≤ t. Hence

µs′(x̂
1
i ) 6= vp1i for all s′ such that 0 ≤ s′ ≤ t. Thus P (i) does not hold.

Lemma 2.5.17. Let j belong to [m] and assume that µt(ŵm) = u1. Then

there is an s in [t− 1] such that µs(ŵm) = wj and µs+1(ŵm) = vj.

Proof. The only object with rank 3j (resp., 3j − 1) is wj (resp., vj). Since

rank(µ0(ŵm)) = 3m and rank(µt(ŵm)) = 1, Lemma 2.5.12 implies that for

every rank k in [3m−1], there is an integer s in [t−1] such that rank(µs(ŵm)) =

k + 1 and rank(µs+1(ŵm)) = k. The lemma follows by choosing k to be

3j − 1.

Lemma 2.5.18. Assume that µt(ŵm) = u1. Then the 2P1N-SAT instance f

is satisfiable.

Proof. We construct an assignment σ : {x1, . . . , xn} → {0, 1} for f as follows:

for any i in [n], we set σ(xi) to 1 if P (i) ∨Q(i) holds, and to 0 otherwise.

We now show that σ satisfies f . Let j belong to [m]. Let s be an

element of [t − 1] such that µs(ŵm) = wj and µs+1(ŵm) = vj; such an s

exists by Lemma 2.5.17. Thus there is an agent a such that µs(a) = vj and

µs+1(a) = wj. Since a 6= ŵm, Observation 2.5.3 implies that exactly one of the
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following three statements holds: (1) j = p1
i and µs(x̂

1
i ) = vj; (2) j = p2

i and

µs(x̂
2
i ) = vj; (3) j = ni and µs(x̂

2
i ) = vj. We consider two cases.

Case 1: (1) or (2) holds. Then P (i) or Q(i) holds, respectively. Hence

σ(xi) = 1. By construction, the variable xi appears as the positive literal xi

in clause Cj. Thus, Cj is satisfied.

Case 2: (3) holds. Then R(i) holds. Lemmas 2.5.15 and 2.5.16 imply

that P (i) and Q(i) do not hold. Hence σ(xi) = 0. By construction, the variable

xi appears as the negative literal ¬xi in clause Cj. Thus, Cj is satisfied.

Since σ satisfies each clause Cj in f , σ satisfies f .

Theorem 2.5.19. Reachable object on cliques is NP-complete.

Proof. In Section 2.5.1, we described a polynomial-time reduction from 2P1N-

SAT instance f to reachable object on cliques instance I. Thus the theorem

follows from Lemmas 2.5.4 and 2.5.18.

2.6 Other NP-Completeness and NP-Hardness Results

We prove the remaining NP-completeness and NP-hardness results stated

in Table 2.1. Specifically, we show that the reachable object problem on gen-

eralized stars is NP-complete, reachable matching problem on cliques is NP-

complete, and Pareto-efficient matching problem on cliques is NP-hard. These

results are proved by adapting the corresponding proofs of Gourvès et al. [91]

and Müller and Bentert [130] for the object-moving model. The most signifi-

cant changes are associated with the proof of the first result.
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2.6.1 NP-Completeness for Reachable Object on Generalized Stars

Theorem 2.6.1. Reachable object on generalized stars is NP-complete.

Proof. It is easy to see that reachable object on generalized stars belongs to

NP. We use a reduction from the problem 2P1N-SAT to establish that the

reachable object on generalized stars is NP-complete. In an instance of 2P1N-

SAT, we are given a propositional formula f that is the conjunction of m

clauses C1, . . . , Cm. Each clause Ci is the disjunction of a number of literals,

where each literal is either a variable or the negation of a variable. The set of

variables is x1, . . . , xn. For each variable xj, the positive literal xj appears in

exactly two clauses, and the negative literal ¬xj appears in exactly one clause.

We are asked to determine whether the formula f is satisfiable.

Given such a formula f , we construct a corresponding reachable object

on generalized stars instance I = (F, µ) where F = (A,B,�, E) as follows.

We begin by describing the set of objects B. For each clause index i, there are

two objects c′i and c′′i in B. There is also a special object c′′0 in B. For each

variable index j, there are five objects in B: “dummy” objects dj and d′j; an

object nj corresponding to the lone occurrence of the negative literal ¬xj in

f ; an object pj corresponding to the first occurrence of the positive literal xj

in f (i.e., the occurrence associated with the lower-indexed clause); an object

p′j corresponding to the other occurrence of the positive literal xj. Thus there

are a total of 2m+ 5n+ 1 objects in B.

Observe that our identifier for any given object in B includes a single
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lowercase letter. By changing this letter to upper case, we obtain our identifier

for the agent initially matched to that object. So, for example, agent C ′′0 is

initially matched to object c′′0.

We now describe the edge set E. Object c′′m is the center object. We

begin by describing m + n + 1 vertex-disjoint subgraphs of (B,E): a “clause

gadget” for each clause index i, a “variable gadget” for each variable index j,

and an additional gadget that we call the “staircase”. Clause gadget i consists

of the lone object c′i. Variable gadget j is a path of length 3 containing the

objects nj, dj, p
′
j and pj, in that order, and the lone object d′j. The staircase

is a path of length m containing the sequence of objects c′′0, c
′′
1, . . . , c

′′
m. We say

that object c′′0 is at the bottom of the staircase, and that object c′′m is at the

top of the staircase. The following additional m+2n edges are used to connect

these m+n+1 subgraphs into a generalized star: there is an edge from object

c′i to object c′′m for each clause index i; there is two edges from object pj, d
′
j to

object c′′m, respectively, for each variable index j.

With regard to the agent preferences, it is enough to consider the set

objects(I, a) associated with each agent a in A. It is straightforward to ver-

ify that we can choose agent preferences so that the following conditions are

satisfied. First, for each clause index i, we have objects(I, C ′i) = {c′i} ∪ {c′′k |

i− 1 ≤ k ≤ m}. Second, for each integer i such that 0 ≤ i ≤ m, we have

objects(I, C ′′i ) = {c′′k | i ≤ k ≤ m} ∪ {pj | j ∈ [n]} ∪ {p′j | j ∈ [n]}.

Finally, for each variable index j, the following properties hold: objects(I,Dj)
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is equal to {dj, p′j, pj, d′j, c′′m}; objects(I,D′j) = {d′j, pj, p′j, c′′m}; objects(I,Nj) is

equal to {nj, dj, p′j, pj, c′′m, c′i} where i is the index of the clause that contains

the negative literal xj; objects(I, Pj) is equal to {pj, p′j, dj, c′′m, c′i} where i is

the index of the clause that contains the first occurrence of the positive literal

xj; objects(I, P ′j) is equal to {p′j, dj, nj, pj, c′′m, c′i} where i is the index of the

clause that contains the second occurrence of the positive literal xj.

We claim that agent C ′′0 (which starts out at the bottom of the staircase)

can reach object c′′m (at the top of the staircase) if and only if f is satisfiable.

We begin by addressing the “if” direction of the claim. Assume that

f is satisfiable. Fix a satisfying assignment for f , and for each clause index

i, let `i denote a literal in Ci that is set to true by this satisfying assignment.

Let Li denote the agent that corresponds to literal `i, as follows: if `i is the

negative literal ¬xj, then Li is equal to Nj; if `i is the first occurrence of the

positive literal xj, then `i is equal to Pj; if `i is the second occurrence of the

positive literal xj, then `i is equal to P ′j . Note that the Li’s are all distinct.

For any variable xj, let Lj = {Li | 1 ≤ i ≤ m} ∩ {Nj, Pj, P
′
j}. Note

that if |Lj| ≥ 2 then Lj = {Pj, P ′j}.

For each clause index i, 1 ≤ i ≤ m, let f(i) denote the unique variable

index j such that Li ∈ {Nj, Pj, P
′
j}.

We now describe how to perform a sequence of swaps that result in

agent C ′′0 being matched to object c′′m. We perform these swaps in m phases.

We will define each phase so that a certain invariant holds. Specifically, we will
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ensure that the following conditions hold after k phases have been completed,

0 ≤ k ≤ m: (1) the sequence of agents associated with the m + 1 staircase

objects, c′′0, . . . , c
′′
m is C ′1, . . . , C

′
k, C

′′
0 , . . . , C

′′
m−k; (2) for any clause index i such

that k < i ≤ m, the agent matched to object c′i is C ′i; (3) for any variable

index j such that Lj 6⊆ {Li | 1 ≤ i ≤ k}, the agents matched to the objects nj,

dj, p
′
j, and d′j are Nj, Dj, P

′
j , and D′j, respectively, and the agent matched to

object pj is Pj if {Li | 1 ≤ i ≤ k}∩Lj = ∅ and belongs to {C ′′m−i+1 | 1 ≤ i ≤ k}

otherwise.

Notice that if we can prove the invariant holds after m phases, then

condition (1) of the invariant implies that agent C ′′0 is matched to object c′′m,

as desired. It is easy to see that the invariant holds at the outset (i.e., after

0 phases). Let k be an integer such that 1 ≤ k ≤ m, and assume that the

invariant holds after k − 1 phases. It remains to describe how to implement

phase k so that the claimed invariant holds after phase k.

Let j denote f(k). We implement phase k in three stages. In the first

stage, we perform swaps within variable gadget j to move agent Lk to the

center object c′′m. To see how to do this, consider the following cases. Notice

that Condition (2) of the invariant implies the agent matched with the center

object c′′m is C ′′m−k+1.

Case 1: Lk = Nj. Thus Lj = {Nj}. Condition (3) of the invariant

implies that the agents matched to the objects nj, dj, p
′
j, pj, and d′j are Nj,

Dj, P
′
j , Pj, and D′j, respectively. Using 8 swaps within agents of variable

gadget j and agent C ′′m−k+1, we can rearrange these six agents so that the
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agents matched to the objects nj, dj, p
′
j, pj, c

′′
m, and d′j are P ′j , Pj, C

′′
m−k+1,

D′j, Nj, and Dj, respectively. Thus agent Lk is matched to the center object

c′′m, as required.

Case 2: Lk = Pj.Thus {Pj} ⊆ Lj ⊆ {Pj, P ′j}. Condition (3) of the

invariant implies that Lk is matched to object pj, so swap Lk with C ′′m−k+1 as

required.

Case 3: Lk = P ′j and Lj = {P ′j}.

Condition (3) of the invariant implies that the agents matched to the

objects nj, dj, p
′
j, pj, and d′j are Nj, Dj, P

′
j , Pj, and D′j, respectively. By

swapping P ′j with Pj and then with C ′′m−k+1, we can ensure that Lk is matched

to object c′′m, as required.

Case 4: Lk = P ′j and Lj = {Pj, P ′j}. Thus {Li | 1 ≤ i < k}∩Lj = {Pj}.

Condition (3) of the invariant implies that the agents matched to the objects

nj, dj, p
′
j, d

′
j, and pj are Nj, Dj, P

′
j , D

′
j, and an agent in the set {C ′′m−i+1 |

1 ≤ i < k}, respectively. By swapping agent P ′j with the agent matched to

pj and then with C ′′m−k+1, we can ensure that Lk is matched to object c′′m, as

required.

At the start of the second stage, the agent matched with the center

object c′′m is Lk (due to the first stage), and the agent matched with object c′k

is C ′k (due to condition (2) of the invariant). In the second stage, we use one

swap to rearrange these two agents so that the agents matched to the objects

c′′m and c′k are C ′k and Lk.
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At the start of the third stage, the sequence of agents associated with

the m+ 1 staircase objects c′′0, . . . , c
′′
m is

C ′1, . . . , C
′
k−1, C

′′
0 , . . . , C

′′
m−k, C

′
k,

(due to condition (1) of the invariant and the second stage). In the third

stage, we perform m − k + 1 swaps to move agent C ′k down from the top of

the staircase to object c′′k−1.

It remains to verify that the invariant holds after phase k. The third

stage ensures that condition (1) of the invariant holds after phase k. Condi-

tion (2) of the invariant holds after phase k because it held before phase k and

the only clause gadget involved in a swap in phase k is clause gadget k. After

phase k, condition (3) of the invariant only makes a nontrivial claim about

the allocation of a variable gadget j for which Lk = Pj and Lj = {Pj, P ′j}. In

this case, after phase k, the agents matched to the objects nj, dj, p
′
j, and d′j

are Nj, Dj, P
′
j , C

′′
m−k+1, and D′j, respectively, so the associated claim is sat-

isfied. Moreover, the claims made in condition (3) after phase k that concern

other variable gadgets follow from condition (3) before phase k since the only

variable gadget involved in any swaps in phase k is variable gadget j.

We now address the “only if” direction. Assume that a sequence S of

valid swaps results in agent C ′′0 being matched to object c′′m. Thus there are

integers 0 = t0 < t1 < · · · < tm such that for 0 ≤ k ≤ m, agent C ′′0 first

becomes matched to object c′′k at “time” tk, i.e., immediately after the first tk

swaps of S have been performed. For any integer k such that 0 ≤ k ≤ m, let
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Q(k) denote the predicate “at time tk, agent C ′i is matched to object c′′i−1 for

all i such that 1 ≤ i ≤ k”. We now use induction on k to prove that Q(k)

holds for 0 ≤ k ≤ m. It is easy to see that Q(0) holds. Let k be an integer

such that 1 ≤ k ≤ m and assume that Q(k − 1) holds. We need to prove that

Q(k) holds. Since Q(k − 1) holds, each agent in {Ci | 1 ≤ i < k} is matched

to its favorite object at time tk−1, and hence does not move thereafter. Thus,

to establish that Q(k) holds, it is sufficient to prove that the agent, call it a,

moving from object c′′k to object c′′k−1 in swap tk of S (which moves agent C ′′0

from object c′′k−1 to object c′′k) is C ′k. Since c′′k−1 belongs to objects(I, a), we

deduce that a belongs to

{C ′i | 1 ≤ i ≤ k} ∪ {C ′′i | 0 ≤ i < k}.

As discussed above, for 1 ≤ i < k, agent C ′i is permanently matched to object

c′′i−1 as of time tk−1. It follows that a does not belong to {C ′i | 1 ≤ i < k}.

It also follows that each agent in {C ′′i | 1 ≤ i < k} moved up the staircase

from object c′′k−1 to object c′′k prior to time tk−1, and hence can never return to

object c′′k−1; thus agent a does not belong to {C ′′i | 1 ≤ i < k}. Since agent a

is not equal to C ′′0 , we conclude that agent a is equal to C ′k, as required. This

completes our proof by induction that Q(k) holds for 0 ≤ k ≤ m.

Since Q(m) holds, we know that for each clause index i, the sequence

of swaps S causes agent C ′i to move away from its initial object c′i. For any

clause index i, let Ai denote {a ∈ A | c′i ∈ objects(I, a)} − C ′i. We can only

swap agent C ′i away from its initial object c′i in favor of some agent in Ai.
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Our reduction ensures that Ai is equal to the set of agents corresponding to

literals satisfying clause i, in the following sense: for each negative literal ¬xj

appearing in Ci, the agent Nj belongs to Ai; for each positive literal xj such

that the first (resp., second) occurrence of xj appears in Ci, the agent Pj (resp.,

P ′j) belongs to Ai. For each clause index i, let Li denote the agent in Ai that

swaps with agent C ′i when C ′i moves away from its initial object c′i, and let `i

denote the literal corresponding to Li. We claim that it is possible to find a

truth assignment for f that simultaneously sets all of the literals `i to true, and

thus satisfies f . To prove this, it suffices to show that for any variable index j,

if Nj belongs to {Li | 1 ≤ i ≤ m} then {Li | 1 ≤ i ≤ m}∩{Pj, P ′j} = ∅. Below

we prove that the following stronger claim holds: For any variable index j, if

a sequence of swaps causes agent Nj to leave variable gadget j (i.e., to move

from object pj to object c′′m) then agents Pj and P ′j remain in variable gadget

j under this sequence of swaps.

To prove the latter claim, let us fix a sequence of swaps S that causes

agent Nj to leave variable gadget j. The only agent a 6= Nj such that object

nj belongs to objects(I, a) is P ′j . Since Nj moves away from its initial object

nj under S, we deduce that S includes two swaps moving agent P ′j first to

object dj and then to object nj. Since object nj is a leaf, agent P ′j remains

matched to object nj thereafter. Since agent Nj does not remain matched to

object dj, it is eventually swapped to object p′j. Since agent Dj has previously

moved from object dj to object p′j, it cannot move back to object dj. The only

agent a 6∈ {Nj, Dj, P
′
j} such that dj belongs to objects(I, a) is agent Pj. Thus,
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the swap that moves agent Nj from object to dj to object p′j moves agent Pj

from object p′j to object dj. Since agent P ′j is permanently matched to object

nj, we conclude that agent Pj is permanently matched to object dj. Thus if

agent Nj leaves variable gadget j (indeed, if Nj merely reaches object p′j), then

neither agent Pj nor agent P ′j leaves variable gadget j.

2.6.2 NP-Completeness for Reachable Matching on Cliques

We begin by proving in Lemma 2.6.2 that reachable matching on gen-

eral graphs is NP-complete. We use Lemma 2.6.2 to establish that reachable

matching on cliques is also NP-complete.

Lemma 2.6.2. Reachable matching on general graphs is NP-complete.

Proof. It is easy to see that reachable matching on general graphs belongs to

NP. We use a reduction from reachable object on generalized stars to reachable

matching on general graphs to establish that reachable matching on general

graphs is NP-complete.

Fix an arbitrary reachable object on generalized stars instance I. With-

out loss of generality, we can assume that the associated configuration χ =

(F, µ) is such that F = (A,B,�, E), A = {a1, . . . , an}, B = {b1, . . . , bn}, and

χ(ai) = bi for 1 ≤ i ≤ n. We can also assume without loss of generality that

our goal is to determine whether there is a matching µ1 in reach(χ) such that

µ1(a1) = bn.

Below we describe how to transform reachable object on generalized
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stars instance I into a reachable matching on general graphs instance I ′ such

that I is a positive instance of reachable object on generalized stars if and

only if I ′ is a positive instance of reachable matching on general graphs . The

reachable matching on general graphs instance I ′ has two associated configu-

rations χ′ = (F ′, µ′) and χ′′ = (F ′, µ′′), where F ′ = (A′, B′,�′, E ′). The set

of agents A′ is equal to A ∪ A∗ where A∗ = {a∗1, . . . , a∗n}. The set of objects

B′ is equal to B ∪B∗ where B∗ = {b∗1, . . . , b∗n}. The perfect matching µ′ from

A′ to B′ satisfies µ′(ai) = bi and µ′(a∗i ) = b∗i for 1 ≤ i ≤ n. The subgraph

of (B′, E ′) induced by the set of objects B is equal to (B,E). The subgraph

of (B′, E ′) induced by the set of objects B∗ is a clique. There are n edges

connecting these two subgraphs: there is an edge from object bi to object b∗i

for 1 ≤ i ≤ n. The agent preferences �′ are defined as follows.

• For any integer i such that 1 ≤ i ≤ n, the most preferred object of agent

a∗i is bi, followed by object b∗i , followed by the remaining objects in B′ in

arbitrary order.

• The most preferred object of agent a1 is b∗n, followed by the objects in

B in the order specified by the preferences of agent a1 under �, followed

by the objects in B∗ − b∗n in arbitrary order.

• The most preferred objects of agent an are b∗1, . . . , b
∗
n−1, followed by the

objects in B in the order specified by the preferences of agent an under

�, followed by object b∗n.
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• For any integer i such that 1 < i < n, the most preferred objects of ai

are b∗i , . . . , b
∗
n−1, followed by b∗i−1, . . . , b

∗
1, followed by the objects in B in

the order specified by the preferences of agent ai under �, followed by

object b∗n.

The perfect matching µ′′ associated with configuration χ′′ maps each agent in

A′ to its most preferred object in B′. (Note that µ′′ is a perfect matching from

A′ to B′, since no two agents in A′ share the same most preferred object.)

It is easy to see that we can construct instance I ′ in polynomial time in

the size of instance I. It remains to argue that instance I is a positive instance

of reachable object on generalized stars if and only if I ′ is a positive instance

of reachable matching on general graphs.

We begin by addressing the “only if” direction. Assume that instance

I is a positive instance of reachable object on generalized stars. Thus there

is a configuration χ1 in reach(χ) such that χ1(a1) = bn. Our construction of

the agent preferences therefore ensures the existence of a configuration χ′1 in

reach(χ′) such that χ′1(ai) = χ1(ai) and χ′1(a∗i ) = χ(a∗i ) = b∗i for 1 ≤ i ≤ n.

It is easy to check that a swap across edge (bi, b
∗
i ) can be applied to

configuration χ′1 for 1 ≤ i ≤ n. Let χ′2 denote the configuration obtained by

applying these n swaps to χ′1. Thus χ′2 belongs to reach(χ′). Furthermore, it is

easy to check that each agent in A∗+a1 is matched in χ′2 to its most preferred

object under �′.

We iteratively construct a sequence of n−1 configurations χ′3, . . . , χ
′
n+1
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such that configuration χ′k satisfies the following properties for 3 ≤ k ≤ n+ 1:

χ′k belongs to reach(χ′); every agent in A∪{a1, . . . , ak−2}+an is matched in χ′k

to its most preferred object in configuration χ′k. We begin by applying zero or

one swaps to configuration χ′2 to obtain configuration χ′3. If χ′2(an) = b∗1, then

we define χ′3 as χ′2. If not, then χ′2(ai) = b∗1 for some i in {2, . . . , n− 1}. The

preferences of agents ai and an ensure that a swap between these two agents

can be applied to configuration χ′2. We define χ′3 as the configuration that

results from applying this swap. It easy to see that configuration χ′3 belongs

to reach(χ′) and that every agent in A∪ {a1, an} is matched in χ′3 to its most

preferred object under �′.

Now fix an integer k such that 4 ≤ k ≤ n+ 1, and inductively assume

that we have constructed a configuration χ′k−1 in reach(χ′) such that every

agent in A∪{a1, . . . , ak−3}+an is matched to its most preferred object under�′.

We apply zero or one swaps to configuration χ′k−1 to obtain configuration χ′k.

If χ′k−1(ak−2) = b∗k−2, then we define χ′k as χ′k−1. If not, then χ′k−1(ai) = b∗k−2

for some i in {k − 1, . . . , n− 1}. The preferences of agents ak−2 and ai ensure

that a swap between these two agents can be applied to configuration χ′k−1.

We define χ′k as the configuration that results from applying this swap. It

easy to see that configuration χ′k belongs to reach(χ′) and that every agent in

A∪{a1, . . . , ak−2}+an is matched in χ′k to its most preferred object under �′.

Since χ′n+1 belongs to reach(χ′) and every agent in A′ is matched in

χ′n+1 to its most preferred object under �′, we conclude that χ′n+1 = χ′′ and

hence that I ′ is a positive instance of reachable matching on general graphs.
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Now we address the “if” direction. Assume that instance I ′ is a pos-

itive instance of reachable matching on general graphs. Thus χ′′ belongs to

reach(χ′), and hence there is a sequence of swaps S that transforms configu-

ration χ′ into configuration χ′′.

By examining the preferences of the agents in A∗, we deduce that each

agent in A∗ participates in exactly one swap in S, and that the other agent

participating in each of these swaps belongs to A. By examining the prefer-

ences of the agents in A, we deduce that agent a1 is the agent that swaps with

agent a∗n, and that once an agent in A becomes matched to an object in B∗,

it remains matched to an object in B∗ thereafter. It follows that there is a

permutation π of {1, . . . , n} such that π(n) = 1 and a∗i swaps with aπ(i) for

1 ≤ i ≤ n.

For any integer k such that 0 ≤ k ≤ |S|, let χ′k denote the configuration

reached by applying the first k swaps of sequence S to configuration χ′. Thus

χ′ = χ′0, χ′′ = χ′|S|, and χ′k is of the form (F ′, µ′k) where µ′k is a perfect matching

from A′ to B′.

For any integer k such that 0 ≤ k ≤ |S|, we use the perfect matching µ′k

to construct a perfect matching µk from A to B, as follows: for each agent a∗i

in A∗ such that µ′k(a
∗
i ) belongs to B∗, we define µk(aπ(i)) as µ′k(aπ(i)); for each

agent a∗i in A∗ such that µ′k(a
∗
i ) belongs to B, we define µk(aπ(i)) as µ′k(a

∗
i ).

For any integer k such that 0 ≤ k ≤ |S|, we define χk as the configura-

tion (F, µk). It is straightforward to prove by induction on k that χk belongs
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to reach(χ) for 0 ≤ k ≤ |S|.

Let ` denote the least integer such that χ−1
` (bn) = a∗n. We know that

` exists since χ−1
|S|(bn) = a∗n, and that ` is positive since χ−1

0 (bn) = an. As dis-

cussed earlier, agent a1 is the only agent that participates in a swap with agent

a∗n. Hence χ−1
`−1(bn) = a1. Since χ`−1 belongs to reach(χ), we conclude that I

is a positive instance of reachable object on generalized stars, as required.

It is easy to see that the reachable matching on cliques problem belongs

to NP. We use a reduction from reachable object on cliques to reachable match-

ing on cliques to establish that reachable matching on cliques is NP-complete.

This reduction is similar to the one used in the proof of Lemma 2.6.2.

Fix an arbitrary reachable object on cliques instance I. Without loss of

generality, we can assume that the associated configuration χ = (F, µ) is such

that F = (A,B,�, E), A = {a1, . . . , an}, B = {b1, . . . , bn}, and χ(ai) = bi for

1 ≤ i ≤ n. We can also assume without loss of generality that our goal is to

determine whether there is a matching µ1 in reach(χ) such that µ1(a1) = bn.

We now describe how to transform reachable object on cliques instance

I into a reachable matching on cliques instance I ′. Instance I ′ has two associ-

ated configurations χ′ = (F ′, µ′) and χ′′ = (F ′, µ′′), where F ′ = (A′, B′,�′, E ′).

The set of agents A′ is equal to A ∪ A∗ where A∗ = {a∗1, . . . , a∗n}. The set of

objects B′ is equal to B ∪ B∗ where B∗ = {b∗1, . . . , b∗n}. Let K2n denote the

complete graph with vertex set B′, and let E ′ denote the edge set of K2n. The

agent preferences �′ and the matchings µ′ and µ′′ are as described in the proof
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of Lemma 2.6.2.

Let Ê denote the union of three sets of edges: {(bi, bj) | i, j ∈ [n] ∧ i 6=

j}; {(bi, b∗i ) | i ∈ [n]}; {(b∗i , b∗j) | i, j ∈ [n] ∧ i 6= j}. Lemma 2.6.3 below

establishes that if a swap occurs on an edge e in I ′, then e belongs to Ê.

Lemma 2.6.3. Let i and j be elements of [n] such that i 6= j. Let µ1 and µ2

be matchings in reach(χ′) such that µ1 →F µ2. Then µ−1
2 (bi) 6= µ−1

1 (b∗j).

Proof. We consider two cases.

Case 1: µ−1
1 (b∗j) belongs to A∗. By examining the preferences of agents

in A∗, we deduce that µ−1
1 (b∗j) = a∗j . The only object that agent a∗j prefers to

b∗j is bj. Hence µ−1
2 (bi) 6= a∗j = µ−1

1 (b∗j).

Case 2: µ−1
1 (b∗j) belongs to A. By examining the preferences of agents

in A, we deduce that µ2(µ−1
1 (b∗j)) belongs to B∗. Hence µ−1

2 (bi) 6= µ−1
1 (b∗j).

Using Lemma 2.6.3, along with the same reasoning as in the proof of

Lemma 2.6.2, we deduce that I ′ is a positive instance of reachable matching

on cliques if and only if I is a positive instance of reachable object on cliques.

Thus Theorem 2.6.4 below holds.

Theorem 2.6.4. Reachable matching on cliques is NP-complete.

2.6.3 NP-Hardness for Pareto-Efficiency on Cliques

Theorem 2.6.5. Pareto-efficient matching on cliques is NP-hard.
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Proof. We use the same reduction as we used in Section 2.6.2 to establish

the NP-completeness of reachable matching on cliques. In analyzing that re-

duction, we proved that a given instance of reachable object on cliques is

positive if and only if every agent gets its most preferred object in the cor-

responding instance of reachable matching on cliques. Therefore an efficient

algorithm for computing a Pareto-efficient matching on cliques yields an ef-

ficient algorithm for reachable object on cliques. Since reachable object on

cliques is NP-complete, we deduce that Pareto-efficient matching on cliques is

NP-hard.

2.7 Other Polynomial-Time Bounds

In this section, we briefly discuss simple algorithms that serve to justify

the remaining polynomial-time entries in Table 2.1.

For reachable matching on trees, the corresponding algorithm of Gourvès

et al. [91] for the object-moving model can also be used for the agent-moving

model. In particular, for the agent-moving model, Section 2.7.1 shows that

reachable matching problem on trees can be solved in O(n2) time.

For the other two polynomial-time table entries for stars, observe that

once an agent swaps away from the center object, it cannot participate in

another swap. This observation severely restricts the swap dynamics, making

it easy to establish that the reachable object problem on stars can be solved

in O(n2) time and Pareto-efficient matching problem on stars can be solved in

O(n) time.
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2.7.1 Reachable Matching on Trees

Theorem 2.7.1. Reachable matching on trees can be solved in O(n2) time.

Proof. Let µ and µ′ be the initial and target perfect matchings in an instance

of the reachable matching problem on a tree. To solve the problem, we use

the approach presented by Gourvès et al. [91] for the object-moving model.

Observe that every agent a moves along a unique dipath in the tree from µ(a)

to µ′(a). Therefore, it suffices to check whether there is a sequence of swaps

such that each agent moves according to its dipath. Let us say that an edge

is good if the two agents currently matched to the endpoints of the edge both

need to cross the edge as the next step along their respective dipaths. Using

essentially the same argument as in the proof of Proposition 3 in Gourvès et

al. [91], we can show if the target matching is reachable and is not equal to

the current matching, then at least one good edge exists. It follows easily

that if the target matching is reachable, then we can reach it by repeatedly

performing a swap across an arbitrary good edge.

We now discuss how to find good edges efficiently so that the overall

running time is O(n2). We begin by traversing the tree to construct a set

containing all of the edges that are good in the initial state. The order of the

edges within this set is immaterial, so it can be implemented using a simple

data structure such as a list or stack. Then, while the set of good edges is

nonempty, we perform the following steps. First, we remove an arbitrary good

edge from the set, and perform the associated swap. It is easy to see that the
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other edges in the good set remain good after the swap. Furthermore, up to

two edges can become good as a result of the swap, and a simple local search

can be used to identify these edges in constant time. Any newly-identified

good edges are added to the set of good edges, and we proceed to the next

iteration.

Initialization of the set of good edges takes O(n) time and each iteration

of the loop performs one swap and takes constant time. Since the number of

swaps is O(n2), the claimed time bound follows.

2.7.2 Algorithms for Stars

In this section, we solve the reachable object and Pareto-efficient match-

ing problems on stars. We refer to the object located at the center of the star

as the center object, and to the remaining objects as leaf objects. We refer to

the agent that is currently matched to the center object as the center agent

O, and to the remaining agents as leaf agents.

Theorem 2.7.2. Reachable object on stars can be solved in O(n2) time.

Proof. Let a be the given agent and let b the given target object in an instance

of the reachable object problem. Notice that there is a unique dipath for a to

follow to reach b, and the dipath has at most two edges.

There are three cases for the dipath, from center to leaf, from leaf to

center, and from leaf to leaf. The center to leaf case is straightforward as the
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only way for agent a to reach object b is to perform a single swap involving

both of them.

For the leaf to center case, we use the approach presented by Gourvès

et al. [91] for the object-moving model. The problem reduces to the search of

a path in a digraph G = (A,E) where (a, a′) ∈ E with a ∈ A, a′ ∈ A \ {O} if

and only if a and a′ can rationally trade when a is at the center position and

a′ is in its initial position. There is a path from O to a in G if and only if a

can move to the center position. It takes O(n2) time to construct G and solve

this path problem.

We reduce the leaf to leaf case to the leaf to center case, as follows.

First, we solve a leaf to center problem to determine whether agent a can be

moved to the center without moving the initial owner of object b. If this is

possible, then we check whether agent a and the initial owner of object b can

trade their objects. This procedure works correctly because the ownership of

any leaf object can change at most once in any valid sequence of swaps. To

see this, observe that once an agent moves from the center to a leaf, it can

never return to the center. Accordingly, for agent a to move to object b, the

initial owner of b needs to remain stationary until a reaches the center.

Theorem 2.7.3. Pareto-efficient matching on stars can be solved in O(n)

time.

Proof. We use an algorithm based on serial dictatorship [4]. First, we prune

any leaf agent with its associated object if the agent does not prefer the center
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object to its own object, since this leaf agent will never be involved in any

swap. Therefore, the center agent can swap with any remaining leaf agent

only if the leaf agent holds one of its preferred objects. If the top preference

of the center agent out of the remaining objects is the center object, then the

current matching is Pareto-efficient as no swaps can occur. Otherwise, the top

preference of the center agent a out of the remaining objects is a leaf object

b, and we can apply the swap operation that moves agent a to object b. The

previous owner of object b becomes the new center agent. Then, we prune

agent a and object b and recurs on the new center agent. It is easy to see that

this whole process takes O(n) time, and when each agent is pruned, it holds

its favorite object among the remaining objects. It follows that the matching

returned by this process is not Pareto-dominated by any other matching, and

hence is Pareto-efficient.
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Chapter 3

Maximum Votes Pareto-Efficient Fair

Allocations

3.1 Introduction

Model. Matching indivisible objects to agents is a fundamental

problem in both computer science and economics. In a seminal work, Shapley

and Scarf [154] introduced the notion of a housing market, which corresponds

to the special case of one-sided matching in which there are an equal number

of agents and objects, each agent is initially endowed with a distinct object,

and each agent is required to be matched to exactly one object. Fruitful

applications have arisen from the housing market problem: assigning virtual

machines to servers in cloud computers, and allocating graduates to trainee

positions. There are two different assumptions regarding preference relations

of agents. One is strict, which is a full ordinal list of all objects, and the other

one is weak, where agents are allowed to be indifferent between objects. Both

preference relations have been widely studied.

However, in practice, the assumption that any agent is able to trade

with any other agent may be too strong. Agents tend to trade with agents that

The results presented in this chapter are based on joint work with Xiong Zheng [120],
and I am the primary contributor for these results.
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they know and trust, and it is hard to let two agents who do not trust each

other exchange their objects even if they would each benefit. This motivated

Gourvès et al. [91] to initiate the line of research on the object-moving model,

as discussed in Chapter 2. A pair of agents are allowed to swap objects with

each other only if (1) both of them will be better off after the swap and

(2) they are directly connected (socially tied) in the network. As discussed

in Section 2.1, Gourvès et al. investigate the swap dynamics of the housing

market problem in this model by considering the following three computational

problems. The first problem, Reachable Object (RO), asks whether there is

a sequence of swaps that results in matching a given agent to a given target

object. The second problem, Reachable Matching (RM), asks whether there is

a sequence of swaps that results in a given target matching. The third problem,

Pareto Efficiency (PE), asks how to find a sequence of swaps that results in a

Pareto-efficient matching with respect to the set of reachable matchings. Of

particular relevance to the present chapter is the last problem. We remark that,

like Gourvès et al., our focus is on Pareto-efficient matchings among reachable

matchings (to be formally defined in Section 3.2). In particular, we focus on

reachable matchings that are not Pareto-dominated by a reachable matching,

as opposed to an arbitrary matching. Specifically, we are interested in finding

a sequence of swaps that yields a Pareto-efficient matching that maximizes the

number of agents who prefer their match to their initial endowment.

Maximum Votes Pareto-Efficient Matching. In housing markets,

we typically seek a matching between houses and agents that optimizes some
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social objectives. Pareto efficiency has been widely considered in the context

of house allocation [3, 5, 154]. In the example of Fig. 3.1, there is a Pareto-

efficient matching that improves only two agents, while there is another Pareto-

efficient matching that improves everyone.

a1 a2 a3 a4 a5 a6

a1 : b2 � b3 � b1 a2 :b1 � b3 � b2

a3 : b4 � b2 � b3 a4 :b5 � b2 � b4

a5 : b6 � b2 � b5 a6 :b2 � b6

Figure 3.1: Consider an instance with agent set {a1, . . . , a6} and object set
{b1, . . . , b6}. The boxed objects represent the initial endowments. Initially,
the only possible swaps are between agent pairs (a1, a2) and (a2, a3). If swap
(a1, a2) is performed, then we obtain a Pareto-efficient matching in which a1

and a2 each gets its best object. If instead swap (a2, a3) is performed, then
additional swaps between agent pairs (a1, a2) and (a3, a4) become possible.
Indeed, the sequence of swaps (a2, a3), (a1, a2), (a3, a4), (a4, a5), (a5, a6), yields
a different Pareto-efficient matching that improves all agents.

There is a vast literature on refining Pareto-efficiency in object allo-

cation with endowments. Various refining directions are considered, such as

fairness ([21, 71]), welfare-maximization ([1, 35]), and stability ([154]). In this

work, we propose to refine Pareto-efficiency in the direction of popularity. The

notion of popularity was introduced by Abraham et al. [6] for object allocation

without endowments. Popularity has gained a lot of attention in the recent

past (we refer to the survey by Cseh [61] on this topic). Popular matchings

are defined in terms of comparisons between pairs of matchings with respect

to the votes of the agents. Consider an election between two matchings M

and M ′ where agents are voters. In this M versus M ′ election, each agent a
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votes for the matching in {M,M ′} that agent a prefers, i.e., where agent a

gets a better assignment. We say that a matching is popular if it never loses a

head-to-head election against any matching. However, popular matchings do

not always exist: Abraham et al. construct an instance with three agents for

which there is no popular matching.

To adapt the popularity notion to housing markets, we introduce the

notion of maximum votes matching. We consider the same voting scheme,

but focus on the comparison with the initial endowments. Given a reachable

matching µ, an agent a votes for the matching if a prefers the object assigned

to a by µ to its initial object. We refer to the number of agents that prefer

µ to the initial matching as the voting number of µ. We define a maximum

votes matching as a reachable matching with the maximum voting number.

We remark that a maximum votes matching always exists.

Clearly, not all Pareto efficient matchings have the same voting num-

ber. Also, a maximum votes matching is not necessarily a Pareto-efficient

matching. Consider the example shown in Fig. 3.2. Part (a) shows a sequence

of swaps that gives a Pareto-efficient matching improving all agents. Part (b)

shows a sequence of swaps yielding a matching that improves all agents but

that is not Pareto-efficient. Thus, it is natural to consider the problem of

finding a Pareto-efficient matching with the maximum voting number. We re-

fer to this problem as the maximum votes Pareto-efficient (MVPE) matching

problem. In particular, the set of MVPE matchings is the intersection of the

following two sets: (1) the set of matchings that are Pareto efficient among
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reachable matchings; (2) the set of reachable matchings with the maximum

voting number.

a1 a2 x y a3 a4

(a) A sequence of swaps that results in
each agent getting its favorite object.

a1 a2 x y a3 a4

(b) A sequence of swaps that yields a
non-Pareto-efficient matching improving
all agents. Agent a2 obtains object bx by
swapping with agent x. Then agent a1

gets object bx by swapping with a2. Simi-
larly, agent a4 gets object by by the follow-
ing two swaps: (y, a3), (a3, a4). Clearly,
this matching is Pareto-dominated by the
matching obtained in part (a).

Figure 3.2: An example in which a non-Pareto-efficient matching improves
the most agents. Consider an instance with agent set {a1, a2, x, y, a3, a4} and
object set {b1, b2, bx, by, b3, b4}. The preferences of the agents and the initial
endowments (represented as boxed objects) are given below. The arrows in
the figures show where the initial object of each agent goes.

a1 : b2 � bx � b1 x : by � b2 � bx a3 : b4 � by � b3

a2 : b1 � bx � b2 y : bx � b3 � by a4 : b3 � by � b4

Related work. There are several works on ensuring popularity. For

settings where a popular matching does not exist, Kavitha et al. [105] study

how to minimally augment the preferences to guarantee the existence of a

popular matching. This problem has been shown to be NP-hard. Another

way to ensure popularity is to consider mixed matchings, i.e., lotteries over

matchings; the popularity property is straightforward to carry over to this

setting. Kavitha et al. [104] show that a popular mixed matching always exists

and propose an efficient algorithm to find one. McCutchen [127] proposes a
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least-unpopularity criterion to find the “most” popular matching; finding this

least-unpopular matching is NP-hard.

Our results. Our main contributions are summarized in Table 3.1.

Our main positive result is a polynomial-time algorithm for finding a maximum

votes Pareto-efficient matching in a path network with strict preferences. To

achieve this result, we first present an algorithm for finding a maximum votes

matching by studying the structure of a reachable matching in a path network.

Specifically, we show that the improved agents in any reachable matching can

be partitioned into a set of agent intervals. Each of these agent intervals

satisfies the following conditions: the agent interval is a set of consecutive

agents on the path; there is a sequence of swaps within the interval that

improves all of the agents in the interval. Moreover, given a partition of such

agent intervals, we can recover a sequence of swaps improving all of the agents

in this collection. Thus, we reduce the problem of computing the maximum

voting number to the problem of finding such a partition that includes as

many agents as possible; polynomial-time algorithms are known for the latter

problem.

To find a maximum votes Pareto-efficient matching, observe that there

is a maximum votes matching that is also Pareto-efficient. Thus, to find a max-

imum votes Pareto-efficient matching, it is enough to find a Pareto-efficient

matching among maximum votes matchings. To achieve that, we carefully

adapt the serial dictatorship algorithm [4] to ensure that each time a dictator

agent a is assigned to an object b, the current partial assignment remains con-
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Table 3.1: Summary of results and related work for MVPE matching problem
in the object-moving models. The results in parentheses are implied by the
hardness results in Table 2.1 or other table entries.

Strict Weak
Path poly-time [Section 3.3] NP-hard ([95])
Star poly-time [Section 3.4] NP-hard [Section 3.4]

Generalized Star NP-hard [Section 3.5] (NP-hard)
Tree (NP-hard) (NP-hard)

Clique (NP-hard) (NP-hard)

sistent with a maximum votes matching. In particular, we present a subroutine

to find the most preferred object b of agent a such that there is a sequence of

swaps that improves as many agents as possible and results in object b being

assigned to agent a. In Section 3.3.3, we use a delicate induction argument to

prove the correctness of this subroutine.

In Section 3.4, we present a simple polynomial-time algorithm for find-

ing a maximum votes Pareto-efficient matching on stars with strict preferences.

In terms of negative results, in Section 3.4, we use a novel reduction

from the 3-SAT problem to prove that the MVPE problem in star networks

with weak preferences is NP-hard. In Section 3.5, we prove that the MVPE

problem in generalized stars with strict preferences is NP-hard by reducing

from the RO problem in generalized stars with strict preferences, which is

known to be NP-complete [91]. The NP-hardness of the MVPE problem on

cliques with strict preferences follows directly from the hardness result for the

Pareto Efficiency problem on cliques included in Table 2.1.
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3.2 Preliminaries

We define an object allocation framework (OAF) on a social network

as a 4-tuple F = (A,B,<, E) where A is a set of agents, B is a set of objects

such that |A| = |B|, < is a collection of linear orderings {<a}a∈A over B such

that <a specifies the preferences (including ties) of agent a over B, and E is

the edge set of a social network between agents in A, i.e., the social network

is the undirected graph (A,E). When we consider strict preferences, we use

the symbol �.

We define a matching µ of a given OAF F = (A,B,<, E) as a subset

of A × B such that no agent or object belongs to more than one pair in µ.

(Put differently, µ is a matching in the complete bipartite graph of agents

and objects.) We say that such a matching is perfect if |µ| = |A|. For any

matching µ, we define agents(µ) (resp., objects(µ)) as the set of all matched

agents (resp., objects) with respect to µ. For any matching µ and any agent a

that is matched in µ, we use the shorthand notation µ(a) to refer to the object

matched to agent a. For any matching µ and any object b that is matched in

µ, we use the notation µ−1(b) to refer to the agent matched to object b.

For any OAF F = (A,B,<, E), any perfect matching µ of F , and any

edge e = (a, a′) in E, we define the matching that results from an exchange

operation on edge e as µ′ = µ \ {(a, µ(a)), (a′, µ(a′))} ∪ {(a, µ(a′)), (a′, µ(a))}.

We say the exchange is rational if µ(a′) <a µ(a) and µ(a) <a′ µ(a′), denoted as

µ→F,e µ
′. We call a rational exchange a swap. We use µ→F µ

′ to denote that

µ→F,e µ
′ for some edge e. We write µ F µ

′ if there exists a matching history
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µ = µ0, . . . , µk = µ′ of matchings of F such that µi−1 →F µi for 1 ≤ i ≤ k.

We define a configuration as a pair χ = (F, µ) where F is an OAF and µ

is a perfect matching of F . We say that χ is a path, star, or tree configuration

if the social network in F is a path, star, or tree. For any configuration

χ = (F, µ), we define reach(χ) as the set of all perfect matchings µ′ of F such

that µ F µ
′.

A matching µ Pareto-dominates a matching µ′ if µ(a) <a µ′(a) for all

agents a in A, and there is at least one agent b in B such that µ(b) �b µ′(b). A

matching is Pareto-efficient if it is not Pareto-dominated by another matching.

Throughout this chapter, we restrict the definition of Pareto-efficiency to the

set of reachable matchings: A matching µ is Pareto-efficient with respect to

a configuration χ if µ belongs to reach(χ) and µ is not Pareto-dominated by

another matching in reach(χ).

Maximum Votes Pareto-Efficient Matching Problem: Given a

configuration χ = (F, µ) and a matching µ′, we use votesF (µ′, µ) to denote the

number of agents who prefer µ′ to µ. We say votesF (µ′, µ) is the voting number

of matching µ′. The maximum votes Pareto-efficient matching problem is

equivalent to the following optimization problem:

argmax
τ ∈ reach(χ) ∧ τ is Pareto-efficient

votesF (τ, µ).

For a given configuration χ, we use mv(χ) to denote the maximum voting

number of a matching in reach(χ). We refer to mv(χ) as the voting number

of χ.
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3.3 Path Networks

In this section, we study the maximum votes Pareto-efficient matching

problem in a path configuration. We begin by introducing some notations.

For any non-negative integer n, we define [n] as {1, . . . , n}. We use [i, j] to

denote the set of agents between agent i and agent j (inclusive). Without loss

of generality, in this subsection we restrict our attention to OAFs of the form

F = ([i, j], [i, j],�, {(b, b + 1) | i ≤ b < j}) for some positive integers i and j

such that i < j. We write � here because we consider only strict preferences in

this section. Let Π = µ0, . . . , µk denote a matching history where µi →F µi+1

for 0 ≤ i ≤ k − 1, i.e., µi+1 is obtained from µi by a swap. We have the

following observations.

Observation 3.3.1. Each object only moves in one direction or stays at its

initial position in Π.

We say an object is right-moving (left-moving) in Π if it moves to

the right (left). The following observation says that while implementing the

matching history Π, the relative location of any two objects moving in the

same direction on the path does not change, i.e., if an object b is located to

the left (right) of another object b′, then object b will always be to the left

(right) of object b′.

Observation 3.3.2. Let Π = µ0, . . . , µk denote a matching history. For any

two objects b and b′ where µ−1
0 (b) < µ−1

0 (b′) that move along the same direction

in Π, we have µ−1(b) < µ−1(b′) for all µ in Π.
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Let κ(j, k) denote the canonical sequence of exchanges that assigns

object j to agent k by directly moving it along the path from j to k. Formally,

if j < k, κ(j, k) = (j, j+1), . . . , (k−1, k). If j ≥ k, κ(j, k) = (j, j−1), . . . , (k+

1, k). For any sequence of exchanges Π , we say that rational(Π) holds if all

its exchanges are rational. We remark that κ(j, k) was defined, and some

associated properties were proved, by Gourvès et al. [91]. The following two

lemmas present some useful structural properties.

Lemma 3.3.3. Let F be a path OAF, let a be a leaf agent in χ, let a′ be an

agent in χ such that a′ 6= a, and let µ0 and ν be the two matchings such that

µ0  F ν holds and a = ν−1(µ0(a′)). Let µ1 denote the matching obtained

from µ0 by applying an exchange on edge (a′, a′−1). Then both µ0  F µ1 and

µ1  F ν hold.

Proof. Without loss of generality, we assume that a < a′. Hence agent a is the

leftmost leaf agent. Let Π = µ0, . . . , µl denote a matching history such that

µl = ν. We deduce by a = ν−1(µ0(a′)) that µ0(a′) is left-moving in Π and hence

there is a matching µi in Π such that µi(a
′ − 1) = µ0(a′). Therefore, agent

a′−1 prefers µ0(a′) to its initial endowment µ0(a′−1). To prove that µ0  F µ1

holds, it remains to prove that µ0(a′−1) �a′ µ0(a′). Since µ0(a′) moves to the

leftmost agent a, we deduce by Observation 3.3.2 that µ0(a′ − 1) is not left-

moving or stationary. Therefore, object µ0(a′ − 1) is right-moving and hence

there is a matching µj in Π such that µj(a
′) = µ0(a′ − 1). Therefore, agent a′

prefers µ0(a′ − 1) to the initial endowment µ′0(a′), i.e., µ0(a′ − 1) �a′ µ0(a′).
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We now prove that µ1  F ν holds. Let E = (e1, . . . , el) denote the

ordered list of edges such that µi−1 →F,ei µi holds for all i in [`]. Let E[i, j]

denote the sub-list of E indexed from i to j with indices 1 ≤ i < j ≤ `.

Let et be the first edge such that et = (a′ − 1, a′), i.e., µt−1(a′) = µ0(a′),

µt−1(a′−1) = µ0(a′−1), µt(a
′−1) = µ0(a′), and µt(a

′) = µ0(a′−1). Therefore,

any edge preceding et in E does not include agents a′ − 1 or a′ and does

not involve objects µ′0(a′ − 1) or µ′0(a′). It is straightforward to prove that

if there is an index i in {2, . . . , `} such that ei−1 and ei are disjoint, then

switching the order of the swaps performed on ei−1 and ei in Π yields another

matching history Π′ that transforms µ0 to ν. Therefore, by exchanging the

swaps performed on et with the swaps performed on edges et−1, . . . , e1 one by

one, we obtain a matching history Π′′ that starts with the swap on et and

transforms µ0 to ν. We remark that the matching µ1 is the matching obtained

by applying a swap on et from µ0. Therefore, the matching history Π′′ yields

a matching history that transforms µ1 to ν, i.e., µ1  F ν holds.

Lemma 3.3.4. Let χ = (F, µ) be a path configuration, let a be a leaf agent

in χ, let a′ be an agent in χ, and let ν be a matching in reach(χ) such that

a = ν−1(µ(a′)). Then rational(κ(a′, a)) holds and ν belongs to reach((F, µ′)),

where µ′ is the matching that results by applying κ(a′, a) to µ.

Proof. Let µ0 denote µ. Therefore, by recursively applying Lemma 3.3.3 to

matchings µi−1 and ν such that µi−1  F ν holds and ν(a) = µi−1(a′−i+1) for

each i = 1, . . . , a′−a, we obtain a matching µi such that µi−1 →F,(a′−i+1,a′−i) µi

114



and µi  F ν hold. Thus rationalκ(a′, a) holds. Furthermore, we have that

µa′−a = µ′ and µa′−a  F ν. Hence ν belongs to reach((F, µ′)).

3.3.1 Maximum Votes Pareto-Efficient Matching

In this section, we present a polynomial-time algorithm for finding a

maximum votes Pareto-efficient matching of a given path configuration. In

order to find an MVPE matching, we first present an algorithm for computing

the maximum number of a given configuration χ = (F, µ), i.e., for computing

mv(χ). We then compute an MVPE matching by combining this algorithm

with the serial dictatorship algorithm [4]. In the serial dictatorship algorithm,

we let each successive agent (in an arbitrary sequential order) select their most

preferred object that has yet to be selected. In our algorithm, agents pick

objects according to the order of their IDs, i.e., the smallest agent picks first

and the largest agent picks last. When agent a selects an object, we require

a to select its most preferred object b such that there exists a matching µ′ in

reach(χ) with µ′(a) = b and votesF (µ′, µ) = mv(χ). The correctness of our

approach is established in Theorem 3.3.18 below.

3.3.2 Maximum Number of Votes

In this section we present and analyze Algorithm 2, which computes

the maximum voting number.

Throughout this section, let n denote a fixed positive integer, and let
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Algorithm 2: MV(χ)

Input: A path configuration χ = (F, µ)
Output: The maximum voting number of χ
I← ∅
for i→ 1 to n− 1 do

for j → i+ 1 to n do
if ∃k ∈ [i, j] s.t. rational(κ(k, j)) ∧ rational(κ(k + 1, i))
then

I← I ∪ {[i, j]}
end

end

end
Return the maximum coverage of any disjoint set of intervals in I

χ = (F, µ) denote a fixed path configuration where

F = ([n], [n],�, {(b, b+ 1) | 1 ≤ b < n}).

Definition 3.3.5 (Directional sequence). A directional sequence is a sequence

of R, L, or S symbols. For any agent i, the ith symbol represents the final

moving state of its initial object. Symbol L (resp., R) indicates that it moves

to the left (resp., right). Symbol S indicates that it does not move.

For any matching ν in reach(χ), we define an associated directional

sequence as follows. For agent i, if its initial object µ(i) moves to the left (resp.,

right) in ν, then the ith symbol in the directional sequence is L (resp., R). If it is

stationary, then the ith symbol is S. We use DS(ν) to denote the directional

sequence of ν and DS(ν([i, j])) to denote the subsequence DS(ν)[i, j] with

respect to agents in [i, j] only.
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Definition 3.3.6 (RL-block). We define an RL-block as a directional sequence

consisting of one or more R’s followed by one or more L’s.

Any agent with symbol S in DS(ν) does not get a better allocation in

ν; any agent with symbol R or L gets improved by ν due to the definition of

swaps coupled with strict preferences.

Observation 3.3.7. Given a matching ν in reach(χ), DS(ν) can be uniquely

partitioned into a disjoint union of RL-blocks and S symbols.

For any matching ν in reach(χ), let RLB(ν) denote the set of all inter-

vals [i, j] in [n] such that DS(ν)[i, j] is an RL-block in the unique partition of

DS(ν) of Observation 3.3.7.

Definition 3.3.8 (RL-interval). We say that an interval [i, j] is an RL-

interval if at least one of the following condition holds: (1) rational(κ(j, i)); (2)

rational(κ(i, j)); (3) there exists an integer k in (i, j) such that rational(κ(k+

1, i)) and rational(κ(k, j)).

From the above definition, we can obtain the following observation.

Observation 3.3.9. For any RL-interval [i, j], there exists a matching history

between agents in [i, j] that improves all agents in the interval.

Lemma 3.3.10. Let ν be a matching in reach(χ) and let [i, j] be in RLB(ν).

Then interval [i, j] is an RL-interval.
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Proof. Let RmLj−i+1−m denote the RL-block DS(ν)[i, j]. Let b1 and b2 denote

the initial endowment of agent i + m − 1 and agent i + m in χ, respectively.

Thus, b1 is the rightmost right-moving object and b2 is the leftmost left-moving

object. Therefore, from Observations 3.3.1 and 3.3.2, we have ν−1(b1) = j and

ν−1(b2) = i; otherwise, the initial endowments of agent i and agent j are

stationary. Hence we deduce that a reachable matching ν maps b1 to leaf

agent j and maps b2 to leaf agent i. By Lemma 3.3.4, κ(i + m − 1, j) and

κ(i+m, i) are both rational.

We say that the set of intervals is disjoint if they are pairwise disjoint.

Lemma 3.3.11. For any matching ν in reach(χ), the set of intervals RLB(ν)

is a disjoint set of RL-intervals.

Proof. Since each interval in RLB(ν) is an RL-interval (Lemma 3.3.10), each

interval in RLB(ν) is an RL-interval. Also, all intervals in RLB(ν) are clearly

disjoint.

Lemma 3.3.12. For any disjoint set of RL-intervals D, there exists a match-

ing ν in reach(χ) such that RLB(ν) = D.

Proof. We explicitly construct such a matching as follows. For each RL-

interval [i, j] in D, from Observation 3.3.9, we know there exists a matching

history that improves all agents in [i, j]. Thus, matching ν can be constructed

by implementing such a matching history for each interval [i, j] in D on the

initial matching µ.

118



Let I denote the set of all RL-intervals in χ. We define the coverage of

a collection of disjoint intervals in I as the size of their union. Let MCDI(I)

denote the maximum coverage of any disjoint set of intervals in I.

Lemma 3.3.13. MCDI(I) = mv(χ).

Proof. Lemma 3.3.11 implies that mv(χ) ≤ MCDI(I). Assume for the sake

of contradiction that mv(χ) < MCDI(I). Then there exists a disjoint set of

RL-intervals such that mv(χ) <
∑

[i,j]∈D
j− i+ 1. By Lemma 3.3.12, there exists

a matching ν in reach(χ) such that RLB(ν) = D. For matching ν, we have

votesF (ν, µ) =
∑

[i,j]∈RLB(ν)

j−i+1 =
∑

[i,j]∈D
j−i+1 > mv(χ), a contradiction.

We remark that Algorithm 2 can be generalized to obtain a polynomial-

time algorithm for computing a maximum votes matching of weighted agents.

Formally, let W : [n] → R denote a weight function assigning each agent a

in [n] a real value W (i). For any matchings µ′, µ of F , let votesF (µ′, µ,W ) =∑
a∈[n]:µ′(a)�aµ(a) W (a), i.e., the total weight of the agents that prefer µ′ to µ. In

addition, let mv(χ,W ) = maxµ′∈reach(χ) votesW (µ′, µ). To allow for the weight

function W , we reduce the problem of computing mv(χ,W ) to computing

the maximum weighted coverage of any disjoint intervals in I, where each

interval [i, j] in I has weight
∑

k∈[i,j] W (k). To compute the maximum weighted

coverage of disjoint intervals in I, we construct a directed graph G = (I, E) as

follows. Each node in G is an interval [i, j] in I. For every two nodes [i, j] and

[i′, j′], there is a directed edge from node [i, j] to node [i′, j′] if j < i′. Moreover,

each node has a cost equal to the weight of the corresponding interval. Note
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that this graph is acyclic, and it takes O(n2) time to find a maximum-weight

path in an acyclic graph.

3.3.3 An MVPE Algorithm

In this section, we present Algorithm 4 for finding an MVPE match-

ing given a path configuration. Our main idea is to apply a serial dictator-

ship procedure. To simplify the presentation, we focus on the leftmost agent

a in any path configuration χ = (F, µ) on agents [a, n]. We seek the best

possible object b for the leftmost agent a such that there exists a maximum

votes matching τ in reach(χ) with τ(a) = b. Note that Lemma 3.3.4 implies

that rational(κ(µ−1(b), a)) holds. To match agent a with object b, we apply

κ(µ−1(b), a) in χ. Let χ′ denote the new configuration on agents [a + 1, n]

obtained by truncating the leftmost agent a along with its assigned object b.

We then recurse on the leftmost agent a+ 1 in χ′.

However, when we recurse on χ′, the situation is a bit different than in

χ. The applied sequence of swaps κ(µ−1(b), a) has improved agents between

agent a and µ−1(b) in χ, and also in χ′. These agents will vote when this serial

dictatorship procedure ends. Thus, when we recurse on χ′, in order to ensure

that the resulting matching is a maximum vote matching, we need to find a

matching maximizing votes among agents to the right of µ−1(b) in χ′, rather

than all agents.

We now provide a more formal presentation of our results. We begin

with some useful notations. For any agent interval [i, j] that is a subset of

120



[n], let χ[i, j] and µ[i, j] denote the truncated configuration and truncated

matching induced by agents in [i, j], respectively. Let mv(χ, [i, j]) denote the

maximum number of agents in [i, j] that can be improved by any reachable

matching in reach(χ), let votesF (µ′, µ, [i, j]) denote the number of agents in

[i, j] that prefer µ′ to µ, and let MVM(χ, [i, j]) denote the set of reachable

matchings with voting number mv(χ, [i, j]).

We are now ready to present our recursive subroutine called BOLA

(best object for the leftmost agent), shown as Algorithm 3. Given a config-

uration χ = (F, µ) on agents [a, n] and an agent a′ ≥ a, Algorithm 3 finds

the leftmost agent a’s most preferred object b∗ such that there exists a µ′ in

MVM(χ, [a′, n]) with µ′(a) = b∗. In Algorithm 3, agent a′ is used to limit the

objects that agent a can be possibly matched with. Specifically, Algorithm 3

only considers objects that are initially owned by agents in [a′, n]. In Algo-

rithm 2, we need to compute mv(χ, [a, n]) for a given χ on the agents in [a, n].

This can be done by applying the weighted version of Algorithm 2 as discussed

in Section 3.3.2.

Lemma 3.3.14 below establishes a one-to-one map between the set of

matchings in reach(χ) that match agent a to object µ(i) and the set of match-

ings in reach(χ′[a+ 1, n]).

Lemma 3.3.14. Let χ = (F, µ) be a configuration with agents [a, n], let i be

an agent in [a, n] such that rational(κ(i, a)) holds, let µ′ be the matching that

results from applying κ(i, a) to µ, let χ′ = (F, µ′), and let ν be a matching of
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Algorithm 3: BOLA(χ, a′)

Input: A configuration χ = (F, µ) with agents [a, n], an agent
a′ ∈ [a, n]

Output: The most preferred object b∗ of the leftmost agent,
where there is a matching µ′ in MVM(χ, [a′, n])
assigning b∗ to a

// Remark: a is the leftmost agent in χ
b∗, V ← µ(a),mv(χ, [a′, n])
for i→ a to n do

if µ(i) <a b∗ ∧ rational(κ(i, a)) then
// Remark: i denotes an agent
µ∗ ← the matching that results from applying κ(i, a) to µ
χ∗ ← (F, µ∗)
a′′ ← max(i+ 1, a′)
if votes(µ∗, µ, [a′, a′′ − 1]) + mv(χ∗, [a′′, n]) = V then

b∗ ← µ(i)
end

end

end
return b∗

F . Then ν belongs to reach(χ, {(a, µ(i))}) if and only if ν[a+ 1, n] belongs to

reach(χ′[a+ 1, n]).

Proof. The only if direction follows by Lemma 3.3.4. For the if direction,

observe that by concatenating κ(i, a) and the matching history that transforms

µ′[a + 1, n] to ν[a + 1, n], we get a matching history that transforms µ to ν.

Henceν belongs to reach(χ).

Lemma 3.3.15 below establishes some basic results that are useful for

proving Lemma 3.3.16 and Theorem 3.3.18.
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Lemma 3.3.15. Let χ = (F, µ) be a configuration with agents [a, n], let a′ be

an agent in [a, n], let b be an object, let a′′ = max(µ−1(b) + 1, a′), let τ be a

matching in reach(χ) such that τ(a) = b and let µ′ be the matching that results

from applying κ(µ−1(b), a) to µ. Then the value votes(τ, µ, [a′, n]) is equal

to the sum of votes(µ′, µ, [a′, a′′− 1]) and votes(τ [a+ 1, n], µ′[a+ 1, n], [a′′, n]).

Next, if ν is a matching in MVM(χ, [a′, n]) such that ν(a) = b , then ν[a+1, n]

belongs to MVM(χ′[a+ 1, n], [a′′, n]) where χ′ = (F, µ′).

Proof. Note that votes(τ, µ, [a′, n]) = votes(τ, µ, [a′, a′′−1])+votes(τ, µ, [a′′, n]).

To prove the desired equation, it suffices to prove that votes(τ, µ, [a′, a′′ −

1]) = votes(µ′, µ, [a′, a′′ − 1]) and votes(τ, µ, [a′′, n]) = votes(τ [a + 1, n], µ′[a +

1, n], [a′′, n]). First, we prove that

votes(τ, µ, [a′, a′′ − 1]) = votes(µ′, µ[a′, a′′ − 1]).

We deduce by Lemma 3.3.4 that τ belongs to reach(χ′), and hence all agents

improved by µ′ are improved by τ , i.e.,

votes(τ, µ, [a′, a′′ − 1]) ≥ votes(µ′, µ, [a′, a′′ − 1]).

Observe that κ(µ−1(b), a) improves all agents in [a′, a′′ − 1]. Therefore, there

are not any matchings that improve more than votes(µ′, µ, [a′, a′′−1]) agents in

[a′, a′′−1]. That is, votes(τ, µ, [a′, a′′−1]) ≤ votes(µ′, µ, [a′, a′′−1]). Therefore,

votes(τ, µ, [a′, a′′ − 1]) = votes(µ′, µ, [a′, a′′ − 1]). Second, we show that

votes(τ, µ, [a′′, n]) = votes(τ [a+ 1, n], µ′[a+ 1, n], [a′′, n]).
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We start with the observation that a′′ = max(µ−1(b) + 1, a′) ≥ a + 1. Thus

votes(τ, µ, [a′′, n]) = votes(τ [a+ 1, n], µ[a+ 1, n], [a′′, n]). Note that µ[a′′, n] =

µ′[a′′, n] as κ(µ−1(b), a) does not contain any agents in [a′′, n]. Therefore,

votes(τ [a + 1, n], µ[a + 1, n], [a′′, n]) = votes(τ [a + 1, n], µ′[a + 1, n], [a′′, n]),

which yields votes(τ, µ, [a′′, n]) = votes(τ [a+ 1, n], µ′[a+ 1, n], [a′′, n]).

It remains to prove the second claim of the lemma. We deduce by

Lemma 3.3.14 that τ [a + 1, n] belongs to reach(χ′[a + 1, n]). Assume for the

sake of contradiction that votes(τ [a + 1, n], µ′[a + 1, n], [a′′, n]) < mv(χ′[a +

1, n], [a′′, n]). That is, there is a matching τ ′ such that τ ′(a) = b, τ ′[a +

1, n] belongs to reach(χ′[a+ 1, n]), and votes(τ ′[a+ 1, n], µ′[a+ 1, n], [a′′, n]) >

votes(τ [a + 1, n], µ′[a + 1, n], [a′′, n]). We deduce by Lemma 3.3.14 that τ ′

belongs to reach(χ). Since τ ′ is a matching in reach(χ) such that τ ′(a) = b, we

can apply the first part of the lemma (with τ ′ playing the role of τ), to deduce

that votes(τ ′, µ, [a′, n]) = votes(µ′, µ, [a′, a′′ − 1]) + votes(τ ′[a + 1, n], µ′[a +

1, n], [a′′, n]). Thus

votes(τ ′, µ, [a′, n]) > votes(τ, µ, [a′, n]),

a contradiction since τ belongs to MVM(χ, [a′, n]).

Lemma 3.3.16 characterizes all possible maximum votes matchings in

terms of the two if conditions used in Algorithm 3. Next we use Lemma 3.3.16

to prove Lemma 3.3.17, which is our main correctness lemma. It implies that

to find the leftmost agent a’s most preferred object b∗ such that there exists

a matching µ′ in MVM(χ, [a′, n]) with µ′(a) = b∗, we can iterate through all
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objects that satisfy the two if conditions and find the one that is preferred by

agent a.

Lemma 3.3.16. Let χ = (F, µ) denote an configuration, let [a, n] denote the

set of agents in χ, let a′ denote an agent in [a, n], let τ denote a matching in

reach(χ), let b = τ(a), and let a′′ = max(µ−1(b) + 1, a′). Then the matching τ

belongs to MVM(χ, [a′, n]) if and only if the following two conditions hold:

(1) rational(κ(µ−1(b), a));

(2) votes(µ′, µ, [a′, a′′ − 1]) + mv(χ′[a + 1, n], [a′′, n]) = mv(χ, [a′, n]), where

µ′ is obtained from applying κ(µ−1(b), a) to µ and χ′ = (F, µ′).

Proof. We begin with the only if direction. Lemma 3.3.4 implies condition (1)

since τ belongs to MVM(χ, [a′, n]). To prove condition (2), since τ belongs

to MVM(χ, [a′, n]), we deduce by Lemma 3.3.15 that τ [a + 1, n] belongs to

MVM(χ′[a+1, n], [a′′, n]), i.e., votes(τ [a+1, n], µ′[a+1, n], [a′′, n]) = mv(χ′[a+

1, n], [a′′, n]). Furthermore, by Lemma 3.3.15, we deduce that votes(τ, µ, [a′, n]) =

votes(µ′, µ, [a′, a′′ − 1]) + votes(τ [a + 1, n], µ′[a + 1, n], [a′′, n]). Together with

votes(τ [a+ 1, n], µ′[a+ 1, n], [a′′, n]) = mv(χ′[a+ 1, n], [a′′, n]), we deduce Con-

dition (2) in the lemma statement.

We now consider the if direction. Let τ ′ be a matching such that τ ′[a+

1, n] belongs to MVM(χ′[a + 1, n], [a′′, n]) and τ ′(a) = b. Since condition (1)

holds, we deduce by Lemma 3.3.14 that τ ′ belongs to reach(χ). Then, we
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deduce by Lemma 3.3.15 that

votes(τ ′, µ, [a′, n])

= votes(µ′, µ, [a′, a′′ − 1]) + votes(τ ′[a+ 1, n], µ′[a+ 1, n], [a′′, n])

= votes(µ′, µ, [a′, a′′ − 1]) + mv(χ′[a+ 1, n], [a′′, n])

= mv(χ, [a′, n]),

where the second equation follows by the fact that τ ′ belongs to MVM(χ′[a+

1, n], [a′′, n]), and the third equation follows by condition (2). Thus τ ′ belongs

to MVM(χ, [a′, n]), as required.

Lemma 3.3.17. Algorithm 3 returns the most preferred object b∗ of agent a

such that there exists a matching µ′ in MVM(χ, [a′, n]) with µ′(a) = b∗.

Proof. It is straightforward to verify that the returned b∗ satisfies conditions (1)

and (2) in Lemma 3.3.16. Therefore, Lemma 3.3.16 implies that there exists

a matching µ′ in MVM(χ, [a′, n]) with µ′(a) = b∗.

Next, we prove that b∗ is most preferred object of agent a. Assume for

the sake of contradiction that there is an object b and a matching µ′ such that a

prefers b to b∗, µ′ belongs to MVM(χ, [a′, n]), and µ′(a) = b. By Lemma 3.3.16,

conditions (1) and (2) in Lemma 3.3.16 hold and thus the algorithm does not

return b∗, a contradiction.

We now present Algorithm 4, which uses Algorithm 2 as a building

block to find an MVPE matching. In Algorithm 4, we maintain a partial

matching τi that only involves agents in [1, i]. At the ith iteration, we invoke
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the BOLA subroutine to find the most preferred object b∗ of agent i that

satisfies the conditions in Lemma 3.3.17. Next, we apply κ(b∗, i) to assign

object b∗ to agent i. After that, we remove agent i from the configuration.

Let P (i) denote the predicate “there exists a matching ν in MVM(χ, [1, n])

such that τi is a subset of ν”. Algorithm 4 maintains the invariant that P (i)

holds for all i in [n]. This invariant ensures that the final matching τn returned

by Algorithm 4 is a matching in MVM(χ, [1, n]). The serial dictatorship mech-

anism ensures that τn is also a Pareto-efficient matching.

Algorithm 4: MVPEM(χ)

Input: A configuration χ = (F, µ)
Output: An MVPE matching of χ
µ1, a1, χ1, τ0 ← µ, 1, χ, ∅
for i→ 1 to n do

/* i is the index of an agent */
bi ← BOLA(χi, ai)
a′i ← µ−1

i (bi)
ai+1 ← max(a′i + 1, ai)
µ′ ← the matching that results from applying κ(a′i, i) to µi
/* Assign bi to agent i and truncate it from χ */
τi, µi+1, χi+1 ← τi−1 + (i, bi), µ

′[i+ 1, n], (F, µi+1)
end
return τn

Theorem 3.3.18. The matching τn returned by Algorithm 4 is an MVPE

matching.

Proof. For any two disjoint matchings µ and µ′, we write µ+µ′ to denote the

matching µ ∪ µ′. Whenever this notation is used in the argument below, it is

straightforward to check that the associated matchings are disjoint.
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Below we use induction on i to prove that the following predicates hold

for all i in [n].

P (i) : there exists ν ∈ MVM(χ, [1, n]) such that τi is a submatching of ν;

Q(i) : votes(τi−1 + µi, µ, [1, ai − 1]) + mv(χi, [ai, n]) = mv(χ).

Notice that by Lemma 3.3.17, for all i in [n], there exists a matching µ′i in

MVM(χi, [ai, n]) such that µ′i(i) = τ(i).

For i = 1, we have a1 = 1, i.e., we deduce P (1) directly from Lemma 3.3.17,

and Q(1) from τ0 + µ1 = µ and mv(χ1, [1, n]) = mv(χ).

Assume that P (k−1) and Q(k−1) hold. We now prove that P (k) and

Q(k) hold.

To prove Q(k), it suffices to prove that

votes(τk−1 + µk, µ, [1, ak − 1]) + mv(χk, [ak, n])

= votes(τk−2 + µk−1, µ, [1, ak−1 − 1]) + mv(χk−1, [ak−1, n]), (3.1)

since the right-hard side of the equation is equal to mv(χ) by Q(k − 1).

We deduce by Lemma 3.3.16 that

votes(µ′k, µk−1, [ak−1, ak − 1]) + mv(χk, [ak, n]) = mv(χk−1, [ak−1, n]),

where µ′k = {(k − 1, τn(k − 1))} + µk. Thus, to derive Eq. (3.1), it is enough

to prove that

votes(µ′k, µk−1, [ak−1, ak − 1])

= votes(τk−1 + µk, µ, [1, ak − 1])− votes(τk−2 + µk−1, µ, [1, ak−1 − 1]).
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The above equation follows since τk−1+µk is reached from applying κ(a′k−1, k−

1) to τk−2 + µk−1.

To prove P (k), notice that Lemma 3.3.17 implies that there is a match-

ing µ′k in MVM(χk, [ak, n]) such that µ′k(k) = τ(k). Let ν = τk−1 + µ′k.

Clearly τk is a submatching of ν, and ν[k, n] = µ′k belongs to reach(χk).

Since rational(κ(a′k, k)) holds, Lemma 3.3.14 implies that ν[k−1, n] belongs to

reach(χk−1). Notice that rational(κ(a′j, j)) holds for j = k−1, . . . , 2. Thus, by

recursively applying Lemma 3.3.14, we can establish that ν[j − 1, n] belongs

to reach(χj−1) for j = k − 1, . . . , 2. Therefore, for j = 2, we deduce that

ν = ν[1, n] belongs to reach(χ1) = reach(χ). We deduce by Lemma 3.3.15

that

votes(ν, µ, [1, n]) = votes(ν, µ, [1, ak − 1]) + votes(µ′k, µk, [ak, n]).

Moreover, since µ′k belongs to MVM(χk, [ak, n]),

votes(µ′k, µk, [ak, n]) = mv(χk, [ak, n]).

By Q(k), we deduce that votes(ν, µ, [1, ak−1])+mv(χk, [ak, n]) = mv(χ). Thus

votes(ν, µ, [1, n]) = mv(χ), and hence P (k) holds. This completes our proof

by induction that Q(i) and P (i) hold for all i in [n].

Since P (n) holds, we deduce that τn belongs to MVM(χ). It remains to

prove that τn is a Pareto-efficient matching. Assume for the sake of contradic-

tion that there is a matching µ∗ in reach(χ) such that µ∗ Pareto-dominates τn.

Since τn belongs to MVM(χ), it follows by that µ∗ also belongs to MVM(χ).
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Next, let i∗ denote the minimum agent such that µ∗(i∗) 6= τn(i∗). Thus τi∗−1

is a submatching of µ∗ and agent i∗ prefers µ∗(i∗) to τn(i∗) as µ∗ Pareto-

dominates τn. To reach a contradiction, it suffices to show that µ∗[i∗, n] be-

longs to MVM(χi∗ , [ai∗ , n]). Once we prove this, we deduce by Lemma 3.3.17

that τn(i∗) is the most preferred object of agent i∗ among all objects matched

with i∗ in some matching in MVM(χi∗ , [ai∗ , n]), a contradiction since agent i∗

prefers µ∗(i∗) to τn(i∗).

To prove that µ∗[i∗, n] belongs to MVM(χi∗ , [ai∗ , n]), let R(j) denote the

predicate “µ∗[j, n] belongs to MVM(χj, [aj, n])”. It suffices to prove that R(j)

holds for all j in [i∗]; We prove this claim by induction on j. For j = 1, R(1)

holds since µ∗ belongs to MVM(χ) = MVM(χ, [1, n]) = MVM(χ, [a1, n]). Let

k ≤ i∗ be a positive integer and assume that R(j) holds for 1 ≤ j < k. We need

to prove that R(k) holds, i.e., that µ∗[k+1, n] belongs to MVM(χk+1, [ak+1, n]).

Notice that µ∗[k, n] is a matching in MVM(χk, [ak, n]) such that µ∗(k) = τn(k).

We deduce by Lemma 3.3.15 that µ∗[k + 1, n] belongs to MVM(χk+1, [a
′′, n])

where a′′ = max(µ−1
k (τn(k)) + 1, ak). It is straightforward to verify that bk =

τn(k), a′k = µ−1
k (bk), and ak+1 = max(a′k + 1, ak) = a′′. Therefore, µ∗[k +

1, n] belongs to MVM(χk+1, [a
′′, n]) = MVM(χk+1, [ak, n]), which concludes

the induction step.

3.4 Star Networks

In this section, we consider the case where the social network is a star.

Our results are twofold. We first present a polynomial-time algorithm for
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finding an MVPE matching in a star network when preferences are strict.

We then show that finding an MVPE matching in a star network with weak

preferences is NP-hard.

For the case of strict preferences, we present a simple polynomial-time

algorithm for finding an MVPE matching. The main idea of the algorithm is

to use the fact that any swap involves the center agent and a non-center agent

to reduce the MVPE problem to the problem for finding a longest path in a

directed acyclic graph.

Theorem 3.4.1. There is a polynomial-time algorithm finding an MVPE

matching in a star network with strict preferences.

Proof. Let O denote the center agent and let [n] denote the set of leaf agents.

Let µ denote the initial matching. Note that every swap in a star network

involves the center agent. Moreover, notice that any leaf agent can change

its object at most once in any matching history. To see this, observe that

once an object moves from the center to a leaf, it can never return to the

center. Thus, any matching history can be represented as an ordered list of

leaf agents. Let L = (i1, . . . , ik) denote such an list, where k belongs to [n].

Note that µ(ij) ≺O µ(ij+1) for all j in [k − 1], where O is the center agent.

We first show how to find a maximum votes matching, and then prove

that any maximum votes matching is also Pareto-efficient.

Finding a maximum votes matching in a star network, it is equivalent to

find a longest ordered list of leaves corresponding to a matching history, since
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a leaf agent improves its match if and only if it is included in the list. This

problem can be reduced to searching for a longest path in a directed acyclic

graph G = ({O} ∪ [n], E ′), as follows. The edge set E ′ contains a directed

edge from a to a′ if agent a′ belongs to [n], µ(a′) �O µ(a), and µ(a) �a′ µ(a′).

There is a path from O to a′ in the digraph G if and only if agent O can be

matched to the initial endowment of agent a′. It is straightforward to see that

there is a polynomial-time algorithm for solving this longest path problem in

G.

Next we prove that any maximum votes matching is Pareto-efficient.

Let ν be a maximum votes matching. Assume for the sake of contradiction

that reachable matching ν ′ Pareto-dominates ν. Consider the ordered lists of

agents L and L′ corresponding to sequences of swaps for reaching ν and ν ′,

respectively. Since ν ′ Pareto-dominates ν and any agent in L prefers its match

in ν to its initial endowment, we deduce that every agent in L belongs to L′.

Since ν is a maximum votes matching and any agent in L′ prefers its match

in ν ′ to its initial endowment, we deduce that |L′| ≤ |L|. Since every agent in

L belongs to L′ and |L′| ≤ |L|, it follows that the set of agents in L′ is equal

to the set of agents in L. Since the agents in L and L′ are ordered by the

preference of the center agent O, we conclude that L = L′. Hence ν = ν ′, a

contradiction.
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3.4.1 Weak Preferences

In this section, we show that finding an MVPE matching is NP-hard

in a star network with weak preferences. We first introduce the notion of a

center object sequence. For all matching histories Π = µ0, . . . , µk, we define

the corresponding center object sequence π as the list of objects owned by

the center agent O, i.e., π is the sequence µ0(O), . . . , µk(O). We use π[i] to

denote µi(O), and for any object b, we use π(b) to denote the index of the first

occurrence of b in π; if b does not belong to π, then π(b) is defined to be −1 .

We have the following observations for the center object sequence.

Observation 3.4.2. Let X be a non-center agent with initial endowment x

such that x belongs to π. Then π[π(x)− 1] <X x.

Notice that π[π(x)− 1] is the object used by center agent O to swap x

from agent X.

Observation 3.4.3. Let X be an agent with initial object x. Then agent X

is improved by Π if and only if x belongs to π.

We now prove that it is NP-hard to find a maximum votes matching.

Construction: We use a reduction from 3-SAT. In an instance of 3-SAT,

we are given a propositional formula φ that is the conjunction of m clauses

C1, . . . , Cm. Each clause Ci is the disjunction of three literals, where each

literal is either a variable or the negation of a variable. The set of variables is

x1, . . . , xn. Given a formula φ, we construct a corresponding star configuration
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χφ = (F, µ) with 3n+3m+1 agents such that for any 3-SAT formula φ with n

variables and m clauses, φ is satisfiable if and only if χφ has maximum voting

number 2n+ 3m.

We begin by creating the set of agents, which we call A. For each

variable index i, there are three agents in A: Si, Ti, and Fi. For each clause

Cj = `j,0 ∪ `j,1 ∪ `j,2, there are three agents Pj,0, Pj,1, and Pj,2 in A. There is

also a center agent O. Thus there are a total of 3m+ 3n+ 1 agents in A.

For each agent in A, we use the corresponding lowercase letter to denote

its initial object. For example, agent P1,2 initially holds object p1,2. For agents

Ti and Fi in a variable gadget with i in [n], their initial objects are ti and fi.

Furthermore, for each literal `j,k, we define aj,k as follows: If `j,k is of the form

xw, then aj,k is object tw; otherwise aj,k is fw. For example, if `j,k = x15, then

aj,k = t15, and if `j,k = ¬x7, then aj,k = f7.

For agent preferences, we only consider the objects that each agent

likes at least as well as its initial object; the ordering of the remaining objects

is immaterial. The center agent O is indifferent to all objects. In specifying

the preference list of an agent, we list the objects from most preferred to

least preferred, we use a boxed object to denote the initial endowment of the

agent, and we use parentheses to group the objects that the agent is indifferent

between. The preference list of each agent Si is (ti, fi), (o, si ). The preference

list of each agent Ti is si, ti . The preference list of each agent Fi is si, fi .

For each k in {0, 1, 2}, the preference list of each agent Pj,k is pj,k−1, aj,k, pj,k ,

where pj,−1 = pj,2.
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We now present some properties of our gadgets.

Lemma 3.4.4. Let Π denote the matching history µ0, . . . , µk, let i belongs to

[n] and let π denote the corresponding center object sequence of Π. Then at

most two agents in {Si, Ti, Fi} are improved by Π. Furthermore, if two agents

in {Si, Ti, Fi} are improved, then exactly one of ti and fi belongs to π.

Proof. Notice that if agent Ti or Fi is improved, then either Ti or Fi is assigned

object si, due to the preferences of Ti and Fi. However, in any matching, si is

matched to a single agent. Therefore Π cannot improve both Ti and Fi. That

is, at most two agents in {Si, Ti, Fi} are improved by Π. If exactly two agents

in {Si, Ti, Fi} are improved, then exactly one agent in {Ti, Fi} is improved,

and hence Observation 3.4.3 implies that exactly one of ti and fi belongs to

π.

Lemma 3.4.5. Let Cj denote the clause `j,0∪`j,1∪`j,2. For each k in {0, 1, 2},

let Pj,k denote the agent corresponding to literal `j,k, let pj,k denote the initial

object of Pj,k, and let aj,k in {ti, fi | i ∈ [n]} denote the object associated

with literal `j,k. Let Π denote the matching history µ0, . . . , µk, let π denote

the corresponding center object sequence of Π, and assume that no object in

{aj,0, aj,1, aj,2} belongs to π. Then no object in {pj,0, pj,1, pj,2} belongs to π.

Proof. We prove the contrapositive. Assume that there exists an object in

{pj,0, pj,1, pj,2} that belongs to π. Let pj,k denote the object with minimum

positive π(pj,k) where k belongs to {0, 1, 2}. By Observation 3.4.2, π[π(pj,k)−

135



1] <Pj,k
pj,k. By the preferences of Pj,k, π[π(pj,k) − 1] belongs to {aj,k, pj,k−1}

with pj,−1 = pj,2. Moreover, by the assumption that pj,k is the object with

minimum positive π(pj,k), π[π(pj,k) − 1] does not belong to {pj,0, pj,1, pj,2}.

Therefore, π[π(pj,k)− 1] is aj,k, and hence π contains object aj,k.

Lemmas 3.4.6 and 3.4.7 below establish the correctness of our reduction.

Using the above properties of our gadgets, it is not hard to verify the

correctness of our reduction. Formally, we prove following two lemmas, one

for each reduction direction.

Lemma 3.4.6. If mv(χφ) = 2n+ 3m, then φ is satisfiable.

Proof. By Lemma 3.4.4, at least n agents are not improved. Moreover, the

center agent O initially holds one of its most preferred objects, and hence

cannot be improved. Therefore, at most 2n + 3m agents are improved. If χφ

achieves the maximum voting number 2n + 3m, then exactly two agents are

improved in each variable gadget and all three agents are improved in each

clause gadget.

By Lemma 3.4.4, for all i in [n], exactly one of ti and fi belongs to π. We

construct an assignment Aπ from π as follows: We set xi to true if ti belongs

to π, and to false otherwise. We claim that Aπ is a satisfying assignment for φ.

Assume for the sake of contradiction that some clause Cj is not satisfied by Aπ.

Hence, the literals `j,0, `j,1, and `j,2 are evaluated to false under assignment

Aπ. Recall that aj,0, aj,1, and aj,2 denote the objects associated with literals
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`j,0, `j,1, and `j,2, respectively. Thus no object in {aj,0, aj,1, aj,2} belongs to

π. By Lemma 3.4.5, no object in {pj,0, pj,1, pj,2} belongs to π. Therefore,

Observation 3.4.3 implies that no agent in {Pj,0, Pj,1, Pj,2} is improved by π.

Lemma 3.4.7. If there is a satisfying assignment for φ, then mv(χφ) = 2n+

3m.

Proof. Let Aφ be a satisfying assignment for φ. For each i in [n], if Aφ sets xi

to true, then let bi denote object ti; otherwise, let bi denote object fi.

Now we describe an iterative procedure for constructing a sequence of

swaps to improve 2n+ 3m agents. The procedure maintains a set C, which is

initialized to be the set of all clauses {C1, . . . , Cm}. For each i in [n], let Bi

denote the initial owner of bi, i.e., Bi = Ti if bi = ti and Bi = Fi otherwise.

We construct the sequence of swaps as follows. For each object bi, we do the

following swaps.

1. We perform two swaps (O, Si) and (O,Bi). After these two swaps, the

center agent O is assigned to bi and Si is assigned to object o.

2. If there is a clause Cj in C and a literal `j,k in Cj such that bi = aj,k,

then we perform the following steps.

(a) We perform the sequence of swaps:

(O,Pj,k), (O,Pj,k⊕1), (O,Pj,k⊕2), (O,Pj,k),
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where ⊕ denotes addition modulo 3. Remark: After the sequence

of swaps, agent Pj,k is matched to its most preferred object for all

k in {0, 1, 2}, and center agent O continues to hold bi.

(b) We remove the clause Cj from C.

3. Finally, we perform the swap (O, Si). Remark: After this swap, agent

O has object o and Si has one of its most preferred objects bi. We then

proceed to consider object bi+1.

We now show that the sequence of swaps constructed above improves 2n+ 3m

agents. After applying the above sequence of swaps, for all i in [n], agent Si

is matched to object bi and agent Bi is matched to object si. Thus the above

sequence of swaps improves 2n agents in variable gadgets. We now consider

the agents in clause gadgets. Since Aφ is a satisfying assignment for φ, for

any clause Cj, there is a k in {0, 1, 2} such that literal `j,k is evaluated to true

under assignment Aφ. Therefore, by the definition of object aj,k, we deduce

that aj,k is bi, i.e., agent Pj,k is improved. Thus all agents associated with

clause Cj are improved. That is, the above sequence of swaps improves all

agents in clause gadgets. Since there are m clauses, we conclude that a total

of 2n+ 3m agents are improved.

Theorem 3.4.8. Finding an MVPE matching on stars with weak preferences

is NP-hard.
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3.5 Generalized Star Networks

In this section, we establish the NP-hardness of finding a maximum

votes matching. In particular, we prove Theorem 3.5.1 below by a reduction

to reachable object problem on generalized stars, which was shown to be NP-

complete by Gourvès et al. [91].

Theorem 3.5.1. Finding an MVPE matching on generalized stars with strict

preferences is NP-hard.

Proof. We use a reduction from RO on generalized stars. Let I = (χ,O, b) be

an RO instance on generalized stars where χ = (F, µ) denotes the configuration

on a tree network, and O denotes an agent, and b denotes the target object.

Let I = (χ,O, b) denote an RO instance on generalized stars. Gourvès et.

al [91] shows that it is NP-complete to decide whether there is a matching µ′

in reach(χ) such that µ′(O) = b.

Let χ = (F, µ) where F = (A,B,�, E). Let n = |A|. We construct a

configuration χ′ = (F ′, µ′) below with F ′ = (A′, B′,�′, E ′).

We first construct the OAF F ′ = (A′, B′,�′, E ′). We construct A′ by

adding n+ 1 dummy agents D1, . . . , Dn+1, to A, i.e.,

A′ = A ∪ {D1, . . . , Dn+1}.

Furthermore, let di denote the initial endowment of dummy agent Di for all i

in [n+ 1]. We construct B′ = B ∪ {d1, . . . , dn+1}. We construct E ′ by adding

n + 1 edges connecting each dummy agent Di with the agent O into E, i.e.,
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E ′ = E ∪{(Di, O) | i ∈ [n+ 1]}. Clearly, the graph G′ = (A′, E ′) is still a tree.

In the end, we construct the preference profile �′ from the preference profile �.

Note that we consider the preferences of each agent as an ordered list starting

from its most favorite object to its least favorite object. For convenience, let

d0 = b. In the following, we describe the preference lists in �′ for each agent

in A′. For each dummy agent Di with i ∈ [n+1], agent Di prefers only di−1 to

its initial endowment di, i.e., its preference list consists of di−1, followed by di,

and followed by the remaining objects in an arbitrary order. Agent O prefers

all dummy objects to all non-dummy objects, and its preference list consists

of dn+1, . . . , d1 in order, followed by its preference list in �. All other agents

prefer all non-dummy objects to all dummy objects, where the ordering of the

all non-dummy objects is the same as in B, and the ordering of the dummy

objects is arbitrary. Let µ′ denote the matching µ ∪ {(Di, di) | i ∈ [n+ 1]}.

It is clear that our reduction can be carried out in polynomial time.

Hence, it remains only to establish the correctness of our reduction. We begin

by proving two useful claims.

Claim 1: Let i belong to [n + 1] and let Π denote a matching history

for χ′ such that there is a matching ν in Π with ν(O) = di. Then there is a

matching ν ′ in Π such that ν ′(O) = b.

Proof: Assume that Π is of the form µ0, . . . , µt. For any k in [i], let

W (k) denote the predicate “there is a matching ν in Π such that ν(O) =

di−k+1”; thus W (1) holds. We claim that W (k) holds for k = 1, . . . , i. For the

base case, it is immediate that W (1) holds. For the induction step, fix k in
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{2, . . . , i} and assume that W (k) holds. We need to prove that W (k+1) holds.

Let j in [t] be the minimum index in [t] such that µj(O) = di−k+1. Since agent

O is the only agent adjacent to dummy agent Di−k+1 and the initial endowment

of Di−k+1 is di−k+1, we deduce that matching µj is reached from µj−1 by

performing a swap between agents O and Di−k+1. Hence µj−1(Di−k+1) =

di−k+1, µj(Di−k+1) = µj−1(O), and agent Di−k+1 prefers µj−1(O) to di−k+1.

Since Di−k+1 only prefers di−k to its initial endowment di−k+1, we deduce

that µj−1(O) = Di−k, i.e., that W (k + 1) holds. This completes the proof of

induction step. Therefore, for k = i, W (i) implies that there exists a matching

ν in Π such that ν(O) = d0 = b. This completes the proof of Claim 1.

Claim 2: Let i belongs to [n+ 1]. Let Π denote a matching history for

χ′ such that there are two matchings µ∗ and µ∗∗ in Π with µ∗(Di) 6= µ∗∗(Di).

Then there is a matching ν in Π such that ν(O) = b.

Proof: Let j in [t] be the minimum index such that µj−1 and µj are two

matchings in Π with µj−1(Di) 6= µj(Di). Therefore, agent Di prefers µj(Di)

to µj−1(Di). Since Di only prefers di−1 to its initial endowment di, we deduce

that µi(Di) = di−1. Since agent O is the only agent adjacent to Di, we deduce

that there is a matching µk in Π with k < j such that µk(O) = di−1. Moreover,

we deduce by Claim 1 that there is a matching ν ′ in Π such that ν ′(O) = b.

This completes the proof of Claim 2.

The following claim establishes the correctness of our reduction.

Claim 3: Let Π denote a matching history for χ′ that improves mv(χ′)
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agents. There is a matching ν in Π such that ν(O) = b if and only if mv(χ′) ≥

n+ 1.

Proof: We begin by considering the if direction. Assume that mv(χ′) ≥

n + 1. We deduce that some dummy agent Di is improved by Π. That is,

there are two matchings µ∗ and µ∗∗ in Π such that µ∗(Di) 6= µ∗∗(Di). Thus,

we deduce by Claim 2 that there is a matching ν in Π such that ν(O) = b.

We now consider the only if direction. We first prove that ν(Di) = di

for all i in [n+1]. Assume for the sake of contradiction that there is an index i

in [n+1] such that ν(Di) 6= di. Note that agent O is the only agent adjacent to

of Di and Di only prefers di−1 to di. It follows that there is a matching ν ′ in Π

such that O prefers ν ′(O) to ν(O) and ν ′(O) = di, a contradiction since agent

O prefers di to b = ν(O). Therefore, we conclude that ν(O) = b and ν(Di) = di

for all i in [n+1]. Thus, starting from ν, it is straightforward to verify that the

following sequence of exchanges is a matching history: (O,D1), . . . , (O,Dn+1).

Moreover, this yields a matching history for χ′ that improves all n+ 1 dummy

agents. Since Π improves the maximum voting number of agents and there is

a matching history that improves all n+ 1 dummy agents, we deduce that the

number of agents improved by Π is at least n + 1. This completes the proof

of Claim 3.
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Chapter 4

Fractional Hedonic Games With a Limited

Number of Coalitions

4.1 Introduction

Community detection in social networks, or network partitioning, is an

important topic in social network analysis. A social network is classically rep-

resented by a directed weighted graph over the agents, where a weighted link

models the relationship between two agents in the social network. Intuitively,

communities correspond to groups of vertices that are internally more densely

connected than with the rest of the network. Partitioning a social network

into disjoint communities, or revealing the hidden community structure, can

offer insights regarding the organization of a social network and can signifi-

cantly simplify the network representation. Furthermore, in online marketing,

such as placing online ads or deploying viral marketing strategies, identify-

ing communities often leads to more accurate targeting and better marketing

results.

A key challenge of community detection is to formally define the notion

of a community. Various attempts from various perspectives have emerged

The results presented in this chapter are based on my single-authored paper [116].
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in the literature (see [80, 106] for two recent surveys on this topic). Many

attempts focus on optimizing one of a number of global metrics designed to

quantitatively measure the quality of a community structure. In this chapter,

we focus on metrics that tend to capture the natural forces and dynamics

underlying the formation of communities.

The field of game theory focuses on interactions between intelligent

agents. Thus, it is natural to apply game theory to capture the dynamics

behind the formation of communities in social networks. In recent work, there

has been a considerable amount of research on using game-theoretic techniques

to study community detection in social networks. We refer to [99] for a recent

survey on this topic. Hedonic games are a notable type of game for studying

coalition formation (see [22] for a survey). A hedonic game is specified by a

set of players who have preferences over the set of all possible partitions of

the players into coalitions. The outcome of a hedonic game consists a par-

tition of the players into disjoint coalitions. Of particular relevance to the

present chapter is the line of research initiated by Aziz et al. [20] on using

fractional hedonic games to study community detection. Fractional hedonic

games (FHGs), introduced by Aziz et al. [18], are a subclass of hedonic games

that can be represented by directed weighted graphs. In particular, an FHG

is represented by a directed weighted graph where the weight of edge (i, j) de-

notes the value player i has for player j and the utility of a player i is defined

as the average value that player i ascribes to the members of i’s coalition.

Outcomes that satisfy some notion of stability or welfare are considered to be
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desirable community structures for a given FHG. For example, consider FHGs

represented by undirected unweighted graphs, i.e., undirected graphs where

each edge has weight 0 or 1. This covers situations in which players only dis-

tinguish between friends and non-friends, and each play wants to belong to a

coalition in which the fraction of friends is maximized. Aziz et al. [20] consider

the computational complexity of computing welfare maximizing partitions for

FHGs. Three different notions of social welfare are considered: (1) utilitarian

welfare (or social welfare), which is based on the sum of utilities; (2) egali-

tarian welfare, which is based on the minimum utility of any agent; (3) Nash

welfare, which is based on the product of utilities. They show that maximizing

utilitarian, egalitarian, or Nash welfare is NP-hard even for the FHGs repre-

sented by undirected unweighted graphs. On the positive side, they present

approximation algorithms. These approximation algorithms, which are based

on computing maximal matchings, produce coalitions of size at most two. This

limits the practical applicability of these algorithms, as it is often undesirable

to form many tiny coalitions. In this chapter, we focus on utilitarian welfare.

Our results. We study a variant of FHGs where there is a specific

upper bound k on the number of coalitions that can be formed. To moti-

vate this work, note that in many real-world scenarios, there are physical and

organizational restrictions that limit the number of possible coalitions. For

example, consider a setting in which each coalition requires a leader, and only

a small number of agents are qualified to act as a leader. In such a setting,

no feasible partition can contain more coalitions than the number of qualified
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leaders.

A central concern of coalition formation games is to define what consti-

tutes a desired outcome. Within our setting, we consider two key objectives.

Our first objective is to find a partition maximizing the social welfare, i.e.,

the sum of the utilities of all players. As mentioned before, computing social

welfare maximizing partitions (with no restriction number of coalitions) has

been shown to be NP-hard by Aziz et al. [20], even for FHGs represented by

undirected unweighted graphs. Here we study the parameterized complexity

of the problem in terms of k. We refer to a partition with exactly k coalitions

as a k-partition. For all k ≥ 2, we establish the NP-hardness of finding a

social welfare maximizing k-partition on undirected unweighted graphs. For

undirected unweighted trees, we prove a structural property of social welfare

maximizing k-partitions. In particular, for undirected unweighted trees, we

show that every coalition in a social welfare maximizing k-partition is con-

nected. By leveraging this property, we present a simple algorithm for finding

a social welfare maximizing k-partition in polynomial time when the underly-

ing social network is an n-node undirected unweighted trees and parameter k

is fixed.

A social welfare maximizing partition may admit a player whose utility

can be increased by deviating to another coalition. Our second objective is

to consider Nash stable partitions, where no player can improve their utility

by unilaterally changing their coalition. We prove that for all k ≥ 2, if a

Nash stable k-partition exists in an FHG represented by an n-node directed

146



unweighted graph with bounded maximum out-degree, then each coalition in

such a k-partition is of size Ω(n). We then study the computational complexity

of finding a Nash stable k-partition. Unfortunately, for all k ≥ 2, we prove

that it is NP-complete to determine whether an FHG played on a directed

weighted graph with edge weights in {0,−1} admits a Nash stable k-partition.

Related works. Aziz et al. [20] studied FHGs from a social welfare

perspective, Subsequently, Flammini et al. [77] investigated how to form wel-

fare maximizing coalitions in FHGs in an online setting. Chen et al. [51] pro-

posed several simulation-based methods for finding social welfare maximizing

partitions, and provided numerical results. Bilò et al. [34] initiated the study

of Nash stable partitions in FHGs from a non-cooperative point of view. They

showed that a Nash stable partition is not guaranteed to exist in FHGs played

on undirected graphs with negative weights. However, they proved that such a

partition always exists when weights are non-negative. Furthermore, they give

bounds on the (Nash) price of anarchy and stability. In addition, they estab-

lished the NP-hardness of computing a Nash stable partition with maximum

social welfare. Further results on the price of stability for FHGs played on

undirected unweighted graphs have been presented by Kaklamanis et al. [100].

Other stability concepts in FHGs have also been studied [17, 43, 48].

The restriction on the number of coalitions, which is the focus of the

present chapter, has been mostly overlooked. Skibski et al. [157] studied k-

coalitional cooperative games in the transferable utility setting, and developed

an extension of the Shapley value for this game. Additively separable hedonic
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games (ASHGs) [18] and modified fractional hedonic games (MFHGs) [137]

are two related classes of hedonic games that can be represented by graphs.

Sless et al. [158] initiated the study of ASHGs in which exactly k coalitions

must be formed. Estivill-Castro et al. [74] studied MFHGs where k equal-size

coalitions must be formed (a balanced k-partition).

Aziz et al. [17] explained why efficient or stable outcomes of FHGs tend

to provide better partitions than their counterparts for ASHGs and MFHGs,

respectively. Sless et al. [158] considered social welfare maximizing partitions

and k-coalitions-core stable partitions, the latter being an adaptation of the

notion of core stability to their setting. They presented an efficient algorithm

for finding social welfare maximizing k-partitions in ASHGs played on undi-

rected graphs when the number of negative-weight edges is limited, and proved

that for all k ≥ 1, it is NP-hard to determine (1) whether a given k-partition

is k-coalitions-core and (2) whether there exists a k-coalitions-core stable k-

partition in ASHGs. Estivill-Castro et al. [74] considered Nash stability. They

proved that for all k ≥ 2, finding a balanced Nash stable k-partition is NP-

hard in general undirected unweighted graphs, but polynomially solvable in

undirected unweighted trees. Further results on Nash stable 2-partitions for

MFHGs have been presented in [23, 24].

Chapter organization. The remainder of this chapter is organized

as follows. Section 4.2 presents formal definitions. Sections 4.3 and 4.4

present our results for social welfare maximizing k-partitions and Nash stable

k-partitions, respectively.
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4.2 Preliminaries

For all positive integers n, let [n] denote {1, . . . , n}. In an FHG, we

are given a set N = [n] of players. The objective of the game is to partition

the players into disjoint coalitions P = {P1, P2, . . .}. Let Π(N) denote the set

of all partitions of N , and for all integers k ≥ 1, let Πk(N) denote the set

of partitions in Π(N) with exactly k coalitions. We refer to each partition in

Πk(N) as a k-partition.

Each player i has a value function vi : N → R that denotes how

much player i values each of the players in N . We assume that vi(i) = 0.

Hence, every FHG can be represented by a tuple of valuation functions v =

(v1, . . . , vn). We often associate an FHG with a weighted directed graph.

Given a tuple of valuation functions v, let G = (N,E, v) denote the weighted

directed graph where the weight of the pair (i, j) in N × N is vi(j) and E

contains all directed edges corresponding to pairs with non-zero weights. Let

G(G) denote the fractional hedonic game associated with G. We say that a

graph G is unweighted if each edge in G has weight 1, and we represent such

an unweighted graph as a pair (N,E).

For convenience, for each player i, we extend the input domain of the

value function vi to N∪{P | P ⊆ N ∧ i ∈ P}∪Π(N). For any coalition P ⊆ N

that contains player i, the utility vi(P ) of agent i is defined as
∑

j∈P vi(j)

|P | . For

any partition P in Π(N), let P(u) denote the coalition that contains player u

and let the shorthand vi(P) denote vi(P(i)).
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Given an FHG G(G) and a partition P, the social welfare SWG(G)(P)

of P is defined as the sum of the utilities of all players, i.e., SWG(G)(P) =∑
i∈N vi(P). We often drop the subscript G(G) when there is no ambiguity.

Given a partition P in Π(N), we say that a player i is Nash stable for

P if there is no other coalition P ′ 6= P(i) in P such that vi(P
′ ∪ {i}) > vi(P).

We say that a partition P in Π(N) is Nash stable if all players are Nash stable

for P.

We use the following notations from graph theory. Let G = (N,E) be

an unweighted graph. Given a subset U of N , we denote by EG(U) the set

of edges of G having both endpoints in U . Moreover, for two disjoint sets N1

and N2, we denote by EG(N1, N2) the set of edges having one endpoint in N1

and one endpoint in N2. We drop the subscript G when there is no ambiguity.

For any graph G = (N,E) and any subset S of N , we let G[S] denote the

subgraph of graph G induced by S.

We now state the two problems studied in this chapter.

• The social welfare maximizing k-partition problem: Given a fractional

hedonic game G(G) and an integer k, find a k-partition P in Πk(N) that

maximizes the social welfare SW(P).

• The Nash stable k-partition problem: Given a fractional hedonic game

G(G) and an integer k, determine whether there is a k-partition P in

Πk(N) that is Nash stable.

150



4.3 Social Welfare Maximizing k-Partitions

In this section, we focus on FHGs played on undirected unweighted

graphs. We remark that for an FHG played on an undirected unweighted graph

G = (N,E), the social welfare of any partition P in Π(N) is SWG(G)(P) =∑
P∈P

2|EG(P )|
|P | . For FHGs played on undirected unweighted graphs, Section 4.3.1

establishes the NP-hardness of the social welfare maximizing k-partition prob-

lem for every fixed k ≥ 2. For FHGs played on undirected unweighted trees,

Section 4.3.2 presents an efficient algorithm that solves the social welfare max-

imizing k-partition problem for all k ≥ 2.

4.3.1 NP-Hardness Results

In this section, we prove Theorem 4.3.1 below.

Theorem 4.3.1. For FHGs played on unweighted undirected graphs, the social

welfare maximizing k-partition problem is NP-hard for every fixed k ≥ 2.

We separate our hardness proof into two parts: for k ≥ 3 and for k = 2.

When k ≥ 3, we reduce from the k-colorable problem, which was proved

to be NP-complete by Leven and Galil [115] for all k ≥ 3. The k-colorable

problem asks whether a given undirected graph can be partitioned into k inde-

pendent sets. By considering complementary graphs, the NP-completeness of

the k-colorable problem implies the NP-completeness of determining whether

an undirected graph can be partitioned into k cliques. It is straightforward to

verify that the social welfare of a k-partition P for an undirected unweighted
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graph is at most 2(n − k). Moreover, if a k-partition P has social welfare

2(n−k), then the k-partition P partitions G into k cliques. Therefore, if there

is an efficient algorithm that solves the social welfare maximizing k-partition

problem, then there is an efficient algorithm that solves the NP-complete prob-

lem of determining whether an undirected graph can be partitioned into k

cliques. Thus the social welfare maximizing k-partition problem is NP-hard

for k ≥ 3.

It remains to address the case k = 2. We reduce from the max cut

problem, which was proved to be NP-complete by Karp [102]. Recall that in

the max cut problem, we are given an instance of an unweighted undirected

graph G and a positive integer r, and we wish to determine whether there

exists a cut (S1, S2) of G such that |E(S1, S2)| ≥ r. We remark that our

reduction is similar to a reduction given by Bonsma et al. [39]. Bonsma et al.

use a reduction from the max cut problem to prove that it is NP-hard to find

a cut (S1, S2) in an undirected graph G such that |EG(S1,S2)|
|S1||S2| is minimized.

Reduction. Let I = (G, r) denote an instance of the max cut prob-

lem, where G = (V,E) denotes an undirected graph and r denotes a positive

integer. Below we construct an undirected unweighted graph G∗ = (V ∗, E∗)

that represents a corresponding instance of the social welfare maximizing 2-

partition problem. For convenience, let n denote |V | and let m denote |E|.

We first construct an undirected graph G′ = (V ′, E ′), and then we let

G∗ = (V ′, K ′ \E ′) be the complementary graph of G′, where K ′ consists of all

2-element subsets of V ′. For each v in V , we have two sets Iv and I ′v of vertices,
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each of size M = 4m + 2. Thus, G′ has 2nM vertices and V ′ =
⋃
v∈V Iv ∪ I ′v.

For each v in V , we introduce edges connecting each vertex in Iv to each vertex

in I ′v. We select one distinguished vertex from each Iv (resp., I ′v) to form a

set A (resp., A′) of n vertices. For each edge (u, v) in E, we add an edge to

E ′ between the two distinguished vertices in Iu and Iv (resp., I ′u and I ′v). The

resulting graph is G′.

To show that our reduction is correct, we first prove two useful proper-

ties of social welfare maximizing k-partitions. After that, we prove Lemma 4.3.4,

which establishes the correctness of our reduction.

Lemma 4.3.2. Let H = (V,E) be an undirected graph, let H be the comple-

mentary graph of H, and let P be a 2-partition in Π(V ). Then SWG(H)(P) =

|V | − 2− SWG(H)(P).

Proof. Let n denote |V |. Note that SWG(H)(P) =
∑

i∈{1,2}
2EH(Pi)
|Pi| . Since H

is the complementary graph of H, for all subsets P of V , we have EH(P ) +

EH(P ) = |P |(|P | − 1)/2. Therefore,

SW
G(H)

(P) =
∑
i∈{1,2}

(
|Pi| − 1− 2EH(Pi)

|Pi|

)
= n− 2−

∑
i∈{1,2}

vH(Pi)

= n− 2− SW
G(H)

(P).
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Lemma 4.3.3. Let P in Π2(V ′) be a social welfare minimizing 2-partition for

G′. Then for each node v in V and each coalition P in P, either P ∩(Iv∪I ′v) =

Iv or P ∩ (Iv ∪ I ′v) = I ′v.

Proof. Assume for the sake of contradiction that there is a vertex v in V

such that the 2-partition P does not partition Iv ∪ I ′v into the sets Iv and I ′v.

Let P = (P1, P2). Therefore, for each i in {1, 2}, both Pi ∩ Iv and Pi ∩ I ′v

are non-empty. Let a = |P1 ∩ Iv| ≥ 1 and a′ = |P1 ∩ I ′v| ≥ 1. Note that

|E(P1∩Iv, P1∩I ′v)| = aa′, and |E(P2∩Iv, P2∩I ′v)| = (M−a)(M−a′). Without

loss of generality, assume that |E(P1 ∩ Iv, P1 ∩ I ′v)| ≥ |E(P2 ∩ Iv, P2 ∩ I ′v)|, i.e.,

aa′ ≥ (M−a)(M−a′). That is, a+a′ ≥M , and hence aa′ ≥ a(M−a) ≥M−1,

as a and a′ are positive integers. Thus |E(P1 ∩ Iv, P1 ∩ I ′v)| = aa′ ≥M − 1.

Therefore, we obtain

SW
G(G′)

(P) =
∑
i∈{1,2}

2E(Pi)

|Pi|

≥ 2E(P1)

|P1|

≥ 2|E(P1 ∩ Iv, P1 ∩ I ′v)|
|P1|

≥ M − 1

|P1|

≥ M − 1

2nM
.
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Let P ′ = (
⋃
v∈V Iv,

⋃
v∈V I

′
v ). Thus

SW
G(G′)

(P) ≤ SW
G(G′)

(P ′)

=
2|EG′(

⋃
v∈V Iv)|

nM
+

2|EG′(
⋃
v∈V I

′
v)|

nM

=
2m

nM
.

It follows that M−1
2nM
≤ 2m

nM
. Rearranging, we obtain M − 1 ≤ 4m, a contradic-

tion since M = 4m+ 2.

Lemma 4.3.4. At least r edges cross some cut of G if and only if G∗ has a

2-partition with social welfare at least 2nM − 2− 4m−4r
nM

.

Proof. By Lemma 4.3.2, it suffices to prove that at least r edges cross some

cut of G if and only if G′ has a 2-partition with social welfare at most 4m−4r
nM

.

We consider two cases.

Case 1: G has a cut (S1, S2) with |E(S1, S2)| ≥ r. For each i in

{1, 2}, let Pi denote {Iv | v ∈ Si} and let P ′i denote {I ′v | v ∈ Si}. Consider

the 2-partition P′ = (P1 ∪ P ′2, P ′1 ∪ P2). It is straightforward to verify that

|P1 ∪ P ′2| = |P ′1 ∪ P2| = nM . Moreover, notice that

|EG′(P1 ∪ P ′2)| = |EG′(P1)|+ |EG′(P ′2)|

= |EG(S1)|+ |EG(S2)|

= |E| − |EG(S1, S2)|

= m− r.
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Similarly, we have |EG′(P ′1 ∪ P2)| = m− r. Thus

SW(P′) =
2|EG′(P1 ∪ P ′2)|
|P1 ∪ P ′2|

+
2|EG′(P ′1 ∪ P2)|
|P ′1 ∪ P2|

=
4m− 4r

nM
. (4.1)

Therefore, G′ has a 2-partition with social welfare at most 4m−4r
nM

.

Case 2: G′ has a 2-partition with social welfare at most 4m−4r
nM

. Con-

sider a social welfare minimizing 2-partition P∗ = (P ∗1 , P
∗
2 ) in G′. Hence

SWG(G′)(P
∗) ≤ 4m−4r

nM
. By Lemma 4.3.3, we deduce that for each v in V ,

P∗ partitions Iv ∪ I ′v into the two sets Iv and I ′v. Therefore, either Iv ⊆ P ∗1

and I ′v ⊆ P ∗2 , or Iv ⊆ P ∗2 and I ′v ⊆ P ∗1 . For each i in {1, 2}, let Si denote

{v ∈ V | Iv ⊆ P ∗i } and S ′i denote {v ∈ V | I ′v ⊆ P ∗i }. Clearly, S1 = S ′2,

S2 = S ′1, and (S1, S
′
1) = (S ′2, S2) is a partition in Π2(V ). Using a calculation

similar to that used to derive Eq. (4.1), we have SWG(G′)(P
∗) =

4(m−|EG(S1,S′1)|)
nM

.

Since SWG(G′)(P
∗) ≤ 4m−4r

nM
, we deduce that |EG(S1, S

′
1)| ≥ r. Therefore, at

least r edges cross some cut of G.

4.3.2 Finding Social Welfare Maximizing k-Partitions for Trees

In this section, we first prove Lemma 4.3.5, which presents a useful

structural property of social welfare maximizing k-partitions on undirected

unweighted trees. Then, based on this property, for any fixed positive inte-

ger k, we present a simple polynomial time algorithm for the social welfare

maximizing k-partition problem on unweighted undirected trees.

Lemma 4.3.5. Let G = (N,E) be a tree, let k belong to [|N |], and let P∗ be

a social welfare maximizing k-partition in Πk(N) with coalitions P ∗1 , . . . , P
∗
k .
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Then for all coalitions P ∗i in P∗, G[P ∗i ] is connected.

Proof. Assume for the sake of contradiction that there is a coalition P ∗i in P∗

such that G[P ∗i ] is not connected. Thus G[P ∗i ] has p ≥ 2 connected compo-

nents. Let T1, . . . , Tp denote the vertex sets associated with these p connected

components. Hence each connected component G[T1], . . . , G[Tp] of G[P ∗i ] is a

tree. Observe that |P ∗i | =
∑

j∈[p] |Tj|. Without loss of generality, assume that

|T1| ≤ · · · ≤ |Tp|.

Since G is a tree, we deduce that there is another coalition P ∗j in P∗

with j 6= i such that there is an edge between P ∗j and T1. Below we construct

a k-partition P′ in Πk(N) with SW(P′) > SW(P ∗), a contradiction since P∗ is

a social welfare maximizing k-partition.

We construct such a k-partition P′ with coalitions P ′1, . . . , P
′
k as follows.

For each ` in [k]\{i, j}, we set P ′` to P ∗` . Furthermore, we set P ′i to P ∗i \T1 and

P ′j to P ∗j ∪ T1. Now we prove that SW(P′) > SW(P∗). For any coalitions S of

N , let d(S) denote E(S)/|S|. Thus, SW(P′) =
∑

w∈[k] 2d(P ′w) and SW(P∗) =∑
w∈[k] 2d(P ∗w). Hence it suffices to prove that d(P ′i ) + d(P ′j) > d(P ∗i ) + d(P ∗j ).

Below we establish the preceding inequality by showing that d(P ′i ) ≥ d(P ∗i )

and d(P ′j) > d(P ∗j ).

First, we prove that d(P ′i ) ≥ d(P ∗i ). Recall that the subgraph G[P ∗i ]

contains p trees G[T1], . . . , G[Tp], while the subgraph G[P ′i ] contains trees

G[T2], . . . , G[Tp]. Thus

d(P ′i ) =

∑p
`=2(|T`| − 1)∑p

`=2 |T`|
= 1− p− 1

|P ∗i | − t1
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and

d(P ∗i ) =

∑p
`=1(|T`| − 1)∑p

`=1 |t`|
= 1− p

|P ∗i |
.

Now, to show that d(P ′i ) ≥ d(P ∗i ), it suffices to show that p−1
|P ∗i |−t1

≤ p
|P ∗i |

,

i.e., p · t1 ≤ |P ∗i |. The latter inequality follows from |T1| ≤ · · · ≤ |Tp| and

|P ∗i | =
∑p

`=1 |T`|.

Second, we prove that d(P ′j) > d(P ∗j ). Since P ∗j is a forest, we have

|E(P ∗j )| < |P ∗j |. Since there is at least one edge connecting P ∗j and T1, we

have

d(P ′j) =
|E(P ∗j ∪ T1)|
|P ∗j |+ |T1|

≥
|E(P ∗j )|+ 1 + |E(T1)|

|P ∗j |+ |T1|
=
|E(P ∗j )|+ |T1|
|P ∗j |+ |T1|

.

Since |E(P ∗j )| < |P ∗j |, we conclude that d(P ′j) > |E(P ∗j )|/|P ∗j | = d(P ∗j ).

Theorem 4.3.6. For any fixed positive integer k, the social welfare maximizing

k-partition problem can be solved in polynomial time on undirected unweighted

trees.

Proof. By Lemma 4.3.5, we deduce that any social welfare maximizing k-

partition on a tree is a partition into k subtrees. Notice that for trees, there

is a one-to-one correspondence between removing k− 1 edges and partitioning

into k subtrees. Let n denote the number of players in G. Thus, for any fixed

k, we can use brute force to evaluate each of the
(
n−1
k−1

)
k-partitions of G in

polynomial time.
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4.4 Nash Stable k-Partitions

In this section, we consider Nash stable k-partitions for all k ≥ 2.

Throughout this section, we assume that k ≥ 2 unless otherwise stated.

As an independent result, Theorem 4.4.1 below shows that a Nash stable

k-partition of an unweighted directed graph with bounded out-degree is al-

most balanced. Then, we prove that it is NP-complete to determine whether a

directed weighted graph where all edges have weights −1 admits a Nash stable

k-partition.

Theorem 4.4.1. Let k ≥ 2 and ∆ ≥ 2 be integers, let G = (N,E) denote

a directed unweighted strongly connected graph with out-degree at most ∆ and

|N | ≥ k ·∆k+1, and assume that G(G) admits a Nash stable k-partition P in

Πk(N). Then all coalitions in P have size at least n
k·∆k−1 .

Proof. Let P1, . . . , Pk denote the k coalitions in P with 0 < |P1| ≤ · · · ≤ |Pk|.

It suffices to prove that |P1| ≥ n
k·∆k−1 . For any t in {0, . . . , k − 1}, let Q(t)

denote the predicate |Pk−t| ≥ n
k·∆t . We use induction on t to prove that Q(t)

holds for any t in {0, . . . , k − 1}. Clearly, Q(k − 1) implies that |P1| ≥ n
k·∆k−1 .

For the base case, notice that 0 < |P1| ≤ · · · ≤ |Pk| and hence |Pk| ≥
1
k

∑
i∈[k] |Pi| = n

k
. Therefore, Q(0) holds. For the induction step, let i in

[k − 1] be given and suppose that Q(t) holds for each t in {0, . . . , i − 1}.

We need to prove that Q(i) holds. Since the partition P1, . . . , Pk belongs to

Πk(N), we deduce that (
⋃
j∈[k−i] Pj,

⋃
j∈[k]\[k−i] Pj) is a 2-partition in Π2(N).

Furthermore, since G is strongly connected, there is a directed edge (b, a) from
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⋃
j∈[k]\[k−i] Pj to

⋃
j∈[k−i] Pj. Let integer i′ (resp., j′) be such that player a

(resp., b) belongs to Pi′ (resp, Pj′ ). Thus 1 ≤ i′ ≤ k− i and k− i+1 ≤ j′ ≤ k.

Therefore, |Pi′ | ≤ |Pk−i| and k − j′ ≤ i − 1. By the induction hypothesis,

we know that Q(k − j′) holds, i.e., |Pj′ | ≥ n
k∆k−j′ ≥ n

k∆i−1 . Below we prove

that |Pi′ | ≥ 1
∆
|Pj′|. Since |Pi′| ≤ |Pk−i| and |Pj′ | ≥ n

k∆i−1 , we deduce that

|Pk−i| ≥ |Pi′| ≥ 1
∆
|Pj′| ≥ 1

∆
· n
k∆i−1 = n

k∆i . Hence Q(i) holds, as required.

It remains to prove that |Pi′ | ≥ 1
∆
|Pj′|. Since P is Nash stable, we

deduce that each player is Nash stable. Since player b is Nash stable, we have

vb(Pi′ ∪ {b}) ≤ vb(Pj′). (4.2)

Since (b, a) belongs to E, we deduce that vb(a) = 1 and hence

vb(Pi′ ∪ {b}) =

∑
w∈Pi′∪{b}

vb(w)

|Pi′ |+ 1
≥ vb(a)

|Pi′|+ 1
=

1

|Pi′|+ 1
.

Furthermore, since the out-degree of player b is bounded by ∆ and a is an out-

neighbor of b outside Pj′ , we deduce that b has at most ∆−1 out-neighbors in

Pj′ , that is,
∑

w∈Pj′
vb(w) ≤ ∆−1. Thus, vb(Pw) ≤ ∆−1

|Pj′ |
. Using inequality (4.2),

we have 1
|Pi′ |+1

≤ ∆−1
|Pj′ |

. Rearranging, we obtain |Pj′| ≤ ∆|Pi′| − |Pi′| + ∆ − 1.

Furthermore, we deduce from Q(k − j′) and n ≥ k∆k+1 that

|Pj′| ≥
n

k ·∆k−j′ ≥
k∆k+1

k ·∆k−j′ = ∆j′+1.

Notice that j′ ≥ k − i+ 1 ≥ 2 as i ≤ k − 1. Therefore, we have ∆3 ≤ ∆j′+1 ≤

∆|Pi′ | − |Pi′|+ ∆− 1.

We claim that |Pi′| ≥ ∆. Assume for the sake of contradiction that

|Pi′ | < ∆. Hence ∆|Pi′| − |Pi′ |+ ∆− 1 ≤ ∆2 + ∆− 1. Since ∆ ≥ 2, we deduce
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that ∆2 +∆−1 < 2∆2 ≤ ∆3, a contradiction since ∆3 ≤ ∆|Pi′|−|Pi′ |+∆−1.

Hence |Pi′| ≥ ∆.

Since |Pj′| ≤ ∆|Pi′| − |Pi′ |+ ∆− 1 and |Pi′ | ≥ ∆, we have

|Pj′ | ≤ ∆|Pi′ | −∆ + ∆− 1 < ∆|Pi′|.

Hence |Pi′| > 1
∆
|Pj′|, as required.

4.4.1 Hardness

In this section, for each k ≥ 2, we establish the NP-completeness of

determining whether a directed weighted graph with edges weights −1 admits

a Nash stable k-partition. We give an NP-completeness proof first for k = 2

and then for k ≥ 3.

The following observation allows us to consider Nash stable partitions in

FHGs played on undirected unweighted graphs with utility-minimizing players,

rather than Nash stability in weighted directed graphs with negative edge

weights and utility-maximizing players.

Observation 4.4.2. Let H = (N,E, v) denote a directed weighted graph where

every edge has weight −1, let H ′ = (N,E) denote the directed unweighted graph

that contains the same vertices and edges as H, let k belong to [|N |], and let P

denote a k-partition in Πk(N). Then the k-partition P is Nash stable in G(H)

with utility-maximizing players if and only if P is Nash stable in G(H ′) with

utility-minimizing players.
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We now prove the following lemma, which will be used in our NP-

completeness proofs for k = 2 and for k ≥ 3.

Lemma 4.4.3. Let N denote a set of utility-minimizing players, let G =

(N,E) be an unweighted directed graph, let k and i be integers such that k ≥ 2

and i belongs to [k − 1], let x denote a player in N with exactly k − 1 out-

neighbors y1, . . . , yk−1 in G, and let P denote a Nash stable k-partition in

Πk(N). Then P(x) 6= P(yi).

Proof. Assume for the sake of contradiction that P(x) = P(yi). Since yi be-

longs to P(yi) and yi is an out-neighbor of x, we deduce that vx(P(x)) =

vx(P(yi)) > 0. Since x has exactly k − 1 out-neighbors, there is a coalition P

in the k-partition P that does not contain x or any out-neighbor of x. There-

fore, vx(P ∪{x}) = 0 < vx(P(x)). Hence the utility-minimizing player x is not

Nash stable for P, a contradiction.

4.4.1.1 Nash Stable 2-Partitions

In this section, we use a reduction from the balanced unfriendly 2-

partition problem to prove that it is NP-complete to determine whether a

directed weighted graph where all edges have weights −1 admits a Nash stable

2-partition. A 2-partition of an undirected graph is called unfriendly if each

vertex has at least as many neighbors outside its partition as it has inside

its partition. Bazgan et al. [25] prove that determining whether a graph ad-

mits a balanced unfriendly 2-partition is NP-complete. Our reduction borrows
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ideas from Kun et al. [113], who use an elegant reduction from the balanced

unfriendly 2-partition problem to show that determining whether a directed

graph has a stable coloring with two colors is NP-complete. They use a gadget

that forces any stable 2-coloring to be balanced. We adapt this gadget to our

setting to ensure that any Nash stable 2-partition is balanced.

Lemma 4.4.4. For FHGs with utility-minimizing players and played on di-

rected unweighted graphs, the Nash stable 2-partition problem is NP-complete.

Proof. This problem is clearly in NP. For hardness, we reduce from the bal-

anced unfriendly 2-partition problem. Let G = (V,E) be an instance of the

balanced unfriendly 2-partition problem, where G is an undirected graph and

|V | is even. We construct a directed graph G′ = (V ′, E ′) as follows.

Let n denote |V | and let M = (n+ 2)(n+ 5). Let graph G′ consists of

M isolated directed 2-cycles, four additional subgraphs, and some additional

edges between these subgraphs. For any i in [M ], the vertices of the ith

isolated directed 2-cycle are denoted ai and bi. The first subgraph is a “directed

version” of G: it has vertex set V and two directed edges (u, v) and (v, u) for

each undirected edge (u, v) in E. The second subgraph is a single vertex u0.

The third subgraph consists of two vertices v0 and v1, plus the directed edge

(v1, v0). The fourth subgraph is a directed cycle with three vertices c1, c2, and

c3 and directed edges (c1, c2), (c2, c3), and (c3, c1). The following additional

edges are included in G′: a directed edge from u0 to each vertex in V + v0; a

directed edge from v0 to each vertex in V + u0; (c1, u0); (c1, v1). Thus G′ has
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n+1 +2+ 3+ 2M = n+2M +6 vertices and 2|E|+1 +3+ 2(|N |+1) +2M =

2|E|+ 2M + 2|N |+ 6 directed edges.

We start by proving that if G has a balanced unfriendly partition

(P1, P2) in Π2(V ), then G(G′) admits a Nash stable 2-partition. Let P ′1 denote

P1∪{u0}∪{v1}∪{c3}∪{ai | i ∈ [M ]} and let P ′2 denote P2∪{v0}∪{c1, c2}∪{bi |

i ∈ [M ]}. Clearly, (P ′1, P
′
2) belongs to Π2(V ′) and |P ′1| = |P ′2| = n/2 +M + 2 =

|V ′|/2. It is straightforward to prove that the partition (P ′1, P
′
2) is Nash stable

by verifying that each player has at least as many out-neighbors outside its

partition as it has inside its partition.

It remains to prove that if G(G′) admits a Nash stable 2-partition, then

G has a balanced unfriendly 2-partition. Let P′ = (P ′1, P
′
2) be a Nash stable 2-

partition of G(G′) . We will prove that (P ′1∩V, P ′2∩V ) is a balanced unfriendly

2-partition of G. To do so, we first prove that |P ′1 ∩ V | = |P ′2 ∩ V | = n/2, i.e,

that (P ′1 ∩ V, P ′2 ∩ V ) is balanced. We then proceed to prove that |P ′1| = |P ′2|.

Once we have established that |P ′1| = |P ′2|, it is straightforward to deduce that

for each i in {1, 2}, a utility-minimizing player v in P ′i ∩ V is Nash stable if

and only if the corresponding vertex v in G has at least as many neighbors

in P ′3−i ∩ V as in P ′i ∩ V . Hence the balanced 2-partition (P ′1 ∩ V, P ′2 ∩ V ) is

unfriendly, which concludes the proof of this lemma.

Notice that the players in {ai, bi | i ∈ [M ]} each have exactly one out-

neighbor. By Lemma 4.4.3, we deduce that P′(ai) 6= P′(bi) for each i in [M ].

Since P′ = (P ′1, P
′
2) is a 2-partition, we conclude that |P ′1 ∩ {ai, bi}| = 1 for

each i in M . Thus |P ′1| ≥M and |P ′2| ≥M .
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We now prove the following useful claim.

Claim 1: P(c3) 6= P(c2) and P(c3) 6= P(c1).

Proof: Since c3 is the unique out-neighbor of c2 and c1 is the unique

out-neighbor of c3, we deduce by Lemma 4.4.3 that P(c3) 6= P(c2) and P(c3) 6=

P(c1). This completes the proof of Claim 1.

We now prove that |P ′1 ∩ V | = |P ′2 ∩ V |. Assume for the sake of con-

tradiction that |P ′1 ∩ V | 6= |P ′2 ∩ V |. Without loss of generality, assume that

|P ′1∩V | > |P ′2∩V |. Therefore, |P ′1∩V | ≥ |P ′2∩V |+2 as |P ′1∩V |+|P ′2∩V | = |V |

and |V | is even. Claim 3 below contradicts the Nash stability of P, allowing

us to conclude that |P ′1 ∩ V | = |P ′2 ∩ V |. Before stating Claim 3, we establish

Claim 2 below. Claims 1 and 2 are used in the proof Claim 3.

Claim 2: Vertex u0 belongs to P ′2 and vertex v1 belongs to P ′1.

Proof: We first prove that u0 belongs to P ′2. Assume for the sake

of contradiction that u0 belongs to P ′1. It suffices to prove that u0 is not

Nash stable, which yields a contradiction. Since all players in P ′1 ∩ V are

out-neighbors of u0, we deduce that the utility of u0 is at least

|P ′1 ∩ V |
|P ′1|

≥ |P
′
2 ∩ V |+ 2

|P ′1|
=
|P ′2 ∩ V |+ 2

|V ′| − |P ′2|
≥ |P

′
2 ∩ V |+ 2

n+M + 6
,

where the last inequality follows from |P ′2| ≥M and |V ′| = n+ 2M + 6. Since

there are |V ′|+ 1 out-neighbors of u0 in G′ and all players in P ′1 ∩ V are out-

neighbors of u0, player u0 has at most |V ′|+ 1− |P ′1 ∩ V | out-neighbors in P ′2.
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Therefore, by deviating to P ′2, player u0 achieves utility at most

|V ′|+ 1− |P ′1 ∩ V |
|P ′2|+ 1

=
|P ′2 ∩ V |+ 1

|P ′2|+ 1
≤ |P

′
2 ∩ V |+ 1

M + 1
,

where the last inequality follows from |P ′2| ≥M . We now prove that the utility

of player u0 decreases if u0 deviates to P ′2, i.e.,
|P ′2∩V |+1

M+1
<
|P ′2∩V |+2

n+M+6
. This is

equivalent to show that n+M+6
M+1

<
|P ′2∩V |+2

|P ′2∩V |+1
. Subtracting 1 from both sides, the

desired inequality becomes n+5
M+1

< 1
|P ′2∩V |+1

. Since M = (n + 2)(n + 5), we

deduce that n+5
M+1

< n+5
M

= n+5
(n+5)(n+2)

= 1
n+2

. Furthermore, since |P ′2 ∩ V | ≤

|V | = n < n + 1, we deduce that 1
n+2
≤ 1
|P ′2∩V |+1

. Thus we conclude that

n+5
M+1

< 1
n+2
≤ 1
|P ′2∩V |+1

, as desired. Hence the utility of player u0 decreases if

u0 deviates to P ′2. It follows that player u0 is not Nash stable, a contradiction.

Therefore, we conclude that u0 belongs to P ′2. A similar argument can be used

to prove that v0 is in P ′2. Since v1 has exactly one out-neighbor v0, we deduce

by Lemma 4.4.3 that P′(v1) 6= P′(v0) = P ′2, i.e., P′(v1) = P ′1. This completes

the proof of Claim 2.

Claim 3: At least one player in {c1, c2, c3} is not Nash stable.

Proof: Let i be an integer in {1, 2} such that P ′i = P(c3). Claim 1

implies that players c1 and c2 belong to P ′3−i. It suffices to prove that c1 is

not Nash stable. Note that P ′3−i contains exactly one player in {u0, v1} as

u0 is in P ′2 and v1 is in P ′1 by Claim 2. Therefore, player c1 has exactly two

out-neighbors in P ′3−i and hence has utility 2/|P ′3−i|. If c1 deviates to P ′i ,

then c1 achieves utility 1/(|P ′i |+ 1). Notice that 2/|P ′3−i| > 1/(|P ′i |+ 1) since

2(|P ′i | + 1) ≥ 2(M + 1) > n + M + 6 = |V ′| − M ≥ |V ′| − |P ′i | = |P ′3−i|.
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Therefore, the utility of player c1 decreases if c1 deviates to P ′i , and hence c1

is not Nash stable. This completes the proof of Claim 3.

We now seek to prove that |P ′1| = |P ′2|. Note that we have previously

deduced that |P ′1 ∩ {ai, bi | i ∈ [M ]}| = |P ′2 ∩ {ai, bi | i ∈ [M ]}| = M ,

|P ′1 ∩ V | = |P ′2 ∩ V |, and |P ′1 ∩ {v0, v1}| = |P ′2 ∩ {v0, v1}| = 1. Thus, it

remains to prove that |P ′1 ∩ {u0, c1, c2, c3}| = |P ′2 ∩ {u0, c1, c2, c3}|. Let i be

an integer such that c3 belongs to P ′1. Thus Claim 1 implies that c1 and

c2 belong to P ′3−i. It suffices to show that u0 belongs to P ′i . Assume for

the sake of contradiction that u0 belongs to P ′3−i. Therefore, coalition P ′3−i

contains at least two of c1’s three out-neighbors (i.e., u0 and c2). Thus, c1 is

not Nash stable, a contradiction. Therefore, we conclude that u0 is in P ′1, as

required.

4.4.1.2 Nash Stable k-Partitions

Lemma 4.4.5. For FHGs on directed unweighted graphs with utility-minimizing

players, the Nash stable k-partition problem is NP-complete for all k ≥ 3.

Proof. Clearly, this problem is in NP. For hardness, we reduce from the prob-

lem shown to be complete in Lemma 4.4.4. The proof of Lemma 4.4.4 shows

that the latter problem remains NP-complete if we restrict the attention to

instances in which the associated graph contains an isolated 2-cycle. Let

G = (V,E) denote such an instance that contains an isolated 2-cycle with

vertices p1 and p2. Let n denote |V |, let M denote n2 − 2n + 2, and sup-

pose that n ≥ 3. We construct a directed unweighted graph G′ = (V ′, E ′) as
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follows.

We define V ′ as

V ∪ {p3, . . . , pk} ∪ {dj,` | j ∈ {3, . . . , k}, ` ∈ [M ]}.

Recall that {p1, p2} ⊆ V and {(p1, p2), (p2, p1)} ⊆ E. We define E ′ as E ∪

E1 ∪ E2, where E1 and E2 are defined as follows. The set E1 consists of all

edges associated with a directed clique over {p1, . . . , pk}. (Thus E ∩ E1 =

{(p1, p2), (p2, p1)}.) For any j and ` such that 3 ≤ j ≤ k and ` belongs to [M ],

the set E2 includes an edge from dj,` to each player in {p1, . . . , pk} \ {pj} and

an edge from each vertex in V \ {p1, p2} to dj,`.

Claims 1 and 2 below imply that the lemma holds

Claim 1: If G(G) admits a Nash stable 2-partition P = (P1, P2) for

utility-minimizing players, then G(G′) admits a Nash stable k-partition for

utility-minimizing players.

Let P′ denote the k-partition (P ′i )i∈[k], where P ′1 = P1, P ′2 = P2, and

P ′i = {pi} ∪ {di,` | ` ∈ [M ]} for each i in {3, . . . , k}. Clearly, for each i in

{3, . . . , k}, all players in P ′i = {pi} ∪ {di,` | ` ∈ [M ]} have utility 0, and hence

are Nash stable. To prove that P′ is Nash stable, it remains to prove that all

of the players in P ′1∪P ′2 are Nash stable. Assume for the sake of contradiction

that there is an integer i in {1, 2} and player p in P ′i such that p is not Nash

stable. Thus, there is a coalition P ′j such that the utility of player p decreases if

p deviates to P ′j . Since P ′1 = P1, P ′2 = P2, and the 2-partition (P1, P2) is Nash

stable, we deduce that j 6= 3 − i. Therefore, j belongs to {3, . . . , k}. Notice
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that for each ` in [M ], the player dj,q is an out-neighbor of p in P ′j . Therefore,

vp(P
′
j ∪{p}) = M/(M + 2) = 1− 2/(M + 2). Moreover, p has at most |P ′i | − 1

out-neighbors in P ′i and hence vp(P
′
j ∪ {p}) ≤ 1 − 1/|P ′i | ≤ 1 − 1/(n − 1)

as |P ′i | = |Pi| = |V \ P3−i| ≤ n − 1. (The latter inequality holds since P1

and P2 are each required to be non-empty.) Note that M = n2 − 2n + 2 =

(n − 1)2 + 1 > 2n − 2 as n ≥ 3. Therefore, we have 2/(M + 2) < 1/n, i.e.,

vp(P
′
j ∪ {p}) = 1− 2/(M + 2) > 1− 1/n ≥ vp(P

′
i ). Thus the utility of player

p does not decrease if p deviates to P ′j , a contradiction. This completes the

proof of Claim 1.

Claim 2: If G(G′) admits a Nash stable k-partition P′ = (P ′i )i∈[k] in

Πk(V
′) for utility-minimizing players, then G(G) admits a Nash stable 2-

partition for utility-minimizing players.

Notice that for each i in [k], the player pi has k − 1 out-neighbors in

{pj | j ∈ [k] \ {i}}. Thus Lemma 4.4.3 implies that P′(pi) 6= P′(pj) for all j

in [k] \ {i}. Therefore, the k vertices p1, . . . , pk belong to distinct coalitions

of the k-partition. Without loss of generality, suppose that P ′i contains pi for

all i in [k]. Hence P′(pi) = P ′i for all i in [k]. It now suffices to prove that

(P ′1, P
′
2) is a 2-partition in Π2(V ). After we prove this, the desired statement

that G(G) admits the Nash stable 2-partition (P ′1, P
′
2) directly follows, since

the Nash stability of (P ′1, P
′
2) follows from the Nash stability of P′ = (P ′i )i∈[k].

To prove that (P ′1, P
′
2) is in Π2(V ), it suffices to prove that P ′1 ∪ P ′2 =

V . Let Q = ∪3≤i≤kP
′
i . Below we prove that P ′1 ∪ P ′2 = V by showing that

V ′ \ V ⊆ Q and V ∩Q = ∅ hold.
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We first prove that V ′ \ V ⊆ Q. Since pi belongs to P ′i for each i in

{3, . . . , k}, it remains to consider the dummy vertices. For each j in {3, . . . , k}

and any ` in [M ], the dummy vertex dj,` has k − 1 out-neighbors in {pi | i ∈

[k] \ {j}}, and hence we deduce by Lemma 4.4.3 that P′(dj,`) 6= P′(pi) = P ′i

for all i in [k] \ {j}. Hence we conclude that P′(dj,`) = P ′j for all i in [k] \ {j}.

Therefore, for all j in {3, . . . , k}, we deduce that {pj} ∪ {dj,` | ` ∈ [M ]} ⊆ P ′j .

In summary, we have determined the coalition that contains each vertex in the

set

{p1, . . . , pk} ∪ {dj,` | j ∈ {3, . . . , k}, ` ∈ [M ]}.

Of these vertices, one belongs to P ′1, one belongs to P ′2, and M + 1 vertices

belong to P ′j for each j in {3, . . . , k}. Since the number of other vertices in

V ′ is |V \ {p1, p2}| = n− 2, we conclude that |P ′1| ≤ n− 1, |P ′2| ≤ n− 1, and

|P ′j| ≤ 1 +M + n− 2 = M + n− 1 for all j in {3, . . . , k}.

Now we prove that V ∩Q = ∅. Since p1 belongs to P ′1 and p2 belongs to

P ′2 , it is sufficient to prove that (V \ {p1, p2})∩Q = ∅. Assume for the sake of

contradiction that there is a player p in V \{p1, p2} such that p does not belong

to P ′1 ∪ P ′2. Let j be an integer in {3, . . . , k} such that P ′j = P′(p). Note that

P ′j contains {dj,` | ` ∈ [M ]}, and hence P ′j contains at least M out-neighbors of

p. Thus vp(P
′
j) ≥ M

|P ′j |
≥ M

M+n−1
= 1− n−1

M+n−1
, where the last inequality follows

from |P ′j| ≤ M + n − 1. Moreover, vp(P
′
1 ∪ {p}) ≤

|P ′1∪{p}|−1

|P ′1∪{p}|
≤ n−1

n
= 1 − 1

n
,

where the last inequality follows from |P1| ≤ n− 1. Since M = n2− 2n+ 2, it

follows that 1
n

= n−1
n(n−1)

> n−1
n2−n+1

= n−1
M+n−1

, i.e., vp(P
′
1 ∪ {p}) < vp(P

′
j). Hence

the utility of player p decreases if p deviates to P ′1, contradicting the Nash

170



stability of p.

Lemmas 4.4.4 and 4.4.5 together yield Theorem 4.4.6 below, the main

result of this section.

Theorem 4.4.6. For FHGs played on directed weighted graphs where all edges

have weight −1, the Nash stable k-partition problem is NP-complete for every

fixed k ≥ 2.
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Chapter 5

The Obnoxious Facility Location Game with

Dichotomous Preferences

5.1 Introduction

The facility location game (FLG) was introduced by Procaccia and

Tannenholtz [147]. In this setting, a central planner wants to build a facility

that serves agents located on a path. The agents report their locations, which

are fed to a mechanism that decides where the facility should be built. Pro-

caccia and Tannenholtz studied two different objectives that the planner seeks

to minimize: the sum of the distances from the facility to all agents and the

maximum distance of any agent to the facility.

Every agent aims to maximize their welfare, which increases as their

distance to the facility decreases. An agent or a coalition of agents can mis-

report their location(s) to try to increase their welfare. It is natural to seek

strategyproof (SP) or group-strategyproof (GSP) mechanisms, which incen-

tivize truthful reporting. Often such mechanisms cannot simultaneously opti-

The results presented in this chapter are based on Greg Plaxton and Vaibhav Sinha [117].
My main contribution to these results is to prove the existence of a mechanism that is WGSP
and efficient for three facilities in the path setting. This dissertation does not include the
details of our results related to egalitarian mechanisms, or to the cycle and square settings;
these results can be found in Vaibhav Sinha’s M.Sc. thesis [156].
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mize the planner’s objective. In these cases, it is desirable to approximately

optimize the planner’s objective.

In real scenarios, an agent might dislike a certain facility, such as a

power plant, and want to stay away from it. This variant, called the obnoxious

facility location game (OFLG), was introduced by Cheng et al., who studied

the problem of building an obnoxious facility on a path [55]. In the present

chapter, we consider the problem of building multiple obnoxious facilities on

a path. With multiple facilities, there are different ways to define the welfare

function. For example, in the case of two facilities, the welfare of the agent

can be the sum, minimum, or maximum of the distances to the two facilities.

In our work, as all the facilities are obnoxious, a natural choice for welfare

is the minimum distance to any obnoxious facility: the closest facility to an

agent causes them the most annoyance, and if it is far away, then the agent is

satisfied.

A facility might not be universally obnoxious. Consider, for example,

a school or sports stadium. An agent with no children might consider a school

to be obnoxious due to the associated noise and traffic, while an agent with

children might not consider it to be obnoxious. Another agent who is not

interested in sports might similarly consider a stadium to be obnoxious. We

assume that each agent has dichotomous preferences; they dislike some subset

of the facilities and are indifferent to the others. Each agent reports a subset of

facilities to the planner. As the dislikes are private information, the reported

subset might not be the subset of facilities that the agent truly dislikes. On
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the other hand, we assume that the agent locations are public and cannot be

misreported.

In this chapter, we study a variant of FLG, which we call DOFLG

(Dichotomous Obnoxious Facility Location Game), that combines the three

aspects mentioned above: multiple (heterogeneous) obnoxious facilities, min-

imum distance as welfare, and dichotomous preferences. We seek to design

mechanisms that perform well with respect to either a utilitarian or egalitar-

ian objective. The utilitarian objective is to maximize the social welfare, that

is, the total welfare of all the agents. A mechanism that maximizes social

welfare is said to be efficient. The egalitarian objective is to maximize the

minimum welfare of any agent. For both objectives, we seek mechanisms that

are SP, or better yet, weakly or strongly group-strategyproof (WGSP / SGSP).

Our contributions. We study DOFLG with n agents. We consider

the utilitarian objective. We present 2-approximate SGSP mechanisms for any

number of facilities when the agents are located on a path, cycle, or square.

We obtain the following two additional results for the path setting. In the

first main result of the chpater, we obtain a mechanism that is WGSP for any

number of facilities and efficient for up to three facilities. To show that this

mechanism is WGSP, we relate it to a weighted approval voting mechanism. To

prove its efficiency, we identify two crucial properties that the welfare function

satisfies, and we use an exchange argument. For the path setting, we also show

that no SGSP mechanism can achieve an approximation ratio better than 5/4,

even for one facility.
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Table 5.1: Summary of our results for DOFLG when the agents are located
on a path.

Utilitarian Egalitarian
LB UB LB UB

SP
1 1 for k ≤ 3

1 1
WGSP

Ω(
√
n) O(n)

SGSP 5/4 2

We consider the egalitarian objective. We provide SP mechanisms for

any number of facilities when the agents are located on a path, cycle, or square.

In the second main result of the chapter, we prove that the approximation ratio

achieved by any WGSP mechanism is Ω(
√
n), even for two facilities. Also, we

present a straightforward O(n)-approximate WGSP mechanism. Both of the

results for WGSP mechanisms hold for DOFLG when the agents are located

on a path or cycle. Table 5.1 summarizes our results. The heading LB (resp.,

UB) stands for lower (resp., upper) bound. The results in the egalitarian

column also hold when the agents are located on a cycle. Boldface results hold

when the agents are located on a path, cycle, or square.

My main contribution to these results is to prove the existence of a

mechanism that is WGSP and efficient for three facilities in the path setting.

This dissertation does not include the details of our results related to egali-

tarian mechanisms, or to the cycle and square settings; these results can be

found in Vaibhav Sinha’s M.Sc. thesis [156].

The rest of this chapter is organized as follows. Section 5.2 reviews

related work. Section 5.3 introduces some basic definitions and notations.
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Section 5.4 defines the weighted approval voting mechanism and establishes

several useful properties of this mechanism. Section 5.5 presents our main

results for the path setting.

5.2 Related Work

FLG was introduced by Procaccia and Tannenholtz [147]. Many gen-

eralizations and extensions of FLG have been studied [10, 65, 75, 76, 81, 82,

122, 169]; here we highlight some of the most relevant work. Cheng et al.

introduced OFLG and presented a WGSP mechanism to build a single facility

on a path [55]. Later they extended the model to cycles and trees [56]. A

complete characterization of single-facility SP/WGSP mechanisms for paths

has been developed [96]. Duan et al. studied the problem of locating two ob-

noxious facilities at least distance d apart [70]. Other variants of OFLG have

been considered [54, 84, 138, 166].

Agent preferences over the facilities were introduced to FLG in [170].

Serafino and Ventre studied FLG for building two facilities where each agent

likes a subset of the facilities [153]. Anastasiadis and Deligkas extended

this model to allow the agents to like, dislike, or be indifferent to the fa-

cilities [12]. The aforementioned works address linear (sum) welfare function.

Yuan et al. studied non-linear welfare functions (max and min) for building two

non-obnoxious facilities [168]; their results have subsequently been strength-

ened [53, 121]. In the present chapter, we initiate the study of a non-linear

welfare function (min) for building multiple obnoxious facilities.
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5.3 Preliminaries

The problems considered in this chapter involve a set of agents located

on a path, cycle, or square. In the path (resp., cycle, square) setting, we

assume without loss of generality that the path (resp., cycle, square) is the

unit interval (resp., unit-circumference circle, unit square). We map the points

on the unit-circumference circle to [0, 1), in the natural manner. Thus, in the

path (resp., cycle, square) setting, each agent i is located in [0, 1] (resp., [0, 1),

[0, 1]2). The distance between any two points x and y is denoted ∆(x, y).

In the path and square settings, ∆(x, y) is defined as the Euclidean distance

between x and y. In the cycle setting, ∆(x, y), is defined as the length of the

shorter arc between x and y. In all settings, we index the agents from 1. Each

agent has a specific location in the path, cycle, or square. A location profile x

is a vector (x1, . . . , xn) of points, where n denotes the number of agents and

xi is the location of agent i. Sections 5.5 presents our results for the path.

Consider a set of agents 1 through n and a set of facilities F, where we

assume that each agent dislikes (equally) certain facilities in F and is indif-

ferent to the rest. In this context, we define an aversion profile a as a vector

(a1, . . . , an) where each component ai is a subset of F. We say that such an

aversion profile is true if each component ai is equal to the subset of F disliked

by agent i. In this chapter, we also consider reported aversion profiles where

each component ai is equal to the set of facilities that agent i claims to dislike.

Since agents can lie, a reported aversion profile need not be true. For any

aversion profile a and any subset C of agents [n], aC (resp., a−C) denotes the
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aversion profile for the agents in (resp., not in) C. For a singleton set of agents

{i}, we abbreviate a−{i} as a−i.

An instance of the dichotomous obnoxious facility location (DOFL)

problem is given by a tuple (n, k,x, a) where n denotes the number of agents,

there is a set of k facilities F = {F1, . . . , Fk} to be built, x = (x1, . . . , xn) is a

location profile for the agents, and a = (a1, . . . , an) is an aversion profile (true

or reported) for the agents with respect to F. A solution to such a DOFL

instance is a vector y = (y1, . . . , yk) where component yj specifies the point at

which to build Fj. We say that a DOFL instance is true (resp., reported) if the

associated aversion profile is true (resp., reported). For any DOFL instance

I = (n, k,x, a) and any j in [k], we define haters(I, j) as {i ∈ [n] | Fj ∈ ai},

and indiff(I) as {i ∈ [n] | ai = ∅}.

For any DOFL instance I = (n, k,x, a) and any associated solution y,

we define the welfare of agent i, denoted w(I, i,y), as minj:Fj∈ai ∆(xi, yj), i.e.,

the minimum distance from xi to any facility in ai. Remark: If ai is empty, we

define w(I, i,y) as 1/2 in the cycle setting, max(∆(xi, 0),∆(xi, 1)) in the path

setting, and the maximum distance from xi to a corner in the square setting.

The foregoing definition of agent welfare is suitable for true DOFL

instances, and is only meaningful for reported DOFL instances where the

associated aversion profile is close to true. In this chapter, reported aversion

profiles arise in the context of mechanisms that incentivize truthful reporting,

so it is reasonable to expect such aversion profiles to be close to true. We define

the social welfare (resp., minimum welfare) as the sum (resp., minimum) of the
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individual agent welfares. When the facilities are built at y, the social welfare

and minimum welfare are denoted by SW(I,y) and MW(I,y), respectively.

Thus SW(I,y) =
∑

i∈[n] w(I, i,y) and MW(I,y) = mini∈[n] w(I, i,y).

Definition 5.3.1. For α ≥ 1, a DOFL algorithm A is α-efficient if for any

DOFL instance I,

max
y

SW(I,y) ≤ α SW(I, A(I)).

Similarly, A is α-egalitarian if for any DOFL instance I,

max
y

MW(I,y) ≤ αMW(I, A(I)).

A 1-efficient (resp., 1-egalitarian) DOFL algorithm, is said to be effi-

cient (resp., egalitarian).

We are now ready to define a DOFL-related game, which we call DOFLG.

It is convenient to describe a DOFLG instance in terms of a pair (I, I ′) of

DOFL instances where I = (n, k,x, a) is true and I ′ = (n, k,x, a′) is reported.

There are n agents indexed from 1 to n, and a planner. There is a set of k

facilities F = {F1, . . . , Fk} to be built. The numbers n and k are publicly

known, as is the location profile x of the agents. Each component ai of the

true aversion profile a is known only to agent i. Each agent i submits compo-

nent a′i of the reported aversion profile a′ to the planner. The planner, who

does not have access to a, runs a DOFL algorithm, call it A, to map I ′ to

a solution. The input-output behavior of A defines a DOFLG mechanism,

call it M ; in the special case where k = 1, we say that M is a single-facility
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DOFLG mechanism. We would like to choose A so that M enjoys strong

game-theoretic properties. We say that M is α-efficient (resp., α-egalitarian,

efficient, egalitarian) if A is α-efficient (resp., α-egalitarian, efficient, egalitar-

ian). As indicated earlier, such properties (which depend on the notion of

agent welfare) are only meaningful if the reported aversion profile is close to

true. To encourage truthful reporting, we require our mechanisms to be SP,

as defined below; we also consider the stronger properties WGSP and SGSP.

The SP property says that no agent can increase their welfare by lying

about their dislikes.

Definition 5.3.2. A DOFLG mechanism M is SP if for any DOFLG instance

(I, I ′) with I = (n, k,x, a), and I ′ = (n, k,x, a′), and any agent i in [n] such

that a′ = (a−i, a
′
i), we have

w(I, i,M(I)) ≥ w(I, i,M(I ′)).

The WGSP property says that if a non-empty coalition C ⊆ [n] of

agents lies, then at least one agent in C does not increase their welfare.

Definition 5.3.3. A DOFLG mechanism M is WGSP if for any DOFLG

instance (I, I ′) with I = (n, k,x, a), and I ′ = (n, k,x, a′), and any non-empty

coalition C ⊆ [n] such that a′ = (a−C , a
′
C), there exists an agent i in C such

that

w(I, i,M(I)) ≥ w(I, i,M(I ′)).
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The SGSP property says that if a coalition C ⊆ [n] of agents lies and

some agent in C increases their welfare then some agent in C decreases their

welfare.

Definition 5.3.4. A DOFLG mechanism M is SGSP if for any DOFLG in-

stance (I, I ′) with I = (n, k,x, a), and I ′ = (n, k,x, a′), and any coalition

C ⊆ [n] such that a′ = (a−C , a
′
C), if there exists an agent i in C such that

w(I, i,M(I)) < w(I, i,M(I ′)),

then there exists an agent i′ in C such that

w(I, i′,M(I)) > w(I, i′,M(I ′)).

Every SGSP mechanism is WGSP and every WGSP mechanism is SP.

5.4 Weighted Approval Voting

Before studying efficient mechanisms for our problem, we review a vari-

ant of the approval voting mechanism [41]. An instance of Dichotomous Voting

(DV) is a tuple (m,n,C,w+,w−) where m voters 1, . . . ,m have to elect a can-

didate among the set of candidates C = {c1, . . . , cn}. Each voter i has dichoto-

mous preferences, that is, voter i partitions all of the candidates into two equiv-

alence classes: a top (most preferred) tier Ci and a bottom tier Ci = C \ Ci.

Each voter i has associated (and publicly known) weights w+
i ≥ w−i ≥ 0. The

symbols C, w+, and w− denote length-m vectors with ith element Ci, w
+
i , and
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w−i , respectively. We now present our weighted approval voting mechanism.

Mechanism 1. Given a DV instance (m,n,C,w+,w−), every voter i votes by

partitioning C into C ′i and C ′i. Let the weight function w be such that for voter

i and candidate cj, w(i, j) = w+
i if cj is in C ′i and w(i, j) = w−i otherwise. For

any j in [n], we define A(j) =
∑

i∈[m] w(i, j) as the approval of candidate cj.

The candidate cj with highest approval A(j) is declared the winner. Ties are

broken according to a fixed ordering of the candidates (e.g., in favor of lower

indices).

We note that the approval voting mechanism can be obtained from the

weighted approval voting mechanism by setting weights w+
i to 1 and w−i to

0 for all voters i. In Section 5.3, we defined SP, WGSP, and SGSP in the

DOFLG setting. These definitions are easily generalized to the voting setting.

Brams and Fishburn proved that the approval voting mechanism is SP [41].

Below we prove that our weighted approval voting mechanism is WGSP (and

hence also SP).

Theorem 5.4.1. Mechanism 1 is WGSP.

Proof. Assume for the sake of contradiction that there is an instance in which

a coalition of voters U with true preferences {(Ci, Ci)}i∈U all benefit by mis-

reporting their preferences as {(C ′i, C ′i)}i∈U . For any candidate cj, let A(j)

Our mechanism differs from the homonymous mechanism of Massó et al., which has
weights for the candidates instead of the voters [164].
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denote the approval of cj when coalition U reports truthfully, and let A′(j)

denote the approval of cj when coalition U misreports.

Let ck be the winning candidate when coalition U reports truthfully,

and let c` be the winning candidate when coalition U misreports. Since every

voter in U benefits when the coalition misreports, we know that ck belongs to⋂
i∈U Ci and c` belongs to

⋂
i∈U Ci.

Since ck belongs to
⋂
i∈U Ci, we deduce thatA′(k) = A(k)+

∑
i∈U :ck∈C′i

w+
i −

w−i and hence A′(k) ≥ A(k). Similarly, since c` belongs to
⋂
i∈U Ci, we deduce

that A′(`) = A(`) +
∑

i∈U :c`∈C′i
w−i − w+

i and hence A(`) ≥ A(`′).

Since ck wins when coalition U truthfully, one of the following two cases

is applicable.

Case 1: A(k) > A(`). Since A′(k) ≥ A(k) and A(`) ≥ A′(`), the case

condition implies that A′(k) > A′(`). Hence c` does not win when coalition U

misreports, a contradiction.

Case 2: A(k) = A(`) and ck has higher priority than c`. Since A′(k) ≥

A(k) and A(`) ≥ A(`′), the case condition implies that A′(k) ≥ A(`′) and ck

has higher priority than c`. Hence c` does not win when coalition U misreports,

a contradiction.

5.5 Efficient Mechanisms for Unit Intervals

We now present our efficient mechanism for DOFLG.

Mechanism 2. For a given reported DOFL instance I = (n, k,x, a), output the
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lexicographically least solution y in {0, 1}k that maximizes the social welfare

SW(I,y).

Theorem 5.5.1. Mechanism 2 is WGSP.

Proof. To establish this theorem, we show that Mechanism 2 can be equiv-

alently expressed in terms of the approval voting mechanism. Hence Theo-

rem 5.4.1 implies the theorem.

Let (I, I ′) denote a DOFLG instance where I = (n, k,x, a) and I ′ =

(n, k,x, a′). We view each agent i ∈ [n] as a voter, and each y in {0, 1}k

as a candidate. We obtain the top-tier candidates Ci of voter i, and their

reported top-tier candidates C ′i, from ai and a′i, respectively. Assume without

loss of generality that xi ≤ 1/2 (the other case can be handled similarly).

Set Ci = {y = (y1, . . . , yk) ∈ {0, 1}k | yj = 1 for all Fj ∈ ai} and similarly

C ′i = {y = (y1, . . . , yk) ∈ {0, 1}k | yj = 1 for all Fj ∈ a′i}. Also set w+
i = 1−xi

and w−i = xi. With this notation, it is easy to see that A(y) = SW(I ′,y),

and that choosing the y with the highest social welfare in Mechanism 2 is the

same as electing the candidate with the highest approval in Mechanism 1.

We show that Mechanism 2 is efficient for k = 3. First, we note a

well-known result about the 1-Maxian problem. In this problem, there are n

points located at z1, . . . , zn in the interval [a, b], and the task is to choose a

point in [a, b] such that the sum of the distances from that point to all zis is

maximized.
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Lemma 5.5.2 (Optimality of the 1-Maxian Problem). Let [a, b] be a real

interval, let z1, . . . , zn belong to [a, b], and let f(z) denote
∑

i∈[n] |z− zi|. Then

maxz∈[a,b] f(z) belongs to {f(a), f(b)}.

Before proving the main theorem, we establish Lemma 5.5.3, which

follows from Lemma 5.5.2.

Lemma 5.5.3. Let I = (n, k,x, a) denote the reported DOFL instance, let Y

denote the set of all y in [0, 1] such that it is efficient to build all k facilities

at y, and assume that Y is non-empty. Then Y ∩ {0, 1} is non-empty.

Proof. Let U denote indiff(I). When all of the facilities are built at y,

SW(I, (y, . . . , y)) =
∑

i∈[n]\U

|xi − y|+
∑
i∈U

w(I, i, y).

Since Y is non-empty, maxy SW(I, (y, . . . , y)) = maxy SW(I,y). More-

over, since
∑

i∈U w(I, i, y) does not depend on y, Lemma 5.5.2 implies that

max(SW(I, (0, . . . , 0)), SW(I, (1, . . . , 1))) = max
y

SW(I, (y, . . . , y)).

Thus, if SW(I, (0, . . . , 0)) ≥ SW(I, (1, . . . , 1)), it is efficient to build all k

facilities at 0. Otherwise, it is efficient to build all k facilities at 1.

Theorem 5.5.4. Mechanism 2 is efficient for k = 3.

Proof. Let I = (n, k,x, a) denote the reported DOFL instance and let y∗ =

(y∗1, y
∗
2, y
∗
3) be an efficient solution for I such that y∗1 ≤ y∗2 ≤ y∗3.
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Consider fixing variables y1 and y3 in the social welfare function SW(I,y).

That is, we have

SW(I,y)|y1=y∗1 ,y3=y∗3
=
∑
i∈[n]

w(I, i,y)|y1=y∗1 ,y3=y∗3
.

For convenience, let SW(y2) denote SW(I,y)|y1=y∗1 ,y3=y∗3
and let wi(y2) denote

w(I, i,y)|y1=y∗1 ,y3=y∗3
for each agent i.

Claim 1: For each agent i, the welfare function wi(y2) with y2 ∈ [y∗1, y
∗
3]

satisfies at least one of the following two properties:

1. wi(y2) = |y2 − xi|;

2. wi(y
∗
1) = wi(y

∗
3) = maxy∈[y∗1 ,y

∗
3 ] wi(y).

Proof: Consider an agent i. We consider five cases.

Case 1: F2 /∈ ai. Since the welfare of agent i is independent of the

location of F2, wi is a constant function. Hence property 2 is satisfied.

Case 2: ai = {F2}. By definition, we have wi(y2) = |y2 − xi|. Hence

property 1 is satisfied.

Case 3: ai = {F1, F2}. By definition, we have wi(y2) = min(|y∗1 −

xi|, |y2 − xi|). Notice that wi(y
∗
1) = min(|y∗1 − xi|, |y∗1 − xi|) = |y∗1 − xi| =

maxy∈[y∗1 ,y
∗
3 ] wi(y). Moreover, wi(y

∗
3) = min(|y∗1 − xi|, |y∗3 − xi|). We consider

two cases.

Case 3.1: |y∗1 − xi| > |y∗3 − xi|. Then wi(y
∗
3) = |y∗3 − xi| and hence

wi(y2) = |y2 − xi| for all y2 in [y∗1, y
∗
3], that is, wi(y2) satisfies property 1.
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Case 3.2: |y∗1−xi| ≤ |y∗3−xi|. Then wi(y
∗
3) = |y∗1−xi| = maxy∈[y∗1 ,y

∗
3 ] wi(y) =

wi(y
∗
1) and hence wi(y2) satisfies property 2.

Case 4: ai = {F2, F3}. This case is symmetric to Case 3 and can be

handled similarly.

Case 5: ai = {F1, F2, F3}. By definition, we have wi(y2) = min(|y∗1 −

xi|, |y2 − xi|, |y∗3 − xi|). Notice that wi(y
∗
1) = wi(y

∗
3) = min(|y∗1 − xi|, |y∗3 − xi|).

Also notice that for any y2 in [y∗1, y
∗
3], wi(y2) = min(|y∗1−xi|, |y2−xi|, |y∗3−xi|) ≤

min(|y∗1 − xi|, |y∗3 − xi|) = wi(y
∗
1). Hence property 1 holds.

This concludes our proof of Claim 1.

Claim 2: There is a solution that optimizes maxy SW(I,y) and builds

facilities in at most two locations.

Proof: We establish the claim by proving that either SW(I, (y∗1, y
∗
1, y
∗
3)) ≥

SW(I,y∗) or SW(I, (y∗1, y
∗
3, y
∗
3)) ≥ SW(I,y∗).

Claim 1 implies that the set of agents [n] can be partitioned into two

sets (S, S) such that wi(y2) satisfies property 1 for all i in S, and wi(y2)

satisfies property 2 for all i in S. Thus, we have SW(y2) =
∑

i∈[n] wi(y2) =∑
i∈S wi(y2) +

∑
i∈S wi(y2). By Lemma 5.5.2, there is a b in {y∗1, y∗3} such that∑

i∈S wi(b) ≥
∑

i∈S wi(y2) for all y2 in [y∗1, y
∗
3]. For any i in S, we deduce from

property 2 that wi(b) ≥ wi(y2) for all y2 in [y∗1, y
∗
3]. Therefore, SW(b) ≥ SW(y2)

for all y2 in [y∗1, y
∗
3]. This completes our proof of Claim 2.

Having established Claim 2, we can assume without loss of generality

that y∗2 = y∗3. A similar argument as above can be used to prove that either
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(0, y∗2, y
∗
2) or (y∗2, y

∗
2, y
∗
2) is an efficient solution. Now if (0, y∗2, y

∗
2) is efficient,

then one can use a similar argument to prove that either (0, 0, 0) or (0, 1, 1)

is efficient. And if (y∗2, y
∗
2, y
∗
2) is efficient, then by applying Lemma 5.5.3 with

k = 3, we deduce that either (0, 0, 0) or (1, 1, 1) is efficient. Thus, there is a

0-1 efficient solution. The efficiency of Mechanism 2 follows.

When k = 2 (resp., 1), we can add one (resp., two) dummy facilities

and use Theorem 5.5.4 to establish that Mechanism 2 is efficient for k = 2

(resp., 1). Theorem 5.5.5 below provides a lower bound on the approximation

ratio of any SGSP efficient mechanism; this result implies that Mechanism 2

is not SGSP.

Theorem 5.5.5. There is no SGSP α-efficient DOFLG mechanism with α <

5/4.

Proof. Let n be a large even integer. We construct two (3n
2

+ 1)-agent single-

facility DOFLG instances (I, I) and (I, I ′). In both (I, I) and (I, I ′), agent 1

is located at 0 and dislikes {F1}, n/2 agents are located at 1 and dislike {F1},

and the remaining n agents, which we denote by the set U , are located at 0

and dislike ∅. In I, all agents report truthfully, while in I ′, all agents in U

report {F1} and the remaining agents report truthfully.

Let the maximum social welfare for instances I and I ′ be OPT and

OPT′, respectively. It is easy to see that OPT = 3n/2 and OPT′ = n + 1

(obtained by building F1 at 0 and 1, respectively). Let the social welfare
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achieved by some SGSP DOFLG mechanism M on these instances be ALG

and ALG′, respectively.

Let M build F1 at y on I. It follows that ALG = y + 3n
2
− ny

2
. If

the agents in U and agent 1 form a coalition in I and the agents in U report

{F1}, then the instance becomes I ′. Thus, as M is SGSP, M cannot build

F1 to the right of y in I ′. Using this fact, it is easy to see that ALG′ ≤

(n+ 1)y + n
2
(1− y) = ny

2
+ n

2
+ y.

Using OPT = 3n
2

and ALG = y + 3n
2
− ny

2
, we obtain

α ≥
3n
2

y + 3n
2
− ny

2

. (5.1)

Similarly, using OPT′ = n+ 1 and ALG′ ≤ ny
2

+ n
2

+ y, we obtain

α ≥ n+ 1
ny
2

+ n
2

+ y
. (5.2)

Let f(y) denote

max(
3n
2

y + 3n
2
− ny

2

,
n+ 1

ny
2

+ n
2

+ y
).

From (5.1) and (5.2) we deduce that α ≥ f(y). Let y∗ denote a value of y in

[0, 1] minimizing f(y). It is easy to verify that y∗ satisfies f(y∗) = 5n2+4n−4
4n(n+1)

.

Thus, α ≥ f(y∗). As n approaches infinity, f(y∗) approaches 5/4. Thus, for

any SGSP α-efficient mechanism, we have α ≥ 5/4.

In view of Theorem 5.5.5, it is natural to try to determine the minimum

value of α for which an SGSP α-efficient DOFLG mechanism exists. Below we

present a 2-efficient SGSP mechanism. It remains an interesting open problem
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to improve the approximation ratio of 2, or to establish a tighter lower bound

for the approximation ratio.

Mechanism 3. Let (n, k,x, a) denote the reported DOFL instance. Build all

facilities at 0 if
∑

i∈[n] xi ≥
∑

i∈[n](1− xi); otherwise, build all facilities at 1.

Theorem 5.5.6. Mechanism 3 is SGSP.

Proof. Reported dislikes do not affect the locations at which the facilities are

built. Hence the theorem follows.

Theorem 5.5.7. Mechanism 3 is 2-efficient.

Proof. Let I = (n, k,x, a) denote the reported DOFL instance. Let ALG

denote the social welfare obtained by Mechanism 3 on this instance, and let

OPT denote the maximum possible social welfare on this instance. We need

to prove that 2 ·ALG ≥ OPT.

Assume without loss of generality that Mechanism 3 builds all facilities

at 0. (A symmetric argument handles the case where all facilities are built

at 1). Then the welfare of an agent i not in indiff(I) is xi and the welfare

of an agent i′ in indiff(I) is max(xi′ , 1 − xi′) ≥ xi′ . Thus, ALG ≥
∑

i∈[n] xi.

As Mechanism 3 builds the facilities at 0 and not 1, we have
∑

i∈[n] xi ≥∑
i∈[n](1− xi), which implies that

∑
i∈[n] xi ≥ n/2. Combining the above two

inequalities, we have ALG ≥ n/2. Since no agent has welfare greater than 1,

we have n ≥ OPT. Thus, 2 ·ALG ≥ n ≥ OPT, as required.
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We now establish that the analysis of Theorem 5.5.7 is tight by exhibit-

ing a two-facility DOFL instance on which Mechanism 3 achieves half of the op-

timal social welfare. For the reported DOFL instance I = (2, 2, (0, 1), ({F1}, {F2})),

it is easy to verify that the optimal social welfare is SW(I, (1, 0)) = 2, while

the social welfare obtained by Mechanism 3 is SW(I, (0, 0)) = 1.
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Chapter 6

Egalitarian Resource Sharing Over Multiple

Rounds

It is often beneficial for agents to pool their resources in order to better

accommodate fluctuations in individual demand. Many multi-round resource

allocation mechanisms operate in an online manner: in each round, the agents

specify their demands for that round, and the mechanism determines a cor-

responding allocation. In this chapter, we focus instead on the offline setting

in which the agents specify their demand for each round at the outset. We

formulate a specific resource allocation problem in this setting, and design

and analyze an associated mechanism based on the solution concept of lex-

icographic maximin fairness. We present an efficient implementation of our

mechanism, and prove that it is Pareto-efficient, envy-free, non-wasteful, re-

source monotonic, population monotonic, and group strategyproof. We also

prove that our mechanism guarantees each agent at least half of the utility

that they can obtain by not sharing their resources. We complement these

positive results by proving that no maximin fair mechanism can improve on

the aforementioned factor of one-half.
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6.1 Introduction

In this chapter, we consider a group of agents sharing resources over

a set of rounds. Every agent owns a specific fraction of the shared resources.

Each agent reports their demand for each round. For a given round, an agent

accrues utility equal to the number of units allocated to them, as long as the

allocation does not exceed their demand; any allocation beyond this threshold

does not provide additional utility. Our goal is to design allocation mechanisms

based on the demands and ownership shares of the agents, and the supply

of the resources. We assume that no monetary exchange occurs between the

agents, as is often the case in resource sharing applications (e.g., within a single

organization). Such sharing of computational resources arises in applications

related to cluster computing, data centers, and supercomputers.

Strategic (coalitions of) agents can misreport their demands in order

to achieve higher utility, often at the expense of other agents. Thus, we seek

to design strategyproof (SP) or group strategyproof (GSP) mechanisms that

incentivize truthful reporting.

An allocation satisfies the sharing incentives (SI) property if it ensures

that each agent achieves utility at least as high as they can obtain by not

sharing their resources. The mechanism that allocates resources to the agents

in proportion to their relative endowments (ownership shares) is GSP and SI.

Such a mechanism can be wasteful in the sense that it can allocate resources

to an agent in excess of their demand while leaving the demand of another

agent unmet. Thus, we seek to design mechanisms that only produce non-
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wasteful (NW) allocations. We also seek mechanisms that always produce a

Pareto-efficient (PE) allocation.

Given an allocation, we say that agent a envies agent a′ if a prefers

the allocation of a′ (scaled to account for the relative endowments of a and

a′) to their own. An allocation is envy-free (EF) if no agent envies another.

An allocation is frugal if it does not allocate more resources to an agent than

they demand. We consider two notions of fair allocations: lexicographically

maximin fair (LMMF), and a weaker notion, maximin fair (MMF).

We seek mechanisms that are resource monotonic (RM), that is, if the

supply of one or more resources is increased, no agent experiences a decrease

in utility. We seek mechanisms that are also population monotonic (PM),

that is, if the endowment of one or more agents is decreased, no other agent

experiences a decrease in utility.

In this chapter, we present an egalitarian mechanism for allocating

resources to agents over multiple rounds and provide an efficient algorithm

to compute the allocation. Our mechanism is frugal, LMMF, GSP, 1/2-SI

(a relaxation of SI), NW, PE, EF, RM, and PM. We also show that there is

no MMF α-SI mechanism for any α > 1/2. The significance of our work is

discussed in greater detail in Section 6.1.2. But first, we review relevant prior

work in Section 6.1.1.
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6.1.1 Related Work

Computational Resource Sharing Problem related to computa-

tional resource allocation lie at the intersection of economics and computer

science, and have received a lot of attention in the research literature. In par-

ticular, the theory of fair division, including such concepts as the egalitarian

equivalent rule, provides a suitable framework for tackling modern techno-

logical challenges arising in cloud computing environments. This connection

has inspired a substantial line of theoretical work, including mechanisms for

coping with fluctuating demands [59, 83, 160], and for allocating multiple re-

source types [88, 89] when agents do not know their resource demands [101],

and when there is a stream of resources [9].

Some widely used online schedulers (e.g., the fair scheduler imple-

mented in Hadoop and Spark) enforce LMMF. In the online setting, there

are two senses in which we can seek to achieve the LMMF property: static

and dynamic. In the static sense, we produce an LMMF allocation for each

round independently. In the dynamic sense, we produce an allocation for any

given round that enforces LMMF over the entire history up to that round

(subject to the constraint that the allocations determined for previous rounds

cannot be changed).

Our work is inspired by Freeman et al. [83], who studied the game-

theoretic aspects of online resource sharing, with a primary focus on the SP,

SI, and NW properties. They prove that the static version discussed above

satisfies these desiderata, while the dynamic version fails to satisfy SI and SP.
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They then consider a more general utility function, where agents derive a fixed

“high” utility per unit of resource up to their demands and a fixed “low” utility

beyond that threshold. With this utility function, Freeman et al. show that

the three aforementioned properties are incompatible in a dynamic setting

and thus appropriate trade-offs need to be considered. They propose two

mechanisms that partly satisfy the desiderata. Hossain [93] has subsequently

presented another mechanism for this setting.

Kandasamy et al. [101] study mechanism design for online resource

sharing when agents do not know their resource requirements. Like Freeman

et al., they focus on satisfying the SP, SI, and NW properties. Tang et al. [160]

propose a dynamic allocation policy for the online setting that is similar to

the dynamic version of LMMF discussed above.

Lexicographic Maximin Solutions A lexicographic maximin solu-

tion maximizes the minimum utility, and subject to this, maximizes the second-

lowest utility, and subject to this, maximizes the third-lowest utility, and so

on.

Lexicographic maximin solutions have been studied in many area of re-

search, including computing the nucleolus of cooperative games [146], combi-

natorial optimization [27], network flows [128, 129], and as one of the standard

fairness concepts in telecommunications and network applications [134, 143].

For more details, we refer the reader to the recent work of Ogryczak et al. [133,

Section 2.1]. Below we briefly discuss three of these areas that are most rele-
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vant to our work.

Multiperiod Resource Allocation Offline resource sharing has been stud-

ied in the context of multiperiod resource allocation with equal agent endow-

ments [110, 123]. This line of research is focused on the design of efficient

algorithms for computing a lexicographic maximin solution (via linear pro-

gramming), as opposed to analyzing the associated game-theoretic properties.

Random Assignment Bogomolnaia and Moulin [38] study random as-

signment problems with dichotomous preferences from a game-theoretical per-

spective. Dichotomous preferences can be viewed as a special case of fractional

demands. Bogomolnaia and Moulin consider several mechanisms, including

the LMMF mechanism. They prove that the latter mechanism is GSP, EF,

RM, PM, and fair-share (the special case of SI where all demands are zero or

infinite). Compared with the model of Bogomolnaia and Moulin, our setting

allows for fractional demands, unequal agent endowments, and an unequal

supply of resources from one round to the next.

The work of Katta and Sethuraman [103] addresses the random assign-

ment problem with general agent preferences (i.e., where arbitrary indifference

are allowed in the agent preferences). They use parametric network flow to

achieve LMMF for the special case of dichotomous preferences. For general

preferences, they extend the parametric flow algorithm to compute an EF,

ordinally efficient assignment, and they prove that no mechanism is SP, EF,

and ordinally efficient.
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Computer Systems Ghodsi et al. [89] consider the LMMF mechanism

in the context of a random assignment problem where the agent endowments

need not be the same. Our work strengthens their SP result to GSP while

allowing for fractional demands.

Allocation with Substitutable Resources Offline resource sharing

can be viewed as the problem of allocating different kinds of substitutable re-

sources to different populations of agents. This allocation problem has been

studied in various specific settings, e.g., distribution of coal among power com-

panies [45], multiperiod manufacturing of high-tech products [109], and allo-

cation of vaccines to different populations [155]. To the best of our knowledge,

the prior work in this area studies this allocation problem from a computa-

tional perspective, rather than a game-theoretic perspective. Sethuraman’s

survey paper on house allocation problems [132] discusses the connection be-

tween allocation with substitutable resources and random assignment with

dichotomous preferences.

6.1.2 Significance of Our Work

Freeman et al. [83] study the game-theoretic properties of several online

resource allocation mechanisms: the previously known static and dynamic

LMMF mechanisms, and the newly-proposed Flexible Lending and T-period

mechanisms [83]. In settings where future demands are known, or can be

accurately estimated, we can hope to significantly improve upon the fairness

guarantees of such online mechanisms. As a simple example, consider an
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instance with n agents and n rounds, where each agent contributes a single

unit per round. Suppose agents 2 through n each demand two units in every

round, and agent 1 demands n units in round 1 and no units thereafter. Clearly,

an egalitarian allocation gives a utility of n to every agent. On the other hand,

all of the aforementioned online mechanisms give agent 1 a utility of 1, which

is only a 1/n fraction of the egalitarian share. Our first main contribution is

to provide an efficient implementation of a suitable egalitarian mechanism for

the offline setting (i.e., where future demands are known); see the first part of

Section 6.3.

Our second main contribution is to establish various fundamental game-

theoretic properties of our egalitarian mechanism. To do so, we leverage

a connection between the random assignment problem of Bogomolnaia and

Moulin [38] and our resource sharing problem, Specifically, the special case of

their random assignment work in which agents have dichotomous preferences

corresponds to the special case of our setting in which the fractional demands

of the agents are all 0 or 1. While the work of Bogomolnaia and Moulin pro-

vided us with an invaluable roadmap, we found that we still had to overcome

some significant technical challenges in order to handle arbitrary fractional

demands. (We also handle unequal agent endowments and unequal supplies

over the rounds, but generalizing our results in these directions proved to be

quite straightforward.) In Section 6.3.1, we establish a number of useful struc-

tural properties of lexicographic maximin allocations. In Section 6.3.2, we use

these structural properties to establish various game-theoretic properties of
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“frugal” LMMF allocations. In Section 6.3.3, we establish that our egalitarian

mechanism (and in fact any frugal LMMF mechanism) is GSP.

Our third main contribution is to establish possibility and impossibility

results related to the SI property. The SI property is of particular importance

in the setting of resource sharing, where we need to ensure that agents are not

discouraged from pooling their resources. In Section 6.3.2, we show that any

frugal LMMF allocation is 1
2
-SI. In Section 6.4, we show that, for any α > 1

2
,

no mechanism is MMF and α-SI. Since no mechanism is MMF and SI, we

consider a natural relaxation: mechanisms that are MMF subject to being SI.

(In other words, we require the mechanism to be SI, and we only enforce the

MMF property with respect to the set of SI allocations.) In Section 6.4, we

show that no such mechanism is SP.

6.2 Preliminaries

For any set of agents A, we define endowments(A) as the set of all

endowment functions e : A→ R>0, and for any subset A′ of A we define e(A′)

as
∑

a∈A′ e(a). For any set of objects B, we define supplies(B) as the set of all

supply functions s : B → R≥0. Remark: In a multi-round application where zi

units of a resource are allocated in round i, we model the resources associated

with round i as an object with supply zi.

For any set of agentsA and any set of objectsB, we define demands(A,B)

In the remainder of the chapter, we implicitly define similar overloads for a number of
other functions associated with supply, demand, allocation, flow, and capacity.
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as the set of all demand functions d : A×B → R≥0. For any subset A′ of A and

any d in demands(A,B), dA′ denotes the demand function in demands(A′, B)

such that dA′(a, b) = d(a, b) for all agents a in A′ and all objects b in B.

For any set of agents A, any set of objects B, any e in endowments(A),

any s in supplies(B), and any d in demands(A,B), the tuple (A,B, e, s, d)

denotes an instance of object allocation with fractional demands (OAFD).

We think of each agent a in A as owning a e(a)/e(A) fraction of each object

in B.

For any OAFD instance I = (A,B, e, s, d), we define allocs(I) as the

set of all allocation functions µ : A×B → R≥0 such that
∑

a∈A µ(a, b) ≤ s(b)

for all objects b in B.

An OAFD mechanism M takes as input an OAFD instance I and out-

puts a subset M(I) of allocs(I).

For any OAFD instance I = (A,B, e, s, d), and any µ in allocs(I), we

define the utility of agent a from object b as u(µ, d, a, b) = min(µ(a, b), d(a, b)).

We assume that the utility of any agent a, denoted u(µ, d, a), is equal to∑
b∈B u(µ, d, a, b).

For any OAFD instance I = (A,B, e, s, d), any µ in allocs(I), and any

In the present chapter, it is convenient to assume that the output of an OAFD mech-
anism is a set of allocations, as opposed to a single allocation, because the OAFD mech-
anism M that we present in Section 6.3 has this characteristic. For any OAFD instance
I = (A,B, e, s, d), all of the agents in A are indifferent between the allocations in M(I). For
any OAFD instance I, our efficient implementation of M computes a single allocation in
M(I).
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b in B, the definition of utility implies that∑
a∈A

u(µ, d, a, b) ≤ min(s(b),
∑
a∈A

d(a, b)).

We let sI in supplies(I) denote the supply: sI(b) = min(s(b),
∑

a∈A d(a, b))

for all objects b in B. For any OAFD instance I = (A,B, e, s, d), any µ in

allocs(I), and any subset A′ of A, the definition of utility also implies that∑
a∈A′ u(µ, d, a) ≤

∑
b∈B min(sI(b),

∑
a∈A′ d(a, b)). We let cap(I, A′) denote∑

b∈B min(sI(b),
∑

a∈A′ d(a, b)).

We now discuss some game-theoretic desiderata for allocations. For

any OAFD instance I = (A,B, e, s, d), an allocation µ in allocs(I) is (propor-

tionally) EF if u(µ, d, a) ≥
∑

b∈B min( e(a)
e(a′)

µ(a′, b), d(a, b)) for all agents a and

a′ in A. Intuitively, no agent prefers the appropriately scaled (i.e., taking into

account relative endowments) version of another agent’s allocation to their

own allocation.

An allocation µ is said to be PE if there is no allocation µ′ such that

every agent weakly prefers µ′ to µ and some agent prefers µ′ to µ. Formally, for

any OAFD instance I = (A,B, e, s, d), we say that an allocation µ in allocs(I)

is PE if there is no µ′ in allocs(I) such that u(µ′, d, a) ≥ u(µ, d, a) for all agents

a in A and u(µ′, d, a) > u(µ, d, a) for some agent a in A.

The SI property requires that any agent a who provides a truthful

report achieves utility at least as high as they would achieve with an e(a)/e(A)

fraction of every object. Formally, for any OAFD instance I = (A,B, e, s, d)

and any α in [0, 1], an allocation µ in allocs(I) is said to be α-SI if u(µ, d, a) ≥
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α
∑

b∈B min( e(a)
e(A)

s(b), d(a, b)) for all agents a in A. We say that an allocation

is SI if it is 1-SI.

In our model, the maximum utility that an agent a can achieve from

an object b is d(a, b); accordingly, in our setting, there is no reason to allocate

more than d(a, b) units of object b to agent a. For any OAFD instance I =

(A,B, e, s, d), we say that an allocation µ in allocs(I) is frugal if µ(a, b) ≤

d(a, b) for all (a, b) in A × B. We let frugal(I) denote the set of all frugal

allocations in allocs(I). For any OAFD instance I = (A,B, e, s, d) and any µ

in frugal(I), we say that µ is NW if for any object b in B, either
∑

a∈A µ(a, b) =

s(b) or µ(a, b) = d(a, b) for all agents a in A.

An allocation µ in allocs(I) is MMF if µmaximizes mina∈A u(µ′, d, a)/e(a)

over all µ′ in allocs(I). We let MMF(I) denote the set of all MMF allocations

in allocs(I). We let u(I, µ) denote the length-|A| vector whose jth component

denotes the jth minimum u(µ, d, a)/e(a) for all agents a in A. An allocation

µ in allocs(I) is LMMF if u(I, µ) is lexicographically at least u(I, µ′) for all

µ′ in allocs(I). We let LMMF(I) denote the set of all LMMF allocations in

allocs(I). Note that LMMF is a stricter notion of fairness than MMF.

For any OAFD instance I = (A,B, e, s, d), any subset A′ of A, and

any µ in LMMF(I), we let sub(I, A′, µ) denote the OAFD instance (A \

A′, B, e′, s′, dA\A′) where e′(a) = e(a) for all agents a in A \ A′ and s′(b) =

s(b) −
∑

a∈A′ µ(a, b) for all objects b in B. Lemma 6.2.1 below establishes an

optimal substructure property of LMMF allocations.

203



Lemma 6.2.1. Let I = (A,B, e, s, d) be an OAFD instance, let A′ be a subset

of A, and let µ belong to LMMF(I). Let µ′ be the restriction of µ to A \ A′,

that is, µ′ : (A \ A′)× B → R≥0 is such that µ′(a, b) = µ(a, b) for all (a, b) in

(A \ A′)×B. Then µ′ belongs to LMMF(sub(I, A′, µ)).

Proof. For any OAFD instance Î = (Â, B̂, ê, ŝ, d̂), any µ̂ in LMMF(Î), and any

subset Â′ of Â, let u(Î , µ̂, Â′) denote the length-|Â′| vector whose jth compo-

nent denotes the jth minimum u(µ̂, d̂, a)/e(a) over all agents a in Â′. Then

u(Î , µ̂) = sort(u(Î , µ̂, Â′) + u(Î , µ̂, Â \ Â′)), where + denotes concatenation

and sort is a function that sorts the input vector.

Let Ĩ denote sub(I, A′, µ). Notice that µ′ belongs to allocs(Ĩ). Assume

for the sake of contradiction that µ′ does not belong to LMMF(Ĩ). Let µ̃ belong

to LMMF(Ĩ). Then u(Ĩ , µ′) = u(I, µ, A \ A′) 6= u(Ĩ , µ̃). Since µ̃ belongs to

LMMF(Ĩ) and µ′ does not belong to LMMF(Ĩ), we deduce that u(Ĩ , µ̃) is

lexicographically greater than u(I, µ, A \ A′).

Let µ∗ : A × B → R≥0 be defined by µ∗(a, b) = µ̃(a, b) for all (a, b) in

(A \A′)×B and µ∗(a, b) = µ(a, b) for all (a, b) in A′ ×B. Thus µ∗ belongs to

allocs(I) and u(I, µ∗) = sort(u(I, µ∗, A′)+u(I, µ∗, A\A′)) = sort(u(I, µ, A′)+

u(Ĩ , µ̃)) is lexicographically greater than sort(u(I, µ, A′) + u(I, µ, A \ A′)) =

u(I, µ), a contradiction since µ belongs to LMMF(I).

For any vectors v and w such that |v| = |w| = `, we say that v Lorenz

dominates w if
∑i

j=1 vj ≥
∑i

j=1 wj for all i in [`]. If v Lorenz dominates w,

then v is lexicographically at least w, but the converse does not hold. For
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any OAFD instance I and any µ in allocs(I), µ is a Lorenz dominant (LD)

allocation if u(I, µ) Lorenz dominates u(I, µ′) for all µ′ in allocs(I).

We now discuss some game-theoretic desiderata for OAFD mechanisms.

In order to define the SP and GSP properties, it is convenient to first define

the k-SP property for any given positive integer k. An OAFD mechanism

is k-SP if no coalition of k agents can misrepresent their demands in such a

way that some member of the coalition gains and no member of the coalition

loses. Formally, an OAFD mechanism M is said to be k-SP if for any OAFD

instance I = (A,B, e, s, d), any µ in M(I), any subset A′ of A such that

|A′| = k, any d∗ in demands(A′, B), any OAFD instance I ′ = (A,B, e, s, d′)

where d′ = (dA\A′ , d
∗), and any µ′ in M(I ′), either there is no agent a in

A′ such that u(µ, d, a) < u(µ′, d, a), or there is an agent a in A′ such that

u(µ, d, a) > u(µ′, d, a). A mechanism is SP if it is 1-SP. A mechanism is GSP

if it is k-SP for all k.

An OAFD mechanism is said to be RM if increasing the supply of

one or more objects does not decrease the utility of any agent. Formally, an

OAFD mechanism M is said to be RM if for any instances I = (A,B, e, s, d),

and I ′ = (A,B, e, s′, d) such that s(b) ≤ s′(b) for all objects b in B, we have

u(µ, d, a) ≤ u(µ′, d, a) for all agents a in A, where µ belongs to M(I) and µ′

belongs to M(I ′).

An OAFD mechanism is said to be PM if decreasing the endowments of

one or more agents does not decrease the utility of any other agent. Formally,

given any instance I = (A,B, e, s, d), we define shrink(I) as the set of all OAFD
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instances I ′ = (A′, B, e′, s, dA′) such that A′ is a subset of A and e′(a) ≤ e(a)

for all agents a in A′. An OAFD mechanism M is said to be PM if for any

OAFD instances I = (A,B, e, s, d) and I ′ = (A′, B, e′, s, dA′) in shrink(I),

any allocations µ in M(I) and µ′ in M(I ′), and any agent a in A′ such that

e′(a) = e(a), we have u(µ, d, a) ≤ u(µ′, d, a).

An OAFD mechanism M is EF (resp., PE, NW, α-SI, LD) if for any

OAFD instance I, every allocation in M(I) is EF (resp., PE, NW, α-SI, LD).

An OAFD mechanism M is frugal (resp., MMF, LMMF) if for any OAFD

instance I, the set of allocationsM(I) is contained in frugal(I) (resp., MMF(I),

LMMF(I)).

6.2.1 Lexicographic Flow

In this section, we briefly review the lexicographic flow problem, which

we utilize to obtain an efficient implementation of our mechanism.

A flow network is a directed graph G = (V,E) with the vertex set V ,

the edge set E, having a source vertex s, a sink vertex t, and a non-negative

capacity c(e) for each edge e in E. A function f : E → R≥0 is said to be a

flow if f(e) ≤ c(e) (the capacity constraint for edge e) holds for each edge e

in E and
∑

(u,v)∈E f(u, v) =
∑

(v,u)∈E f(v, u) (the flow conservation constraint

for vertex v) holds for each vertex v in V \{s, t}. The value of flow f is defined

to be the net flow out of the source s. The goal of the maximum flow problem

is to determine a flow of maximum value [79].

A cut of a flow network G = (V,E) is a partition (S, S) of V such that
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s belongs to S and t belongs to S. The capacity of a cut (S, S) is defined

as the total capacity of all edges going from some vertex in S to some vertex

in S. A minimum cut is a cut of minimum capacity. The famous max-flow

min-cut theorem states that in any flow network, the value of a maximum flow

is equal to the capacity of a minimum cut. A standard result in network flow

theory states that there is a minimum cut (S, S) such that S contains S ′ for

all minimum cuts (S ′, S ′). We refer to this minimum cut (S, S) as the source

heavy minimum cut.

In a parametric flow network, each edge capacity is a function of a pa-

rameter λ. In this paper, we restrict our attention to parametric flow networks

where each edge leaving s has a capacity proportional to λ and all other edge

capacities are independent of λ. Parametric flow networks have been widely

studied; we refer readers to [85] for more general settings and other results. For

any parametric flow network G, we let G(λ) denote the flow network associated

with a particular value of λ.

In a parametric flow network, the capacity of the minimum cut changes

as the value of λ changes. We let the minimum cut capacity function κ(λ)

denote the capacity of the minimum cut as a function of the parameter λ.

It is well-known that κ(λ) is a non-decreasing, concave, and piecewise linear

function with at most |V | − 2 breakpoints, where a breakpoint is a value of

λ at which the slope of κ(λ) changes [72, 159]. Each of the |V | − 1 or fewer

line segments that form the graph of κ(λ) corresponds to a cut. Notice that

κ(0) = 0. As the value of λ increases, the vertices in V \ {s, t} move from
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the sink side to the source side of the source heavy minimum cut. For any

parametric flow network G, the breakpoint function Λ(v) maps any given

vertex v in V \ {s, t} to the breakpoint value of λ at which v moves from the

sink side to the source side of the source-heavy minimum cut. The breakpoint

function describes the sequence of cuts associated with κ(λ) [159].

We now define the notion of a lexicographic flow [128, 129]. Assume

that the edges leaving s reach the vertices {v1, . . . , vk}, and that t does not

belong this set. Let the capacity of the edge (s, vi) be wiλ. For a flow f in

G(∞), let θ(G, f) denote the length-k vector whose jth component is the jth

minimum f(s, vi)/wi, for i in [k]. A lexicographic flow f of G is a maximum

flow f in G(∞) that is lexicographically at least θ(G, f ′) for all maximum flows

f ′ in G(∞).

Gallo et al. describe an algorithm that computes the breakpoint func-

tion and a lexicographic flow in O(|V ||E| log(|V |2/|E|)) time [85]. This al-

gorithm is slower than the fastest known algorithm for the maximum flow

problem [139] by only a logarithmic factor. We describe the algorithm of

Gallo et al. here. First, find all the breakpoints of κ(λ) for a given parametric

flow network G. Also, determine the breakpoint λ(vi) for each vertex vi in

{v1, . . . , vk} at which vi moves from the sink side to the source side of the

source heavy minimum cut. Let G′ be the flow network obtained by setting

the capacity of edge (s, vi) to wiλ(vi) for each vertex vi in {v1, . . . , vk} in G.

Any maximum flow f of G′ is a lexicographic flow of G.
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6.3 Frugal Lexicographic Maximin Fair Mechanism

Let M denote the OAFD mechanism such that M(I) = LMMF(I) ∩

frugal(I) for all OAFD instances I. In Section 6.3.1 we establish that all agents

are indifferent between allocations in M(I) (see Lemma 6.3.10). In this section,

we describe an efficient non-deterministic algorithm A that implements M

in the following sense: on any input OAFD instance I, the set of possible

allocations produced by A is M(I). The algorithm A is based on a reduction

to the lexicographic flow problem on a parametric flow network. On input

an OAFD instance I = (A,B, e, s, d), algorithm A first creates a parametric

flow network GI = (A ∪B ∪ {s, t}, E) with the edge capacities defined by the

functions e, d, and sI described below. The network GI has an agent (resp.,

object) vertex for each agent (resp., object) in the input. We denote the set of

agent (resp., object) vertices by A (resp., B). For any agent vertex a and any

object vertex b, there is a directed edge of capacity e(a)λ from s to a, there

is a directed edge of capacity d(a, b) from a to b, and there is a directed edge

of capacity sI(b) from b to t. It is easy to check that Observation 6.3.1 below

holds.

Observation 6.3.1. For any OAFD instance I = (A,B, e, s, d), there is a

one-to-one correspondence between flows f in GI(∞) and allocations µ in

frugal(I) such that f(a, b) = µ(a, b) for all (a, b) in A×B.

Given as input an OAFD instance I, algorithm A non-deterministically

selects a lexicographic flow in GI(∞) and outputs the corresponding alloca-
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tion in allocs(I). The algorithm of Gallo et al. can be used to compute a

lexicographic flow in O((|A| + |B|)|A||B| log((|A| + |B|)2/|A||B|)) time. Us-

ing Observation 6.3.1, it is straightforward to prove that there is a one-to-one

correspondence between frugal LMMF allocations in M(I) and lexicographic

flows in GI . Thus we obtain Lemma 6.3.2 below.

Lemma 6.3.2. For any OAFD instance I, the set of possible allocations pro-

duced by algorithm A on input I is equal to M(I).

Proof. It is straightforward to verify that the following observations hold.

Observation 6.3.3. For any OAFD instance I, all allocations in LMMF(I)

are NW.

Observation 6.3.4. For any OAFD instance I, the capacity of a minimum

cut of GI(∞) is sI(B).

We begin by proving the following useful claim.

Claim 1: Let I = (A,B, e, s, d) be an OAFD instance. Let µ be an

allocation in frugal(I) and let f be a flow in GI(∞) such that f(a, b) = µ(a, b)

for all (a, b) in A × B. Then f is a maximum flow in GI(∞) if and only if µ

is NW.

Proof: We first prove the only if direction. Using the max-flow min-

cut theorem and Observation 6.3.4, we deduce that the value of flow f is

sI(B). Since µ is frugal and µ(a, b) = f(a, b) for all (a, b) in A × B, we have

µ(A,B) = sI(B). Since µ is frugal and µ(A,B) = sI(B), we deduce that B,
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µ(A, b) = sI(b) for all objects b in B, which further implies that µ is NW.

Now, we prove the backward direction. Since µ belongs to frugal(I) and µ is

NW, we deduce that µ(A,B) = sI(B). Thus, the value of flow f is sI(B).

Hence the max-flow min-cut theorem and Observation 6.3.4 imply that flow f

is a maximum flow in GI(∞). This concludes the proof of Claim 1.

Let I = (A,B, e, s, d) be an OAFD instance. Let A(I) denote the set

of possible allocations produced by algorithm A on input I. Since M(I) =

frugal(I) ∩ LMMF(I), it suffices to prove that A(I) = frugal(I) ∩ LMMF(I).

Thus Claims 2 and 3 below imply that the lemma holds.

Claim 2: frugal(I) ∩ LMMF(I) ⊆ A(I).

Proof: Let µ be an allocation in frugal(I) ∩ LMMF(I). Observa-

tion 6.3.1 implies that there is a flow in GI(∞), call it f , such that µ(a, b) =

f(a, b) for all (a, b) in A × B. Observation 6.3.3 implies that µ is NW, and

hence Claim 1 implies that flow f is a maximum flow in GI(∞). To prove

that µ belongs to A(I), it suffices to prove that the f is a lexicographic flow

in GI . Assume for the sake of contradiction that f is not a lexicographic flow

in GI . Hence there is a maximum flow f ′ in GI(∞) such that θ(GI , f
′) is lex-

icographically greater than θ(GI , f). Observation 6.3.1 implies that there is a

frugal allocation, call it µ′, such that µ′(a, b) = f(a, b) for all (a, b) in A× B.

Since µ(a, b) = f(a, b) and µ′(a, b) = f ′(a, b) for all (a, b) in A × B, we de-

duce that u(I, µ) = θ(GI , f) and u(I, µ′) = θ(GI , f
′), respectively. Since

u(I, µ) = θ(GI , f), u(I, µ′) = θ(GI , f
′), and θ(GI , f

′) is lexicographically

greater than θ(GI , f), we deduce that u(I, µ′) is lexicographically greater than
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u(I, µ), a contradiction since µ belongs to LMMF(I). This concludes the proof

of Claim 2.

Claim 3: A(I) ⊆ frugal(I) ∩ LMMF(I).

Proof: Let µ be an allocation function in A(I). Let f denote the

lexicographic flow in GI selected by algorithm A; thus f corresponds to µ.

Since any lexicographic flow in GI is a maximum flow in GI(∞), we deduce

from Observation 6.3.1 that µ belongs to frugal(I). It remains to prove that

µ belongs to LMMF(I). Assume for the sake of contradiction that µ does

not belong to LMMF(I). Hence there is an allocation µ′ in LMMF(I) such

that u(I, µ′) is lexicographically greater than u(I, µ). Let µ′′ be an allocation

in allocs(I) such that µ′′(a, b) = min(µ′(a, b), d(a, b)) for all (a, b) in A × B.

The definition of µ′′ implies that µ′′ belongs to frugal(I). Since the maximum

utility an agent a can achieve from an object b is d(a, b), we have u(I, µ′′) =

u(I, µ′). Since u(I, µ′′) = u(I, µ′) and µ′ belongs to LMMF(I), we deduce that

µ′′ belongs to LMMF(I). Since µ′′ belongs to LMMF(I), Observation 6.3.3

implies that µ′′ is NW. Since u(I, µ′) is lexicographically greater than u(I, µ)

and u(I, µ′′) = u(I, µ′), we conclude that u(I, µ′′) is lexicographically greater

than u(I, µ). Since µ′′ belongs to frugal(I) and µ′′ is NW, Observation 6.3.1

and Claim 1 imply that there is a maximum flow in GI(∞), call it f ′′, such

that f ′′(a, b) = µ′′(a, b) for all (a, b) in A × B. Since µ(a, b) = f(a, b) and

µ′′(a, b) = f ′′(a, b) for all (a, b) in A × B, we deduce that u(I, µ) = θ(GI , f)

and u(I, µ′′) = θ(GI , f
′′), respectively. Since u(I, µ) = θ(GI , f), u(I, µ′′) =

θ(GI , f
′′), and u(I, µ′′) is lexicographically greater than u(I, µ), we deduce
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that θ(GI , f
′′) is lexicographically greater than θ(GI , f), a contradiction since

f is a lexicographic flow in GI . This concludes the proof of Claim 3.

We introduce some notations that are helpful in analysis of mechanism

M. The algorithm of Gallo et al. to find the lexicographic flow computes

the breakpoint function ΛI such that ΛI(a) denotes the breakpoint at which

agent vertex a moves from the sink side to the source side of the source-heavy

minimum cut, for all agent vertices a in A. Let num(I) denote |{ΛI(a) | a ∈

A}|. For any i in [num(I)], let brkpts(I, i) denote the ith minimum value

in {ΛI(a) | a ∈ A}, and let agents(I, i) denote the set {a ∈ A | ΛI(a) ≤

brkpts(I, i)}. We set agents(I, 0) = ∅. For any i in [num(I)], and object b

in B, let cap(I, i, b) denote sI(b) − d(agents(I, i − 1), b). With objects(I, 0)

defined as ∅, for any i in [num(I)], let objects(I, i) be recursively defined as

the union of objects(I, i− 1) and

{b ∈ B \ objects(I, i− 1) | d(agents(I, i) \ agents(I, i− 1), b) > cap(I, i, b)}.

6.3.1 Technical Properties of Mechanism M

In this section, we establish some basic technical results concerning

mechanism M. These results are used in Section 6.3.2 (resp., Section 6.3.3)

to derive certain game-theoretic properties of frugal LMMF allocations (resp.,

mechanisms). Throughout this section, let I = (A,B, e, s, d) denote an OAFD

213



instance and let G denote GI . We let Λ and k denote the breakpoint func-

tion ΛI and the value num(I), respectively. For any i in [k], we let λi, Ai,

and Bi denote brkpts(I, i), agents(I, i), and objects(I, i), respectively. For

any i in [k] and any object b in B, we let ci(b) denote cap(I, i, b). For

any i in [k], and any non-empty subset A′ of A \ Ai−1, let Ci(A
′) denote∑

b∈B\Bi−1
min(ci(b), d(A′, b)). Notice that for any non-empty subset A′ of A,

C1(A′) = cap(I, A′).

Consider a sequence of parametric flow networks G1, . . . , Gk, where Gi

is the subgraph of G induced by (A \ Ai−1) ∪ (B \ Bi−1) ∪ {s, t}, except that

for any object vertex b in Gi, the capacity of edge (b, t) is defined to be ci(b).

Remark: It follows easily from Lemma 6.3.6 below that ci(b) ≥ 0.

Before proving Lemma 6.3.6 we show Lemma 6.3.5 below which estab-

lishes important properties of the minimum breakpoint of any agent vertex

in each parametric flow network Gi. Throughout this section, we make the

following definitions for all i in [k]: Λ∗i denotes the breakpoint function of

Gi; λ
∗
i denotes the minimum breakpoint of an agent vertex in Gi; λ

∗∗
i denotes

min∅6=A′⊆A\Ai−1
Ci(A

′)/e(A′); A∗i denotes
⋃
{A′ ⊆ A\Ai−1 | Ci(A′) = e(A′)λ∗i };

B∗i denotes {b ∈ B \ Bi−1 | d(A∗i , b) > ci(b)}; Ψ1(i) denotes the predicate

“λ∗i = λ∗∗i ”; Ψ2(i) denotes the predicate “Λ∗i (a) = λ∗i for all agents a in A∗i ”;

Ψ3(i) denotes the predicate “for any flow in Gi(∞) such that f(s, a) = e(a)λ∗i

for all agent vertices a in A \ Ai−1, we have f(a, b) = d(a, b) for all (a, b)

in A∗i × ((B \ Bi−1) \ B∗i )”; Ψ4(i) denotes the predicate “for any flow in

Gi(∞) such that f(s, a) = e(a)λ∗i for all agent vertices a in A \ Ai−1, we
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have f(A∗i , b) = f(b, t) = ci(b) for all object vertices b in B∗i .”

Lemma 6.3.5. Let i be in [k]. Then predicate Ψj(i) holds for all j in {1, . . . , 4}.

Proof. Recall that the set of agent (resp., object) vertices in Gi is A \ Ai−1

(resp., B \ Bi−1). We first establish the following useful claim, which implies

that λ∗i ≥ λ∗∗i .

Claim 1: A maximum flow in Gi(λ
∗∗
i ) has value e(A \ Ai−1)λ∗∗i .

Proof: To prove that a maximum flow in Gi(λ
∗∗
i ) has value e(A \

Ai−1)λ∗∗i , it is sufficient to argue that a minimum cut in Gi(λ
∗∗
i ) has capacity

e(A \ Ai−1)λ∗∗i . Let the source-heavy minimum cut in Gi(λ
∗∗
i ) be (S, S) and

let A′ denote S ∩ (A \Ai−1). We begin by showing that S ∩ (B \Bi−1) = {b ∈

B \ Bi−1 | d(A′, b) ≥ ci(b)}. Assume for the sake of contradiction that this

equation does not hold. We consider three cases.

Case 1: There is an object vertex b in S∩(B\Bi−1) such that d(A′, b) >

ci(b). Hence the capacity of the cut (S + b, S − b) is d(A′, b) − ci(b) > 0 less

than the capacity of the cut (S, S), a contradiction since (S, S) is a minimum

capacity cut.

Case 2: There is an object vertex b in S ∩ (B \Bi−1) such that ci(b) >

d(A′, b). Hence the capacity of the cut (S− b, S + b) is ci(b)− d(A′, b) > 0 less

than the capacity of the cut (S, S), a contradiction since (S, S) is a minimum

capacity cut.

Case 3: There is an object b in S∩ (B \Bi−1) such that ci(b) = d(A′, b).
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Hence the cuts (S+b, S−b) and (S, S) have the same capacity, but (S+b, S−b)

has a larger source side, a contradiction.

From the above case analysis, S∩(B\Bi−1) = {b ∈ B\Bi−1 | d(A′, b) ≥

ci(b)}. Thus the capacity of the cut (S, S) is∑
a∈(A\Ai−1)\A′

e(a)λ∗∗i +
∑

b∈B\Bi−1

min(ci(b), d(A′, b)) = e((A\Ai−1)\A′)λ∗∗i +Ci(A
′).

The definition of λ∗∗i implies that e(A′)λ∗∗i ≤ Ci(A
′). Thus the capacity of

the minimum cut is at least e(A \ Ai−1)λ∗∗i . Moreover, the capacity of cut

(s, V \ s) is e(A \Ai−1)λ∗∗i . Thus the capacity of a minimum cut of Gi(λ
∗∗
i ) is

e(A \ Ai−1)λ∗∗i . This concludes the proof of Claim 1.

Let λ′ be a value greater than λ∗∗i . We show that there is no flow in

Gi(λ
′) such that every agent vertex a has incoming flow e(a)λ′. Assume for

the sake of contradiction that there is a flow such that every agent vertex a

has incoming flow e(a)λ′. The total capacity of the edges leaving A∗i ∪B∗i is∑
b∈B\Bi−1

min(ci(b), d(A∗i , b)) = Ci(A
∗
i ).

Since Ci(A
∗
i ) = e(A∗i )λ

∗∗
i < e(A∗i )λ

′, the total capacity of the edges leaving

A∗i ∪B∗i is less than the total flow into the set A∗i ∪B∗i , a contradiction. This

result, together with Claim 1, establishes that Ψ1(i) and Ψ2(i) hold.

Let f be a flow in Gi(∞) such that f(s, a) = e(a)λ∗i for all agent vertices

a in A \ Ai−1 Since the total capacity of the edges leaving A∗i ∪ B∗i is Ci(A
∗
i ),

which is equal to the total flow e(A∗i )λ
∗
i into A∗i∪B∗i in f , we deduce that f(e) =

c(e) for all edges e leaving A∗i ∪B∗i . Thus f(b, t) = ci(b) for all object vertices
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b in B∗i , and f(a, b) = d(a, b) for all (a, b) in A∗i × ((B \Bi−1) \B∗i ). Moreover,

since the total flow into A∗i ∪ B∗i is Ci(A
∗
i ) = ci(B

∗
i ) + d(A∗i , (B \ Bi−1) \ B∗i ),

we have f(A∗i , B
∗
i ) = ci(B

∗
i ). It follows that f(A∗i , b) = f(b, t) for all object

vertices b in B∗i . We conclude that Ψ3(i) and Ψ4(i) hold.

Lemma 6.3.6 below characterizes the values of the breakpoints ofG, and

the breakpoint associated with each agent vertex. It also establishes a con-

nection between a lexicographic flow in G and the sets A1, . . . , Ak, B1, . . . , Bk.

The result of Lemma 6.3.6 is similar in spirit to Theorem 4.6 of Megiddo [128]

for general parametric flow networks. Since we work with parametric flow

networks with a special structure, we are able to obtain a more specific re-

sult and we can characterize a lexicographic flow in greater detail. Our proof

of Lemma 6.3.6 is not based on Megiddo’s proof; instead, we provide a sim-

pler proof for our special case. Our formulation of Lemma 6.3.6 generalizes

Megiddo’s result in one aspect, since it allows for agents with different endow-

ments; this generalization is straightforward.

For any i in [k], we define the following predicates: Γ1(i) denotes “the

minimum breakpoint of any agent vertex in Gi is λi”; Γ2(i) denotes “λi is equal

to min∅6=Ã⊆A\Ai−1
Ci(Ã)/e(Ã)”; Γ3(i) denotes “Ai is equal to Ai−1 ∪

⋃
{Ã ⊆

A \Ai−1 | Ci(Ã) = e(Ã)λi}”; Γ4(i) denotes “for any lexicographic flow f in G,

we have f(a, b) = d(a, b) for all (a, b) in (Ai \Ai−1)× (B \Bi)”; Γ5(i) denotes

“for any lexicographic flow f in G, we have f(Ai, b) = f(b, t) = sI(b) and

f(a, b) = 0 for all (a, b) in (A \ Ai)× (Bi \Bi−1).”
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Lemma 6.3.6. Predicate Γj(i) holds for all i in [k] and all j in {1, . . . , 5}.

Proof. Let f denote a lexicographic flow in G and for any i in [k], and let

P (i) denote the predicate “Γj(i) holds for all j in {1, . . . , 5}.” We prove by

induction that P (i) holds for all i in [k].

Base case: Since A0 = ∅, we have c1(b) = sI(b) for all object vertices b

in B. Thus G1 = G, and hence Γ1(1) holds. Lemma 6.3.5 implies that Ψ1(1)

and Ψ2(1) hold; hence Γ2(1) and Γ3(1) hold. Since Ψ3(1) and Ψ4(1) hold by

Lemma 6.3.5, λ∗1 = λ1, A∗1 = A1 \A0, and B∗1 = B1 \B0, we deduce that Γ4(1)

and Γ5(1) hold.

Induction step: Let i belong to {2, . . . , k} and assume that P (i′) holds

for all i′ in [i − 1]. We need to prove that P (i) holds. Let b be an object

vertex in B \ Bi−1. Since the IH implies that Γ4(i′) holds for all i′ in [i − 1],

we deduce that f(a, b) = d(a, b) for all a in Ai−1. Thus f(A \ Ai−1, b) ≤

sI(b)−d(Ai−1, b) = ci(b). Moreover, since the IH implies that Γ5(i′) holds for all

i′ in [i−1], we deduce that f(a, b′) = 0 for all (a, b′) in (A\Ai−1)×Bi−1. From

the aforementioned results, it is straightforward to verify that Γ1(i) holds.

Lemma 6.3.5 implies that Ψ1(i) and Ψ2(i) hold; hence Γ2(i) and Γ3(i) hold.

Since Ψ3(i) holds by Lemma 6.3.5, λ∗i = λi, A
∗
i = Ai\Ai−1, and B∗i = Bi\Bi−1,

we deduce that Γ4(i) holds. Let b′ be an object vertex in Bi \Bi−1. Predicate

Ψ4(i) implies that f(Ai \ Ai−1, b
′) = ci(b

′) = sI(b
′)− d(Ai−1, b

′). Since the IH

implies Γ4(i′) holds for all i′ in [i− 1], we deduce that f(a, b′) = d(a, b′) for all

a in Ai−1. Hence f(Ai−1, b
′) = d(Ai−1, b

′). Since f(Ai−1, b
′) = d(Ai−1, b

′) and
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f(Ai\Ai−1, b
′) = sI(b

′)−d(Ai−1, b
′), we deduce that f(Ai, b

′) = sI(b
′) = f(b′, t),

where the last equality holds because the capacity of edge (b′, t) is sI(b
′). Since

f(Ai, b
′) = sI(b

′) and sI(b
′) is the capacity of edge (b′, t), we deduce that

f(a, b) = 0 for all a in A \Ai, which establishes Γ5(i). We conclude that P (i)

holds, as required.

Corollary 6.3.7 below is easy to verify.

Corollary 6.3.7. For any lexicographic flow f in G and any maximum flow

f ′ in G(∞), θ(G, f) Lorenz dominates θ(G, f ′).

We now prove some results about frugal LMMF allocations. Through-

out the remainder of the section, let µ denote an allocation in M(I). The

definition of mechanism M implies that µ is frugal and LMMF. Recall that al-

gorithm A first computes a lexicographic flow f in G such that µ(a, b) = f(a, b)

for all (a, b) in A×B.

Corollaries 6.3.8 and 6.3.9 below describe the structural properties of

the allocation µ and immediately follow from predicates Γ4 and Γ5, respec-

tively.

Corollary 6.3.8. For any i in [k], any agent a in Ai \Ai−1, and any object b

in B \Bi, we have µ(a, b) = d(a, b).

Corollary 6.3.9. For any i in [k], any agent a in A \Ai, and any object b in

Bi, we have µ(a, b) = 0.
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Lemma 6.3.10 below establishes some basic results that are useful for

many of our subsequent proofs. For example, we use Lemma 6.3.10 along with

Corollaries 6.3.8 and 6.3.9 to prove that any frugal LMMF allocation is EF

(Theorem 6.3.17).

Lemma 6.3.10. Let a be an agent in A and let b be an object B. Then, µ(a, b)

belongs to [0, d(a, b)], and u(µ, d, a) = µ(a,B) = e(a)Λ(a).

Proof. The capacity of edge (a, b) in G is d(a, b). Hence µ(a, b) = f(a, b) be-

longs to [0, d(a, b)]. Flow f satisfies e(a)Λ(a) = f(s, a) = f(a,B) = µ(a,B) =

u(µ, d, a).

We use Lemma 6.3.11 below, along with Lemma 6.3.10 and Corol-

lary 6.3.8, to prove that any frugal LMMF allocation is 1/2-SI (Theorem 6.3.18).

Lemma 6.3.11. Let i be in [k]. Then
∑

j∈[i] e(Aj \Aj−1)λj = s(Bi)+d(Ai, B\

Bi).

Proof. We begin by proving the following useful claim.

Claim 1: Let i belong to [k]. Let b be an object in Bi \ Bi−1. Then

sI(b) = s(b).

To prove Claim 1, observe that the definition of Bi \Bi−1 implies that

d(Ai \ Ai−1, b) > ci(b) = sI(b) − d(Ai−1, b). Thus d(A, b) ≥ d(Ai, b) > sI(b).

Since d(A, b) > sI(b) and sI(b) = min(s(b), d(A, b)), we have sI(b) = s(b).

This completes the proof of Claim 1.
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Notice that
∑

j∈[i] e(Aj\Aj−1)λj is the total flow into Ai in f . The total

flow out of Ai in f is f(Ai, B). For any agent vertex a in Ai and any object

vertex b in B \Bi, Lemma 6.3.6 implies that f(a, b) = d(a, b). For any object

b in Bi, Lemma 6.3.6 implies that f(Ai, b) = sI(b). Thus f(Ai, B) = sI(Bi) +

d(Ai, B \Bi). Since the net flow into Ai is 0, we obtain
∑

j∈[i] e(Aj \Aj−1)λj =

sI(Bi) + d(Ai, B \Bi) = s(Bi) + d(Ai, B \Bi), where the last equality follows

from Claim 1.

We use Lemma 6.3.12 below, along with Lemma 6.3.10 and the re-

sult that any frugal LMMF allocation is NW (Theorem 6.3.14), to prove

that any frugal LMMF mechanism is RM (Theorem 6.3.19). We use Lem-

mas 6.2.1, 6.3.6, and 6.3.10 and the result that any frugal LMMF mechanism

is RM (Theorem 6.3.19) to prove that any frugal LMMF mechanism is PM

(Theorem 6.3.20).

Lemma 6.3.12. Let i be in [k], let a (resp., a′) be an agent in Ai (resp., A\Ai),

and let b be an object in B such that µ(a′, b) > 0. Then µ(a, b) = d(a, b).

Proof. Corollary 6.3.9 and µ(a′, b) > 0 imply that b belongs to B \ Bi. Hence

Corollary 6.3.8 implies that µ(a, b) = d(a, b).

We use Lemma 6.3.13 below, along with Lemmas 6.2.1, 6.3.6, and 6.3.10

and the result that any frugal LMMF mechanism is RM (Theorem 6.3.19), to

prove that any frugal LMMF mechanism is GSP (Theorem 6.3.21).
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Lemma 6.3.13. Let i belong to [k] and let µ′ be an allocation in allocs(I) such

that u(µ′, d, a) ≥ e(a)Λ(a) for all agents a in Ai. Then µ′(Ai, b) ≥ µ(Ai, b) for

all objects b in B.

Proof. For any object b in B, we let u(b) (resp., u′(b)) denote
∑

a∈Ai
u(µ, d, a, b)

(resp.,
∑

a∈Ai
u(µ′, d, a, b)). We begin by establishing a useful claim.

Claim 1: We have u′(b) ≤ u(b) for all b in B.

Proof: Let b be an object in B. We consider two cases.

Case 1: b ∈ Bi. The definition of sI(b) implies that u′(b) ≤ sI(b). Using

Lemma 6.3.6 and the definition of µ, we deduce that µ(Ai, b) = f(Ai, b) =

sI(b). Lemma 6.3.10 implies that µ(a, b) belongs to [0, d(a, b)] for all a in

Ai. Using Lemma 6.3.10 we conclude that u(b) = µ(Ai, b) = sI(b). Thus

u′(b) ≤ u(b).

Case 2: b ∈ B \ Bi. We have u′(b) ≤ d(Ai, b). Using Lemma 6.3.6 and

the definition of µ, we deduce that for any agent a in Ai, µ(a, b) = f(a, b) =

d(a, b). Again, using Lemma 6.3.10, we conclude that u(b) = d(Ai, b). Thus,

u′(b) ≤ u(b).

We have

∑
b∈B

u′(b) =
∑
a∈Ai

u(µ′, d, a) ≥
∑
a∈Ai

Λ(a)e(a) =
∑
a∈Ai

u(µ, d, a) =
∑
b∈B

u(b),

where the second equality follows from Lemma 6.3.10. Together with Claim 1,

we deduce that u′(b) = u(b) for all b in B. Thus µ′(Ai, b) ≥ u′(b) = u(b) =

µ(Ai, b) for all b in B, where the last equality follows from Lemma 6.3.10.
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6.3.2 Game-Theoretic Properties of Frugal LMMF Allocations

In this section we establish some game-theoretic properties of frugal

LMMF allocations. Throughout this section let I = (A,B, e, s, d) be an OAFD

instance, and let µ belong to M(I). The definition of M implies that µ is

an arbitrary frugal LMMF allocation. Theorems 6.3.14 through 6.3.18 and

Corollaries 6.3.15 and 6.3.16 imply that any frugal LMMF mechanism is NW,

PE, LD, EF and 1/2-SI.

Theorem 6.3.14. Allocation µ is NW.

Proof. The definition of µ implies that µ belongs to frugal(I). Assume for

the sake of contradiction that µ is not NW. Hence there is an agent a in A

and an object b in B such that µ(a, b) < d(a, b) and µ(A, b) < s(b). Let µ′

be the allocation in allocs(I) such that µ′(a, b) = min(d(a, b), s(b) − µ(A −

a, b)) > µ(a, b), and µ′(a′, b′) = µ(a′, b′) for all (a′, b′) in A× B − (a, b). Thus

u(µ′, d, a) > u(µ, d, a) and u(µ′, d, a′) = u(µ, d, a′) for all agents a′ in A− a, a

contradiction since µ is LMMF.

Any NW allocation is also PE, which gives Corollary 6.3.15 below.

Corollary 6.3.15. Allocation µ is PE.

Since mechanism M obtains the allocation from the lexicographic flow

in the corresponding parametric graph and Corollary 6.3.7, we obtain Corol-

lary 6.3.16.
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Corollary 6.3.16. Allocation µ is LD.

Theorem 6.3.17 below shows that any frugal LMMF allocation is EF.

Bogomolnaia and Moulin [38] show that any frugal LMMF allocation is EF

when all demands are 0 or 1, all agent endowments are equal, and all object

supplies are equal. To generalize this result to our setting, the main issue is

to handle fractional demands; Corollaries 6.3.8 and 6.3.9 play a primary role

in this regard.

Theorem 6.3.17. Allocation µ is EF.

Proof. Assume for the sake of contradiction that there are agents a and a′

such that agent a envies the allocation of agent a′, that is,

u(µ, d, a) <
∑
b∈B

min(
e(a)

e(a′)
µ(a′, b), d(a, b)). (6.1)

As in Section 6.3.1, let k denote the value num(I). For any i in [k], let λi,

Ai, and Bi denote brkpts(I, i), agents(I, i), and objects(I, i), respectively. Let

i and i′ in [k] be such that agent a (resp. a′) belongs to Ai \ Ai−1 (resp.,

Ai′ \ Ai′−1). We consider two cases.
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Case 1: In this case we have i′ > i. We deduce that

u(µ, d, a) =
∑
b∈B

min(µ(a, b), d(a, b))

=
∑

b∈B\Bi

min(µ(a, b), d(a, b)) +
∑
b∈Bi

min(µ(a, b), d(a, b))

=
∑

b∈B\Bi

d(a, b) +
∑
b∈Bi

min(µ(a, b), d(a, b))

≥
∑

b∈B\Bi

d(a, b), (6.2)

where the last equality follows from Corollary 6.3.8. Corollary 6.3.9 implies

that µ(a′, b) = 0 for all objects b in Bi. Therefore,∑
b∈B

min(
e(a)

e(a′)
µ(a′, b), d(a, b)) =

∑
b∈B\Bi

min(
e(a)

e(a′)
µ(a′, b), d(a, b))

≤
∑

b∈B\Bi

d(a, b). (6.3)

Inequalities (6.2) and (6.3) imply that∑
b∈B

min(
e(a)

e(a′)
µ(a′, b), d(a, b)) ≤ u(µ, d, a),

contradicting inequality (6.1).

Case 2: i′ ≤ i. Since λ1, . . . , λk is an increasing sequence, λi′ ≤ λi.

Lemma 6.3.10 implies that µ(a′, B) = e(a′)λi′ . Thus∑
b∈B

min(
e(a)

e(a′)
µ(a′, b), d(a, b)) ≤ e(a)

e(a′)

∑
b∈B

µ(a′, b)

= e(a)λi′

≤ e(a)λi

= u(µ, d, a),
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where the first and second equalities follow from Lemma 6.3.10. This contra-

dicts inequality (6.1).

Theorem 6.3.18 below shows that any frugal LMMF allocation is 1/2-

SI. Lemma 6.4.1 in Section 6.4 implies that no frugal LMMF mechanism is

α-SI for any α > 1/2.

Theorem 6.3.18. Allocation µ is 1/2-SI.

Proof. Let a be an agent inA and let SI(a) denote
∑

b∈B min
(
e(a)
e(A)

s(b), d(a, b)
)

.

We need to show that u(µ, d, a) ≥ SI(a)/2.

As in Section 6.3.1, let Λ and k denote the breakpoint function ΛI and

the value num(I), respectively. For any i in [k], let λi, Ai, and Bi denote

brkpts(I, i), agents(I, i), and objects(I, i), respectively. Let i in [k] be such

that agent a belong to Ai \ Ai−1. Thus Λ(a) = λi.

Lemma 6.3.10 implies that u(µ, d, a) = e(a)λi. We have

SI(a) =
∑
b∈B

min

(
e(a)

e(A)
s(b), d(a, b)

)
≤ e(a)

e(A)
s(Bi) + d(a,B \Bi).

Thus, to prove that u(µ, d, a) ≥ SI(a)/2, it suffices to prove that u(µ, d, a) ≥

d(a,B \ Bi) and u(µ, d, a) ≥ e(a)
e(A)

s(Bi). Observe that u(µ, d, a) = µ(a,B) ≥

µ(a,B \Bi) = d(a,B \Bi), where the first equality follows from Lemma 6.3.10

and the last equality follows from Corollary 6.3.8. Thus u(µ, d, a) ≥ d(a,B \

Bi).
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It remains to prove that

u(µ, d, a) ≥ e(a)

e(A)
s(Bi).

dian Since u(µ, d, a) = e(a)λi, it suffices to prove that λi ≥ s(Bi)/e(A). Note

that e(Ai)λi ≥
∑

j∈[i] e(Aj \ Aj−1)λj = s(Bi) + d(Ai, B \ Bi) ≥ s(Bi), where

the first inequality follows since λ1, . . . , λk is an increasing sequence and the

first equality follows from Lemma 6.3.11. Since e(Ai)λi ≥ s(Bi), we find that

λi ≥ s(Bi)/e(Ai) ≥ s(Bi)/e(A), where the last inequality holds because Ai is

a subset of A and hence e(Ai) ≤ e(A).

6.3.3 Game-Theoretic Properties of Frugal LMMF Mechanisms

In this section, we establish game-theoretic properties of frugal LMMF

mechanisms.

Theorem 6.3.19. Any frugal LMMF mechanism is RM.

Proof. The definition of mechanism M implies that it is sufficient to show

that M is RM. Let I = (A,B, e, s, d) and I ′ = (A,B, e, s′, d) denote OAFD

instances such that s(b) ≤ s′(b) for all objects b in B, let µ belong to M(I),

and let µ′ belong to M(I ′). We have to prove that u(µ, d, a) ≤ u(µ′, d, a) for

all agents a in A. Let Λ and Λ′ denote the breakpoint functions for ΛI and

ΛI′ , respectively. We begin by proving the following useful claim.

Claim 1: Let a and a′ be agents in A and let b be an object in B

such that µ′(a, b) < µ(a, b) and µ′(a′, b) > µ(a′, b). Then Λ(a) ≤ Λ(a′) and

Λ′(a′) ≤ Λ′(a).
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To prove Claim 1, first observe that 0 ≤ µ′(a, b) < µ(a, b) ≤ d(a, b)

and 0 ≤ µ(a′, b) < µ′(a′, b) ≤ d(a′, b) by Lemma 6.3.10. Since µ(a, b) > 0 and

µ(a′, b) < d(a′, b), Lemma 6.3.12 implies that Λ(a) ≤ Λ(a′). Similarly, since

µ′(a′, b) > 0 and µ′(a, b) < d(a, b), Lemma 6.3.12 implies that Λ′(a′) ≤ Λ′(a).

This completes the proof of Claim 1.

Let A′ denote {a ∈ A | u(µ, d, a) > u(µ′, d, a)}. To establish the lemma,

we need to prove that A′ is empty. Assume for the sake of contradiction that

A′ is nonempty. Let λ∗ denote mina∈A′ Λ
′(a), and let A′′ denote {a ∈ A′ |

Λ′(a) = λ∗}; thus A′′ is nonempty.

Let B′ denote {b ∈ B | µ(A′′, b) > µ′(A′′, b)}. The set B′ is nonempty

since A′′ is a nonempty subset of A′. Let b denote an object in B′.

Let A′′′ denote {a ∈ A′′ | µ(a, b) > µ′(a, b)}. The set A′′′ is nonempty

since µ(A′′, b) > µ′(A′′, b). Let a denote an agent in A′′′. Since u(µ, d, a) =

e(a)Λ(a) and u(µ′, d, a) = e(a)Λ′(a) by Lemma 6.3.10, and since a belongs to

A′, we deduce that Λ(a) > Λ′(a) = λ∗.

Since µ(A′′, b) > µ′(A′′, b) and Theorem 6.3.14 implies that µ(A, b) =

µ′(A, b), we deduce that there is an agent in A \ A′′, call it a′, such that

µ(a′, b) < µ′(a′, b).

Since µ(a, b) > µ′(a, b) and µ(a′, b) < µ′(a′, b), Claim 1 implies that

Λ(a) ≤ Λ(a′) and Λ′(a′) ≤ Λ′(a) = λ∗. Since Λ(a) > λ∗, we have Λ′(a′) ≤ λ∗ <

Λ(a) ≤ Λ(a′). Thus a′ belongs to A′, and hence the definition of λ∗ implies

Λ′(a′) ≥ λ∗. Since Λ′(a′) ≤ λ∗, we conclude that Λ′(a′) = λ∗. Since a′ belongs
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to A′ and Λ′(a′) = λ∗, we deduce that a′ belongs to A′′, a contradiction.

Theorem 6.3.20. Any frugal LMMF mechanism is PM.

Proof. By the definition of mechanism M, it is sufficient to show that M is

PM.

Let P (k) denote the predicate “for any OAFD instances I = (A,B, e, s, d)

and I ′ = (A′, B, e′, s, dA′) such that |A| = k and I ′ belongs to shrink(I),

any allocations µ in M(I) and µ′ in M(I ′), and any agent a in A′ such that

e′(a) = e(a), we have u(µ, d, a) ≤ u(µ′, d, a).” We prove by induction that

P (k) holds for all k ≥ 0, which implies that the theorem holds.

Base case: It is easy to see that P (0) holds.

Induction step: Let k be a positive integer and assume that P (i) holds

for 0 ≤ i < k. We need to prove that P (k) holds. Let I = (A,B, e, s, d) and

I ′ = (A′, B, e′, s, dA′) be OAFD instances such that |A| = k and I ′ belongs to

shrink(I). Let allocation µ (resp., µ′) belong to M(I) (resp., M(I ′)). Let a†

be an agent in A′ such that e′(a†) = e(a†). We need to prove that u(µ, d, a†) ≤

u(µ′, d, a†). Let λ1 (resp., λ′1) denote brkpts(I, 1) (resp., brkpts(I ′, 1)), and let

A1 (resp., A′1) denote agents(I, 1) (resp., agents(I ′, 1)). We consider two cases.

Case 1: a† ∈ A1. Since a† belongs to A1, Lemma 6.3.10 implies that

u(µ, d, a†) = λ1e(a
†). The definition of λ′1 implies that u(µ′, d, a†) ≥ λ′1e(a

†).

Since u(µ, d, a†) = λ1e(a
†) and u(µ′, d, a†) ≥ λ′1e(a

†), it is sufficient to prove

that λ′1 ≥ λ1. Let µA′ denote the restriction of µ to A′; thus µA′ belongs to
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frugal(I ′). Since µ′ belongs to LMMF(I ′), we deduce that u(I ′, µ′) is lexico-

graphically at least u(I ′, µA′). Hence λ′1 ≥ λ1, as required.

Case 2: a† ∈ A′ \ A1. Let Î = (Â, B, ê, ŝ, d̂) and Î ′ = (Â′, B, ê′, ŝ′, d̂′)

denote the OAFD instances such that Î = sub(I, A1 ∪ (A \ A′), µ) and Î ′ =

sub(I ′, A1 ∩ A′, µ′). Notice that Â = A \ (A1 ∪ (A \ A′)) = A′ \ A1 = Â′ and

d̂ = dÂ = dÂ′ = d̂′. Moreover, the case assumption implies that a† belongs to

A′ \A1 = Â. Let µ̂ and µ̂′ be allocations in M(Î) and M(Î ′), respectively. By

Lemma 6.2.1, it is sufficient to prove that u(µ̂, d, a†) ≤ u(µ̂′, d, a†).

Since ê (resp., ê′) is the restriction of e (resp., e′) to Â, we have ê′(a) ≤

ê(a) for all agents a in Â. Let Î∗ denote the OAFD instance (Â, B, ê, ŝ′, d̂),

which belongs to shrink(Î ′). Let µ̂∗ denote an allocation in M(Î∗). The in-

duction hypothesis implies that u(µ̂′, d, a) ≥ u(µ̂∗, d, a) for all agents a in Â

such that ê(a) = ê′(a). Since a† belongs to Â and ê′(a†) = ê(a†), we deduce

that u(µ̂∗, d, a†) ≤ u(µ̂′, d, a†). Below we complete the proof by showing that

u(µ̂, d, a†) ≤ u(µ̂∗, d, a†).

Let b be an object in B. We have

µ(A1 ∪ (A \ A′), b) ≥ µ(A1, b)

= sI(b)

= min(s(b),
∑
a∈A

d(a, b))

≥ µ′(A′, b)

≥ µ′(A′ ∩ A1, b),
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where the first equality holds by Lemma 6.3.6, the second equality holds by

the definition of sI(b), and the second inequality holds because µ′ belongs to

frugal(I ′). Since ŝ(b) = s(b)−µ(A1∪(A\A′), b) and ŝ′(b) = s(b)−µ′(A′∩A1, b),

we deduce that ŝ(b) ≤ ŝ′(b). Hence Theorem 6.3.19 implies that u(µ̂, d, a†) ≤

u(µ̂∗, d, a†), as required.

We now turn our attention to proving that any frugal LMMF mech-

anism is GSP. Bogomolnaia and Moulin [38] prove this result for the special

case where all of the demands are either 0 or 1. Like their mechanism, our

mechanism partitions the agents into those receiving the minimum utility (i.e.,

agents(I, 1)) and the rest. Both proofs proceed to divide the original problem

into two subproblems over these two agent subsets. The main difference be-

tween these two proofs is that when all of the demands are either 0 or 1, the

objects demanded by agents in agents(I, 1) are no longer available to the re-

maining agents, and hence there is a clean partitioning of the objects into the

subset demanded by agents in agents(I, 1) and the remaining objects. How-

ever, in our setting, the objects fractionally demanded by agents in agents(I, 1)

may still be partly available for the remaining agents, which allows for a more

complicated interplay between the two subproblems. We use some new ideas

to cope with this added complexity. For example, in the main case (Case 4) of

our proof of Theorem 6.3.21, we find it convenient to leverage the RM property

established in Theorem 6.3.19. We remark that Bogomolnaia and Moulin also

establish RM in their setting, but do not use RM to establish GSP.

Theorem 6.3.21. Any frugal LMMF mechanism is GSP.
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Proof. The definition of mechanism M implies that it is sufficient to show

that mechanism M is GSP. For any OAFD instances I = (A,B, e, s, d) and

I ′ = (A,B, e, s, d′), any subset A′ of A such that dA\A′ = d′A\A′ , and any

allocation µ′ in M(I ′), we define (I, I ′, A′, µ′) as a manipulation. For any

manipulation Φ = (I, I ′, A′, µ′) where I = (A,B, e, s, d), we define the set of

winning agents, denoted W (Φ), as {a ∈ A | u(µ′, d, a) > e(a)ΛI(a)}. Similarly,

we define the set L(Φ) of losing agents as {a ∈ A | u(µ′, d, a) < e(a)ΛI(a)}.

Remark: Lemma 6.3.10 implies that u(µ, d, a) = e(a)ΛI(a) for all allocations

µ in M(I) and all agents a in A.

Let P (k) denote the predicate “for any manipulation Φ = (I, I ′, A′, µ′)

where I = (A,B, e, s, d), |A| = k, and W (Φ)∩A′ 6= ∅, we have L(Φ)∩A′ 6= ∅.”

Below we prove by induction on k that P (k) holds for all k ≥ 0; the claim of

the theorem follows immediately.

It is easy to see that P (0) holds. Let k be a positive integer and assume

that P (i) holds for 0 ≤ i < k. We need to prove that P (k) holds. Let Φ =

(I, I ′, A′, µ′) be a manipulation where I = (A,B, e, s, d), I ′ = (A,B, e, s, d′),

|A| = k, and W (Φ) ∩ A′ 6= ∅. We need to prove that L(Φ) ∩ A′ 6= ∅. Let

λ1 (resp., λ′1) denote brkpts(I, 1) (resp., brkpts(I ′, 1)), and let A1 (resp., A′1)

denote agents(I, 1) (resp., agents(I ′, 1)). We consider four cases.

Case 1: λ′1 < λ1. Lemma 6.3.6 implies that λ′1 = cap(I ′, A′1)/e(A′1) and

λ1 = minX⊆A cap(I,X)/e(X). Thus

cap(I ′, A′1)/e(A′1) < min
X⊆A

cap(I,X)/e(X) ≤ cap(I, A′1)/e(A′1),
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where the first inequality follows from the case assumption and the second

inequality follows from A′1 ⊆ A. Multiplying by e(A′1), we obtain cap(I ′, A′1) <

cap(I, A′1). If A′ ∩ A′1 = ∅, then d′a = da for all agents a in A′1 and hence

cap(I ′, A′1) = cap(I, A′1), a contradiction. It remains to consider the case

where A′ ∩ A′1 6= ∅. Let a belong to A′ ∩ A′1. Thus

u(µ′, d, a) ≤ µ′(a,B) = u(µ′, d′, a) = e(a)λ′1 < e(a)λ1,

where the two equalities follows from Lemma 6.3.10. Hence a is in L(Φ) ∩A′.

Case 2: λ′1 ≥ λ1 and L(Φ)∩A1 6= ∅. Let a be an agent in L(Φ)∩A1. If

a is in A′ then L(Φ) ∩ A′ 6= ∅, as required. Thus, in what follows, we assume

that a is not in A′. Let i denote the least integer such that a is in agents(I ′, i).

We have

e(a)ΛI′(a) = u(µ′, d′, a) = u(µ′, d, a) < e(a)λ(a) = e(a)λ1,

where the first equality holds by Lemma 6.3.10, the second equality holds since

a is not in A′ and hence d′a = da, the inequality holds since a is in L(Φ), and

the third equality holds since a is in A1. Thus λ′1 ≤ ΛI′(a) < λ1, contradicting

the first condition in the case assumption.

Case 3: λ′1 ≥ λ1, L(Φ) ∩ A1 = ∅, and W (Φ) ∩ A1 6= ∅. Let a

denote an agent in W (Φ) ∩ A1. Thus u(µ′, d, a) > e(a)ΛI(a) = e(a)λ1.

Since u(µ′, d, A1) ≤ cap(I, A1) = e(A1)λ1 by Lemma 6.3.6, we deduce that

u(µ′, d, A1 − a) < e(A1 − a)λ1. Thus there is an agent a′ in A1 − a such that

u(µ′, d, a′) < e(a′)λ1 = e(a′)ΛI(a
′). Hence L(Φ) ∩ A1 6= ∅, contradicting the

second condition in the case assumption.
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Case 4: λ′1 ≥ λ1, L(Φ) ∩ A1 = ∅, and W (Φ) ∩ A1 = ∅. Let µ de-

note an allocation in M(I). Let Î = (Â, B, ê, ŝ, d̂) denote the OAFD in-

stance sub(I, A1, µ); thus Â = A \ A1. Let µ̂ denote the restriction of µ to

Â; Lemma 6.2.1, implies that µ̂ is in M(Î). Let I∗ = (Â, B, ê, s∗, d∗) denote

the OAFD instance sub(I, A1, µ
′) and let µ∗ denote the restriction of µ′ to Â;

Lemma 6.2.1, implies that µ∗ is in M(I∗). Let Ĩ denote the OAFD instance

(Â, B, ê, s∗, d̂) and let µ̃ be in M(Ĩ).

Claim 1: ΛI(a) ≥ ΛĨ(a) holds for all agents a in Â. The third condition

in the case assumption implies that u(µ′, d, a) ≥ e(a)λ1 for all agents a in A1.

Thus Lemma 6.3.13 implies that µ(A1, b) ≤ µ′(A1, b) for all objects b in B. It

follows that ŝ(b) ≥ s∗(b) for all objects b in B. Hence

e(a)ΛI(a) = u(µ, d, a) = u(µ̂, d̂, a) ≥ u(µ̃, d̂, a) = e(a)ΛĨ(a),

where the first and last equalities hold by Lemma 6.3.10, the second equality

holds by the definition of µ̂, and the inequality holds by Theorem 6.3.19.

Dividing by e(a) yields the claim.

Claim 2: u(µ′, d, a) = u(µ∗, d̂, a) for all agents a in Â. We have

u(µ′, d, a) =
∑
b∈B

min(µ′(a, b), d(a, b)) =
∑
b∈B

min(µ∗(a, b), d̂(a, b)) = u(µ∗, d̂, a),

where the second equality holds by the definition of µ∗. The claim follows.

Let A′′ denote A′\A1 and let Φ′ denote the manipulation (Ĩ , I∗, A′′, µ∗).

Claim 3: W (Φ′) ∩ A′′ 6= ∅. Since W (Φ) ∩ A′ 6= ∅, the third condition

in the case assumption implies that W (Φ) ∩ A′′ 6= ∅. Let a be an agent in
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W (Φ) ∩ A′′. Thus

u(µ∗, d̂, a) = u(µ′, d, a) > e(a)ΛI(a) ≥ e(a)ΛĨ(a),

where the first equality holds by Claim 2, the first inequality holds because a is

in W (Φ), and the second inequality holds by Claim 1. Since u(µ∗, d̂, a) > ΛĨ(a)

and a is in A′′, the claim holds.

Since |Â| < k and Claim 3 holds, the induction hypothesis implies that

L(Φ′) ∩ A′′ 6= ∅. Let a be in L(Φ′) ∩ A′′. Thus a is in A′′ ⊆ Â and

u(µ′, d, a) = u(µ∗, d̂, a) < e(a)ΛĨ(a) ≤ e(a)ΛI(a),

where the equality holds by Claim 2, the first inequality holds because a is

in L(Φ′), and the second inequality holds by Claim 1. Since u(µ′, d, a) <

e(a)ΛI(a) and a is in A′′ ⊆ A′, we deduce that a is in W (Φ) ∩ A′.

6.4 Impossibility Results

In this section, we show that fairness and SI are incompatible proper-

ties. Lemma 6.4.1 below establishes that for any α > 1/2, no OAFD mecha-

nism is α-SI and MMF. As mentioned in Section 6.2, MMF is a weaker notion

of fairness than LMMF. Thus for any α > 1/2, no OAFD mechanism is α-SI

and LMMF.

Lemma 6.4.1. For any α > 1/2, no OAFD mechanism is α-SI and MMF.

Proof. Let M be an MMF OAFD mechanism. Consider an OAFD instance

I = (A,B, e, s, d) with n agents a1, . . . , an, each with endowment 1, and two
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objects b1 and b2, each with supply n, and where d(a1, b1) = d(a1, b2) = 1,

and d(a, b1) = 2 and d(a, b2) = 0 for all agents a in A − a1. Mechanism

M gives a utility of 1 + 1/n to each agent in A. If agent a1 is allocated an

e(a1)/e(A) = 1/n fraction of each object, then a1 achieves utility 2. Hence M

is at most 1
2
(1 + 1

n
)-SI. Let α be any value greater than 1/2. Then, choosing

a sufficiently large n, we find that M is not α-SI.

Since no mechanism can be MMF and SI, we consider the following nat-

ural relaxation: mechanisms that are MMF subject to being SI. Formally, for

any OAFD instance I = (A,B, e, s, d), we say that an allocation µ in allocs(I)

is MMF-SI if µ maximizes mina∈A u(µ′, d, a)/e(a) over all µ′ in allocs(I) such

that µ′ is SI. An OAFD mechanism M is MMF-SI if for any OAFD instance

I, every allocation in M(I) is MMF-SI. Lemma 6.4.2 below shows that the SP

and MMF-SI properties are incompatible.

Lemma 6.4.2. No OAFD mechanism is SP and MMF-SI.

Proof. Let M be an MMF-SI OAFD mechanism. Consider an OAFD instance

I = (A,B, e, s, d) with three agents a1, a2, and a3, each with endowment 1, and

two objects b1 and b2, each with supply 6, and where d(a1, b1) = 3, d(a1, b2) =

1, d(a2, b1) = d(a3, b1) = 0, and d(a2, b2) = d(a3, b2) = 3. Let µ belong to

M(I). It is easy to verify that u(µ, d, a1) = 3. Let d′ denote (dA−a1 , d
′′), where

d′′ belongs to demands({a1}, B), d′′(a1, b1) = 3, and d′′(a1, b2) = 2. Let I ′

denote the OAFD instance (A,B, e, s, d′) and let µ′ belong to M(I ′). It is easy

to verify that u(µ′, d′, a1) = 4. We conclude that mechanism M is not SP.
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Chapter 7

Open Problems

This chapter summarizes open problems related to previous chapters

and may be of independent interests.

In Chapter 2, we have introduced the agent-moving model, and pre-

sented a polynomial-time algorithm for finding Pareto-efficient matchings on

generalized stars in the agent-moving model, a problem that remains open in

the object-moving model. It is natural to ask whether our techniques can be ex-

tended to address this open problem. Our algorithm relies on the polynomial-

time solvability of the reachable object problem for the center agent, which

allows us to compute an object that is matched to the center agent in some

Pareto-efficient matching. In the object-moving model, no polynomial-time al-

gorithm is known to compute an agent that is matched to the center object in

some Pareto-efficient matching. (We do know how to compute the agents that

can be reached by the center object in polynomial time, but it isn’t clear how

to use this information to compute a Pareto-efficient matching in polynomial

time.)

As in the work presented in Chapter 3, it is interesting to search for

Pareto-efficient matchings satisfying other desiderata. In Chapter 3, we have

237



explored such a refinement in the direction of popularity. Our refinement

seeks to maximize the number of agents who achieve a better outcome than

in the initial configuration, and we show that this refinement is NP-hard to

achieve. Our complexity proofs show that even for trees or stars with ties,

determining a maximum votes Pareto-efficient (MVPE) matching is NP-hard.

It is interesting to investigate the complexity of this refinement in the context

of other markets with an initial configuration. A challenging open question

is to completely characterize the social network structures for which case the

MVPE problem is polynomial-time solvable. Another direction is to consider

a matching that maximizes the total happiness of all agents. At the same

time, it is possible that few agents are happy in a matching that maximizes

total happiness, so it may be important to incorporate a fairness criterion as

well.

The NP-hardness results presented in Chapter 4 suggest the need to

consider approximation algorithms or heuristic algorithms. As a starting point,

one could study the approximation algorithms for finding social welfare max-

imizing k-partition in FHGs played on undirected unweighted graphs. Note

that for this problem, it is easy to see that the classical algorithm finding the

densest subgraph by Goldberg [90] provides a k-approximation algorithm. It

is interesting to study whether there is an efficient O(log k)-approximation al-

gorithm. Furthermore, it is interesting to study the price of anarchy and price

of stability for Nash stable partitions in our model, in particular, study the

performance in terms of k. Finally, we conjecture that it is NP-hard to find
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a Nash stable k-partition on undirected unweighted graphs for all k ≥ 2, but

this remains an open problem.

In Chapter 5, we studied the obnoxious facility location game with di-

chotomous preferences. This game generalizes obnoxious facility location game

to more realistic scenarios. All of the mechanisms presented in this chapter run

in polynomial time, except that the running time of Mechanism 2 has expo-

nential dependence on k (and polynomial dependence on n). We showed that

Mechanism 2 is WGSP for all k and is efficient for k ≤ 3. Properties 1 and 2

in the proof of our associated theorem, Theorem 5.5.4, do not hold for k > 3.

Nevertheless, we conjecture that Mechanism 2 is efficient for all k. It remains

an interesting open problem to reduce the gap between the Ω(
√
n) and O(n)

bounds on the approximation ratio α of WGSP α-egalitarian mechanisms.

In Chapter 6, we propose three possible directions. First, we have

shown that our mechanism is α-SI for α = 1/2, but in most real world in-

stances it might achieve α-SI for a significantly higher value of α. It would be

interesting to benchmark our mechanism on real data. Second, our work as-

sumes perfect knowledge of future demands. We want to develop mechanisms

whose performance degrades gracefully as the knowledge of future demands

becomes more unreliable. Finally, we have studied lexicographic maximin

fairness in this chapter. It would also be interesting to study other notions of

fairness.
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Hanjo Täubig. Welfare maximization in fractional hedonic games. In

Proceedings of the 24th International Joint Conference on Artificial In-

telligence, pages 461–467, 2015.

[21] Haris Aziz, Serge Gaspers, Simon Mackenzie, and Toby Walsh. Fair

assignment of indivisible objects under ordinal preferences. Artificial

242



Intelligence, 227:71–92, 2015.

[22] Haris Aziz and Rahul Savani. Hedonic games. In Felix Brandt, Vincent
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[34] Vittorio Bilò, Angelo Fanelli, Michele Flammini, Gianpiero Monaco, and

Luca Moscardelli. Nash stability in fractional hedonic games. In Pro-

ceedings of the 10th International Workshop on Internet and Network

Economics, pages 486–491, 2014.
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[38] Anna Bogomolnaia and Hervé Moulin. Random matching under di-

chotomous preferences. Econometrica, 72(1):257–279, 2004.

[39] Paul S. Bonsma, Hajo Broersma, Viresh Patel, and Artem V. Pyatkin.

The complexity of finding uniform sparsest cuts in various graph classes.

Journal of Discrete Algorithms, 14:136–149, 2012.

[40] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zheng-

ping Qian, Ming Wu, and Lidong Zhou. Apollo: Scalable and coordi-

nated scheduling for cloud-scale computing. In Proceedings of the 11th

245



USENIX Conference on Operating Systems Design and Implementation,

pages 285–300, 2014.

[41] Steven J. Brams and Peter C. Fishburn. Approval voting. The Ameri-

can Political Science Review, 72(3):831–847, 1978.

[42] Ulrik Brandes. Network Analysis: Methodological Foundations. Springer

Science & Business Media, 2005.

[43] Florian Brandl, Felix Brandt, and Martin Strobel. Fractional hedonic

games: Individual and group stability. In Proceedings of the 14th Inter-

national Conference on Autonomous Agents and Multi-Agent Systems,

pages 1219–1227, 2015.

[44] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D.
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