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Algorithms for Stable Matching with Indifferences

Chi Kit Lam, Ph.D.

The University of Texas at Austin, 2019

Supervisor: Greg Plaxton

In the stable matching problem, given a two-sided matching market where each agent

has ordinal preferences over the agents on the other side, we would like to find a bipartite

matching such that no pair of agents prefer each other to their partners. Indifferences

in preferences of the agents arise naturally in large-scale centralized matching schemes. We

consider stable matching models where indifferences may occur in the preferences and address

some of the related algorithmic challenges.

In the first part of this dissertation, we study group strategyproofness and Pareto-

stability in the stable matching market with indifferences. We present Pareto-stable mech-

anisms that are group strategyproof for one side of the market. Our key technique involves

modeling the stable matching market as a generalized assignment game.

In the second part of this dissertation, we study the problem of finding maximum

stable matchings when preference lists are incomplete and contain one-sided ties. We present

a polynomial algorithm that achieves an approximation ratio of 1 + (1− 1
L

)L, where L is the

maximum tie length. Our algorithm is based on a proposal process in which numerical
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priorities are adjusted according to the solution of a linear program, and are used for tie-

breaking purposes. Our main idea is to use an infinitesimally small step size for incrementing

the priorities. Our analysis involves a charging argument and an infinite-dimensional factor-

revealing linear program. We also show that the same ratio of 1 + (1− 1
L

)L is an upper

bound on the integrality gap, which matches the known lower bound. For the case of one-

sided ties where the maximum tie length is two, our result implies an approximation ratio

and integrality gap of 5
4
, which matches the known UG-hardness result.
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Chapter 1

Introduction

1.1 Stable Matching and Indifferences

The stable matching problem involves a market consisting of two disjoint sets of

agents. The agents in the two sets are referred to as men and women in the literature. Each

agent has preferences over the agents of the opposite sex. The goal is to find a set of disjoint

man-woman pairs, called a matching, such that no man and woman prefer each other to

their partners. Such matchings are said to be stable.

The stable matching problem was introduced by Gale and Shapley [32], who showed

that stable matchings always exist and can be computed by a linear-time algorithm known as

the deferred acceptance process. In their paper, preferences are strict, but agents are allowed

to declare some other agents as unacceptable. The preference list of an agent is said to contain

a tie when the agent is indifferent between two or more agents of the opposite sex. The

preference list of an agent is said to be incomplete when one or more agents of the opposite

sex are unacceptable to the agent. The stable matching model with incomplete lists and strict

preferences is well-studied and known to possess various elegant mathematical properties,

including the lattice property [60, attributed to Conway], the lone wolf theorem [71], the

characterization of the stable matching polytope [90], and the existence of the one-sided

group strategyproof mechanism [23]. Since then, this model and its various generalizations
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have led to a large body of research in computer science [36, 67] and economics [89].

Indifferences arise naturally in real-world applications. When preferences contain

ties, the notion of stability can be generalized to weak stability, strong stability, or super-

stability [47]. Weakly stable matchings can be computed by breaking all ties arbitrarily

before invoking the Gale-Shapley algorithm. Strongly stable matchings and super-stable

matchings do not always exist, but polynomial-time algorithms have been developed to

find such solutions when they exist [47]. This dissertation mainly focuses on weakly stable

matchings, which always exist.

In this dissertation, we study algorithms for weakly stable matchings that achieve

additional desirable properties. In the first part of this dissertation, we present Pareto-stable

mechanisms that are group strategyproof for one side of the market, where preferences may be

incomplete and contain ties. In the second part of this dissertation, we study polynomial-time

approximation algorithms for finding maximum weakly stable matchings, where preferences

on one side of the market may be incomplete and contain ties.

Other problems involving weak stability have been considered in the literature, but

many of them have strong hardness results. The problem of finding a minimum regret weakly

stable matching or an egalitarian weakly stable matching is hard to approximate, even if ties

only occur on one side of the market [37, 68]. It is also hard to approximate the problem of

finding a sex-equal weakly stable matching [37].
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1.2 Generalizations of the Stable Matching Model

The stable matching model has been generalized in various ways to allow agents to

have more expressive preferences. Many results for the stable matching model with strict

preferences can be extended to these models.

1.2.1 The College Admissions Problem

The college admissions problem is a many-to-one matching market introduced by

Gale and Shapley [32]. The agents in the college admissions model are called students and

colleges, and each agent has preferences over the agents on the other side. In addition, each

college also has a capacity value which represents the maximum number of students that

can be matched with the college, and outcomes of a mechanism are capacitated matchings.

The preferences of a college over individual students can be extended to preferences over

groups of students using the notion of responsiveness [84]. Stable matchings exist, and can

be computed by reducing the college admission problem to the stable matching problem [34].

When preferences are strict and responsive, the set of stable matchings forms a lattice [89],

and the student-optimal mechanism is group strategyproof for the students [23]. When the

roles of the students and colleges are replaced by residents and hospitals, respectively, this

model is also called the hospitals/residents problem [36]. The rural hospital theorem [85] for

the hospitals/residents problem is a generalization of the lone wolf theorem.

1.2.2 Matching with Contracts

The model of matching with contracts is a generalization of the college admissions

problem introduced by Hatfield and Milgrom [43]. It involves a many-to-one matching market
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where there can be multiple contract terms for matching a given pair of agents. Each

agent has strict preferences over the contracts involving the agent. When preferences satisfy

substitutability and the law of aggregate demand, the stable matchings form a non-empty

lattice and satisfy the rural hospital theorem [43]. A group strategyproof stable mechanism

for one side of the market also exists under the same assumptions [41].

1.2.3 Matching in Supply Chain Networks

The model of matching in supply chain networks is a further generalization introduced

by Ostrovsky [74]. It involves a market where agents in an acyclic network negotiate bilateral

contracts. Each agent has strict preferences over the bilateral contracts involving the agent.

When preferences satisfy full substitutability and the laws of aggregate demand and supply,

the stable matchings form a non-empty lattice and satisfy a generalized form of the rural

hospital theorem [42]. A group strategyproof stable mechanism for the agents with unit

demand also exists under the same assumptions [42]. This model subsumes the many-to-

many matching model.

1.3 Related Two-Sided Matching Problems

The stable matching model is known to share many common properties with other re-

lated two-sided matching problems such as the housing market problem and the asssignment

game.
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1.3.1 The Housing Market Problem

Like the stable matching problem, the housing market problem introduced by Shap-

ley and Scarf [91] is a two-sided matching model with ordinal preferences. It involves a set

of agents, each of which owns a house. Each agent has preferences over the houses. Per-

fect matchings between the agents and the houses represent exchanges of houses among the

agents without any monetary transfer. A suitable solution concept is the core. Core alloca-

tions always exist and can be computed efficiently by the top trading cycles algorithm [91,

attributed to Gale], which corresponds to a group strategyproof mechanism [7]. When in-

differences are allowed, there exist strategyproof mechanisms that produce Pareto-optimal

core allocations in polynomial time [54, 77].

1.3.2 The Assignment Game

A simple two-sided market with monetary transfers is the assignment game introduced

by Shapley and Shubik [92]. It involves a set of unit-demand buyers and a set of sellers. Each

seller has an item to sell, and each buyer has a valuation for each item. An outcome consists

of a matching between the buyers and the sellers along with a price for each item. The utility

of a buyer is assumed to be the difference between their valuation for their assigned item

and its price. An outcome is envy-free if every buyer is assigned an item that maximizes

their utility. Shapley and Shubik showed that finding an envy-free matching corresponds

to solving the weighted bipartite matching problem, which in turns corresponds to linear

optimization on the matching polytope. They also showed that envy-free utility payoffs

correspond to feasible solutions in the dual linear program and form a non-empty lattice.

Demange et al. [17] described an ascending auction mechanism that produces buyer-optimal
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outcomes. This mechanism is strategyproof [65], and is equivalent to the Vickrey-Clarke-

Groves mechansim [12, 35, 96]. The assignment game has been generalized to accommodate

a larger class of utility functions [13, 16, 56], and to the exchange model [31, 79].

To find an envy-free solution for the assignment game, the Hungarian method [62]

can be used to compute a maximum-weight bipartite matching. More efficient algorithms

are known for special cases such as sparse edge-weighted graphs [30], graphs with small

integer edge weights [22], vertex-weighted convex bipartite graphs [76], vertex-weighted two-

directional orthogonal ray graphs [78], and graphs with linear edge weights [19, 21].

1.4 Multi-Sided Systems

The problem of generalizing the stable matching problem to three-dimensional match-

ings in three-sided systems was posed by Knuth [60]. Various restrictions on the preferences

of the agents have been considered. When each agent has preferences over pairs of agents

from the other two sides, it is NP-complete to decide whether a stable matching exists [73, 94],

even if the preferences are consistent with product orders [44]. When the agents have lexi-

cographically acyclic preferences over pairs of agents from the other two sides, Danilov [14]

showed that multi-sided stable matchings alway exist and can be obtained efficiently by com-

puting two-sided stable matchings in a natural hierarchical manner. When the agents have

purely cyclic preferences over agents of another side, it is NP-complete to decide whether

a stable matching exists [8, 64].
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1.5 Applications

The stable matching problem has applications in centralized matching schemes. One

classical example is the National Resident Matching Program, which recruits graduating

physicians to residency programs. Previously known as the National Intern Matching Pro-

gram, it was shown to be equivalent to the deferred acceptance process by Roth [82], who

credited its success to the stability of its output. According to a more recent report by Roth

and Peranson [87], the program underwent a redesign and is matching approximately twenty

thousand jobs annually. In the United Kingdom, the Scottish Foundation Allocation Scheme

is a similar mechanism for matching medical students to hospitals; in this mechanism, ties

may appear at the end of the preference lists of the hospitals [68].

The stable matching problem also has applications in school choice [3]. In this setting,

we have a set of students and a set of schools. Each student has preferences over the schools,

and each school has a capacity value and a priority order over the students. The key difference

between the priority orders of the schools in the school choice setting and the preferences

of the colleges in the college admissions problem is that the former may be determined by

local policies instead of true preferences. The counterpart of stability is fairness. A matching

is unfair if there exists a student and a school such that the student prefers the school to

their match and has a higher priority at the school than some other student matched to

the school. Two strategyproof mechanisms suggested by Abdulkadiroğlu and Sönmez [3] for

the school choice problem are the student-proposing deferred acceptance process and the top

trading cycles algorithm. The former is fair and the latter is Pareto-optimal for the students.

However, no mechanism can be both fair and Pareto-optimal for the students [81]. In New

York City high school admissions, over ninety thousand students are assigned to high schools

7



every year using the deferred acceptance process [1]. A feature of the priority orders of those

high schools is the presence of ties, and field data was used by Abdulkadiroğlu et al. [2] to

analyze the welfare of the students under different methods for handling indifferences. Other

practical considerations of school choice that have been studied include diversity [25, 26, 61]

and community cohesion [5].
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Chapter 2

The Two-Sided Matching Models

2.1 Stable Matching Market

The stable matching market involves a set I of men and a set J of women. The sets I

and J are assumed to be disjoint and finite. Furthermore, we assume that the sets I and J

do not contain the element 0, which we use to denote being unmatched. The preference

relation of each man i ∈ I is specified by a binary relation ≥i over J ∪ {0} that satisfies

transitivity1 and totality2. Similarly, the preference relation of each woman j ∈ J is specified

by a binary relation ≥j over I ∪ {0} that satisfies transitivity and totality. We denote this

stable matching market as (I, J, {≥i}i∈I , {≥j}j∈J).

The preference relations in the stable matching market need not satisfy antisymmetry3

in general. For each agent k ∈ I ∪ J , we use >k and =k to denote the asymmetric part4

and the symmetric part5 of ≥k respectively. We say that agent k weakly prefers agent k′ to

1A binary relation � over a set K is said to satisfy transitivity if for every k1, k2, k3 ∈ K such that k1 � k2
and k2 � k3, we have k1 � k3.

2A binary relation � over a set K is said to satisfy totality if for every k1, k2 ∈ K, we have either k1 � k2
or k2 � k1.

3A binary relation � over a set K is said to satisfy antisymmetry if for every k1, k2 ∈ K such that k1 � k2
and k2 � k1, we have k1 = k2.

4The asymmetric part of a binary relation � over a set K is the binary relation � over the set K such that
for every k1, k2 ∈ K, we have k1 � k2 if and only if k1 � k2 and ¬(k2 � k1).

5The symmetric part of a binary relation � over a set K is the binary relation ∼ over the set K such that
for every k1, k2 ∈ K, we have k1 ∼ k2 if and only if k1 � k2 and k2 � k1.
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agent k′′ if k′ ≥k k′′. If agent k weakly prefers agent k′ to agent k′′, then either k′ >k k
′′

or k′ =k k
′′. We say that agent k prefers agent k′ to agent k′′ in the former case, and is

indifferent between agent k′ and agent k′′ in the latter case. A tie in the preference list of an

agent k is an equivalence class of size at least 2 with respect to the equivalence relation =k. If

the preference list of agent k has no tie, we say that agent k has strict preferences. Otherwise,

agent k is said to have weak preferences.

Acceptability can be defined in terms of the preference relations. For every agent k

and k′ of opposite sexes, either k′ ≥k 0 or 0 >k k
′. We say that agent k′ is acceptable to

agent k in the former case, and unacceptable to agent k in the latter case. If man i and

woman j are acceptable to each other, we say that (i, j) is an acceptable pair. Otherwise,

(i, j) is an unacceptable pair. Agent k is said to have a complete preference list if every

agent k′ of the opposite sex is acceptable to agent k. Otherwise, agent k is said to have an

incomplete preference list.

A matching is a subset µ ∈ I × J such that for every (i, j), (i′, j′) ∈ µ, we have i = i′

if and only if j = j′. We denote

µ(i) =

j if (i, j) ∈ µ

0 if (i, j) /∈ µ for every woman j ∈ J

for every man i ∈ I and

µ(j) =

i if (i, j) ∈ µ

0 if (i, j) /∈ µ for every man i ∈ I

for every woman j ∈ J . For every agent k, we say that agent k is matched in µ if µ(k) 6= 0.

Otherwise, agent k is said to be unmatched in µ.

10



Weak stability can be defined in terms of individual rationality and strongly blocking

pairs. A matching µ is individually rational if µ(k) ≥k 0 for every agent k ∈ I ∪ J . A man-

woman pair (i, j) ∈ I × J is a strongly blocking pair of a matching µ if j >i µ(i) and

i >j µ(j). A matching µ is weakly stable if the matching µ is individually rational and

admits no strongly blocking pair.

Given a set I of men and a set J of women, a mechanism is an algorithm that takes

the preference profiles {≥i}i∈I and {≥j}j∈J as input, and produces a matching µ as output.

2.2 Generalized Assignment Game

The generalized assignment game studied by Demange and Gale [16] involves two

disjoint finite sets I and J of agents, which we call men and women respectively. We

assume that the sets I and J do not contain the element 0, which we use to denote being

unmatched. For each man i ∈ I and woman j ∈ J , the compensation function fi,j(ui)

represents the compensation that man i needs to receive in order to attain utility ui when he

is matched to woman j. Similarly, for each man i ∈ I and woman j ∈ J , the compensation

function gi,j(vj) represents the compensation that woman j needs to receive in order to

attain utility vj when she is matched to man i. The compensation functions fi,j and gi,j are

assumed to be increasing and invertible for every man i ∈ I and woman j ∈ J . Moreover,

each man i ∈ I has a reserve utility ri and each woman j ∈ J has a reserve utility sj.

We denote this generalized assignment game as (I, J, f ,g, r, s), where f = {fi,j}(i,j)∈I×J and

g = {gi,j}(i,j)∈I×J are the compensation functions, and r = {ri}i∈I and s = {sj}j∈J are the

reserve utilities.

An outcome is a triple (µ,u,v), where µ ⊆ I × J is a matching, u = {ui}i∈I ∈ RI is

11



the utility vector of the men, and v = {vj}j∈J ∈ RJ is the utility vector of the women. An

outcome (µ,u,v) is feasible if the following conditions hold.

(1) For every (i, j) ∈ µ, we have fi,j(ui) + gi,j(vj) ≤ 0.

(2) For every i ∈ I such that µ(i) = 0, we have ui = ri.

(3) For every j ∈ J such that µ(j) = 0, we have vj = sj.

A feasible outcome (µ,u,v) is individually rational if ui ≥ ri and vj ≥ sj for every man i ∈ I

and woman j ∈ J . An individually rational outcome (µ,u,v) is stable if fi,j(ui)+gi,j(vj) ≥ 0

for every man i ∈ I and woman j ∈ J .

A stable outcome (µ,u,v) is man-optimal if for any stable outcome (µ′,u′,v′) we

have ui ≥ u′i for every man i ∈ I. It is known that man-optimal outcomes always exist [16,

Property 2] and satisfy the following useful properties.

Lemma 2.1 ([16, Lemma 4]). Let (µ,u,v) be a man-optimal outcome of generalized assign-

ment game (I, J, f ,g, r, s). Let J ′ ⊆ J be a non-empty subset of woman such that vj 6= sj

for every j ∈ J ′. Then there exists a man i′ ∈ I and a woman j′ ∈ J such that µ(i′) /∈ J ′

and fi′,j′(ui′) + gi′,j′(vj′) = 0.

Theorem 2.2 ([16, Theorem 2]). Let (µ,u,v) be a man-optimal outcome of generalized

assignment game (I, J, f ,g, r, s), and (µ′,u′,v′) be a stable outcome of generalized assignment

game (I, J, f ′,g, r′, s). Let I ′ ⊆ I be a non-empty subset such that for every man i ∈ I \ I ′

and woman j ∈ J , we have fi,j = f ′i,j and ri = r′i. Then there exists a man i′ ∈ I ′ such that

µ′(i′) 6= 0 implies fi′,µ′(i′)(ui′) ≥ f ′i′,µ′(i′)(u
′
i′).
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Chapter 3

Group Strategyproof Pareto-Stable Mechanisms

In this chapter, we study group strategyproofness and Pareto-stability in the stable

matching market with indifferences. Our main result is the existence of a group strategyproof

Pareto-stable mechanism. We achieve this by modeling the stable matching market as an

appropriate form of the generalized assignment game. This result appears in our conference

paper [20]. We omit from this dissertation the details of the equivalence of our mechanism

and an efficient implementation using iterated unit-demand auctions, which can be found in

the dissertation [18] of one of the co-authors of the paper.

In Section 3.1, we review the prior work related to this problem. In Section 3.2,

we present an overview of our techniques. In Section 3.3, we define the notion of group

strategyproofness and Pareto-stability formally. In Section 3.4, we present a reduction from

the stable matching market to the associated generalized assignment game. In Section 3.5,

we show that our mechanism is Pareto-stable. In Section 3.6, we show that our mechanism

is group strategyproof for the men.

3.1 Related Work

In Section 3.1.1, we review the prior work on strategic issues related to stable match-

ings. In Section 3.1.2, we review the prior work on algorithms for computing Pareto-stable
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matchings.

3.1.1 Strategyproofness

Strategic issues are well-understood for the stable matching model with strict prefer-

ences. Roth [81] showed that strategyproofness for all agents and Pareto-optimality can be

obtained by serial dictatorship, but such a mechanism does not produce stable matchings

in general. In fact, it is not hard to see that serial dictatorship is also group strategyproof.

He also showed that the Gale-Shapley algorithm, which produces the unique man-optimal

stable matching when preferences are strict, is strategyproof for the men. Dubins and Freed-

man [23] showed the stronger result that the same mechanism is actually group strategyproof

for the men. Alternative proofs of this result can be obtained using the blocking lemma by

Hwang [34] or the linear programming formulation [88]. However, Gale and Sotomayor [33]

showed that this mechanism is not strategyproof for the women. Their proof can be adapted

to show that when preferences are strict, a stable matching mechanism is strategyproof for

the men only if it produces the man-optimal stable matching, and hence is equivalent to the

Gale-Shapley algorithm. Since it is not strategyproof for the women, the women may benefit

by expressing preference profiles that are different from their true preferences. It is known

that when preferences are strict and the men state their true preferences, every output of the

mechanism at a strategic equilibrium1 is stable [83] and every stable matching is an output of

the mechanism at some strategic equilibrium [33]. In particular, the women-optimal stable

1An expressed preference profile is a strategic equilibrium if no agent can benefit by unilaterally changing
their expressed preferences.
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matching corresponds to a strong equilibrium for the women2 when preferences are strict,

even though it may not be the only strong equilibrium for the women [33]. It is also shown

that the set of non-dominated strategies of the women has a nice characterization in the case

of strict preferences [33, 81]. These strategic issues have also been studied in a model that

does not assume complete information [86].

3.1.2 Pareto-Stability

The notion of Pareto-stability was coined by Sotomayor [93], who argued that it is

an appropriate solution concept for the stable matching market with indifferences. Erdil

and Ergin [28] showed that weakly stable matchings obtained by breaking ties arbitrarily

may not be Pareto-optimal. They present an O(n4)-time algorithm that obtains a Pareto-

stable matching by applying successive Pareto-improvements to a weakly stable matching,

where n is the total number of men and women. Pareto-stable matchings also exist and can

be computed in strongly polynomial time for many-to-many matchings [9] and multi-unit

matchings [10]. Instead of relying on the characterization of Pareto-improvement chains

and cycles, Kamiyama [55] gave another efficient algorithm for Pareto-stable many-to-many

matchings based on rank-maximal matchings. However, none of these mechanisms address

strategyproofness.

2A strategic equilibrium is a strong equilibrium for the women if no coalition of women can all strictly benefit
by changing their preferences.
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3.2 Overview of the Techniques

The key technique for the design of our group strategyproof Pareto-stable mechanism

involves reducing the stable matching market with indifferences to the generalized assignment

game.

Demange and Gale [16] established various properties of the generalized assignment

game including the lattice property and the existence of man-optimal outcomes. These prop-

erties are known to hold for the stable matching market in the case of strict preferences [60,

attributed to Conway], but fail in the case of weak preferences [82]. Given the similarities

between stable matching markets and generalized assignment games, it is natural to ask

whether stable matching markets can be modeled as generalized assignment games. De-

mange and Gale discuss this question and state that “the model of [Gale and Shapley] is not

a special case of our model”. The basic obstacle is that it is unclear how to model an agent’s

preferences within the framework of a generalized assignment game. On the one hand, even

though ordinal preferences can be converted into cardinal utility values, such preferences are

expressed in a manner that is independent of any monetary transfer. On the other hand,

the framework demands that there is an amount of money that makes an agent indifferent

between any two agents on the other side of the market.

Our approach converts a stable matching market with indifferences into an associated

generalized assignment game. While these are both two-sided markets that involve the same

set of agents, the utilities achieved under an outcome in the associated generalized assignment

game may not be equal to the utilities under a corresponding solution in the stable matching

market. Nevertheless, we are able to establish useful relationships between certain sets of

solutions for these two markets.
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Our first such result, Theorem 3.5, shows that Pareto-stability in the stable match-

ing market with indifferences follows from stability in the associated generalized assignment

game, even though it does not follow from weak stability in the stable matching market with

indifferences. This can be seen as a partial analogue to the case of strict preferences, in which

stability in the stable matching market implies Pareto-stability [32]. This also demonstrates

that, in addition to using the deferred acceptance procedure to solve the generalized assign-

ment game [13], we can use the generalized assignment game to solve the stable matching

problem with indifferences.

In Lemma 3.6, we establish that the utility achieved by any man in a man-optimal

solution to the associated generalized assignment game uniquely determines the tier of pref-

erence to which that man is matched in the stable matching market with indifferences.

Another consequence of this lemma is that any matched man in a man-optimal outcome

of the associated generalized assignment game receives at least one unit of money from his

partner. We can then deduce that if a man strictly prefers his partner to a woman, then the

woman has to offer a large amount of money in order for the man to be indifferent between

her offer and that of his partner. Since individual rationality prevents any woman from

offering such a large amount of money, this explains how we overcome the obstacle of any

man being matched with a less preferred woman in exchange for a sufficiently large payment.

A key result established by Demange and Gale is that the man-optimal mechanism

is group strategyproof for the men. Using this result and Lemma 3.6, we are able to show

in Theorem 3.7 that group strategyproofness for the men in the stable matching market

with indifferences is achieved by man-optimality in the associated generalized assignment

game, even though it is incompatible with man-Pareto-optimality in the stable matching
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market with indifferences [27, 57]. This can be seen as a partial analogue to the case of strict

preferences, in which man-optimality implies group strategyproofness [23].

3.3 Preliminary Definitions

Consider a set I of men and a set J of women. A mechanism is group strategyproof

for the men if for every preference profile {≥i}i∈I , {≥′i}i∈I , and {≥j}j∈J , either the prefer-

ence profiles {≥i}i∈I and {≥′i}i∈I are identical or there exists a man i′ ∈ I with preference

relation ≥′i′ different from ≥i′ such that µ(i′) ≥i′ µ′(i′), where µ and µ′ are the matchings

produced by the mechanism given ({≥i}i∈I , {≥j}j∈J) and ({≥′i}i∈I , {≥j}j∈J) respectively.

(Such a man i′ belongs to the coalition but is not matched to a strictly preferred woman by

expressing the preference relation ≥′i′ instead of his true preference relation ≥i′ .)

We remark that this notion of group strategyproofness is different from strong group

strategyproofness, in which at least one man in the coalition gets matched to a strictly

preferred partner while the other men in the coalition get matched to weakly preferred

partners. It is known that strong group strategyproofness for the men is impossible for the

stable matching market even when preferences are strict [23, attributed to Gale]. This notion

of group strategyproofness also assumes no side payments within the coalition of men. The

impossibility of strong group strategyproofness for the men implies the impossibility of group

strategyproofness for the men when side payments are allowed.

Consider a stable matching market (I, J, {≥i}i∈I , {≥j}j∈J). For any matchings µ

and µ′, we say that the binary relation µ ≥I∪J µ′ holds if µ(k) ≥k µ′(k) for every agent

k ∈ I ∪ J . We use >I∪J to denote the asymmetric part of ≥I∪J . A matching µ is said to

Pareto-dominate a matching µ′ if µ >I∪J µ
′ holds. A matching µ is said to be Pareto-optimal
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if the matching µ is not Pareto-dominated by any matching. A matching µ is said to be

Pareto-stable if the matching µ is weakly stable and Pareto-optimal.

We remark that the notion of Pareto-optimality here is different from Pareto-optimal-

ity for the men, which only takes into account the preferences of the men. It is known that

man-Pareto-optimality is not compatible with strategyproofness for the stable matching

market with indifferences [27, 57]. The notion of Pareto-optimality here is also different

from Pareto-optimality in expected utility, which permits Pareto-domination by non-pure

outcomes. A result of Zhou [98] implies that Pareto-optimality in expected utility is not

compatible with strategyproofness for the stable matching market with indifferences.

3.4 The Associated Generalized Assignment Game

We construct the generalized assignment game (I, J, f ,g, r, s) associated with stable

matching market (I, J, {≥i}i∈I , {≥j}j∈J) as follows. We take N ≥ |I| + 1 and define π =

{πi}i∈I such that each man i ∈ I is associated with a fixed and distinct priority πi ∈

{1, 2, . . . , N − 1}. We convert the preference relations {≥i}i∈I of the men to integer-valued

utility values a = {ai,j}(i,j)∈I×(J∪{0}) such that for every man i ∈ I and woman j′, j′′ ∈ J∪{0},

we have j′ ≥i j′′ if and only if ai,j′ ≥ aj,j′′ . Similarly, we convert the preference relations

{≥j}j∈J of the women to integer-valued utility values b = {bi,j}(i,j)∈(I∪{0})×J such that for

every woman j ∈ J and man i′, i′′ ∈ I ∪ {0}, we have i′ ≥j i′′ if and only if bi′,j ≥ bi′′,j ≥ 1.

Also, we take

λ = max
(i,j)∈(I∪{0})×J

(bi,j + 1)N.
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We define the compensation functions f = {fi,j}(i,j)∈I×J and g = {gi,j}(i,j)∈I×J such that

fi,j(ui) = uiλ
−ai,j

and

gi,j(vj) = vj − (bi,jN + πi)

for every man i ∈ I and woman j ∈ J . We define the reserve utilities r = {ri}i∈I and

s = {sj}j∈J such that

ri = πiλ
ai,0

and

sj = b0,jN

for every man i ∈ I and woman j ∈ J . We denote this associated generalized assignment

game as (I, J,π, N, λ, a,b). For better readability, we write expλ(ξ) to denote λξ.

In order to achieve group strategyproofness, we require that π and N do not depend

on the preferences {≥i}i∈I of the men. We further require that {bi,j}(i,j)∈(I∪{0})×J does not

depend on the preferences {≥i}i∈I of the men, and that {ai′,j}j∈J∪{0} does not depend on

the other preferences {≥i}i∈I\{i′} for any man i′ ∈ I. In other words, a man i′ ∈ I is only

able to manipulate his own utilities {ai′,j}j∈J∪{0}. One way to satisfy these conditions is to

define ai′,j′ as the number of women j ∈ J ∪ {0} such that j′ ≥i′ j for every man i′ ∈ I and

woman j′ ∈ J ∪ {0}, and to define bi′,j′ as the number of men i ∈ I ∪ {0} such that i′ ≥j′ i

for every man i′ ∈ I ∪ {0} and woman j′ ∈ J .

Intuitively, each woman has a compensation function with the same form as a buyer

in the assignment game [92]. The valuation (bi,jN + πi) that woman j assigns to man i has
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a first-order dependence on her preferences over the men and a second-order dependence

on the priorities of the men, which are used to break any ties in her preferences. From the

perspective of man i, if he highly prefers a woman j, he assigns a large exponent ai,j in the

slope of his compensation function associated with woman j, and thus expects only a small

amount of compensation if he is matched to woman j.

3.5 Pareto-Stability

In this section, we study the Pareto-stability of matchings in the stable matching

market that correspond to stable outcomes in the associated generalized assignment game.

First, in Lemmas 3.1 and 3.2, we show that individual rationality in the associated generalized

assignment game implies individual rationality in the stable matching market. Then, in

Lemma 3.3, we show that stability in the associated generalized assignment game implies

weak stability in the stable matching market. Finally, in Lemma 3.4 and Theorem 3.5, we

show that stability in the associated generalized assignment game is sufficient for Pareto-

stability in the stable matching market.

Lemma 3.1. Let (µ,u,v) be an individually rational outcome in an associated generalized

assignment game (I, J,π, N, λ, a,b). Let i ∈ I be a man and j ∈ J be a woman. Then

0 < expλ(ai,0) ≤ ui < expλ(ai,µ(i) + 1) and 0 ≤ b0,jN ≤ vj < (bµ(j),j + 1)N.

Proof. The lower bounds

ui ≥ πi expλ(ai,0) ≥ expλ(ai,0) > 0 and vj ≥ b0,jN ≥ 0

follow directly from the individual rationality of (µ,u,v). If µ(i) = 0, then the feasibility

of (µ,u,v) implies ui = πi expλ(ai,0) < expλ(ai,0 + 1). If µ(j) = 0, then the feasibility of
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(µ,u,v) implies vj = b0,jN < (b0,j + 1)N . It remains to show that the upper bounds hold

when µ(i) 6= 0 and µ(j) 6= 0. Without loss of generality, we may assume that µ(i) = j. So

the feasibility of (µ,u,v) implies

ui expλ(−ai,j)− (bi,jN + πi − vj) ≤ 0.

Since ui ≥ 0 and vj ≥ 0, we have

ui expλ(−ai,j)− (bi,jN + πi) ≤ 0 and − (bi,jN + πi − vj) ≤ 0.

Since πi < N and bi,jN + πi < λ, we have

ui expλ(−ai,j)− λ < 0 and − (bi,jN +N − vj) < 0.

Thus ui < expλ(ai,µ(i) + 1) and vj < (bµ(j),j + 1)N .

Lemma 3.2 (Individual Rationality). Let (µ,u,v) be an individually rational outcome in

the generalized assignment game (I, J,π, N, λ, a,b) associated with stable matching market

(I, J, {≥i}i∈I , {≥j}j∈J). Then µ is an individually rational matching in the stable matching

market.

Proof. Let i ∈ I be a man and j ∈ J be a woman. Then, by Lemma 3.1, we have

expλ(ai,0) < expλ(ai,µ(i) + 1) and b0,jN < (bµ(j),j + 1)N.

Thus ai,µ(i) + 1 > ai,0 and bµ(j),j + 1 > b0,j, and hence ai,µ(i) ≥ ai,0 and bµ(j),j ≥ b0,j. We

conclude that µ(i) ≥i 0 and µ(j) ≥j 0.

Lemma 3.3 (Stability). Let (µ,u,v) be a stable outcome in the generalized assignment game

(I, J,π, N, λ, a,b) associated with stable matching market (I, J, {≥i}i∈I , {≥j}j∈J). Then µ

is a weakly stable matching in the stable matching market.
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Proof. Since the outcome (µ,u,v) is individually rational in the associated generalized as-

signment game, Lemma 3.2 implies that the matching µ is individually rational in the stable

matching market. It remains to show that there is no strongly blocking pair.

For the sake of contradiction, suppose there exists a man i ∈ I and a woman j ∈ J

such that j >i µ(i) and i >j µ(j). Then ai,j ≥ ai,µ(i) + 1 and bi,j ≥ bµ(j),j + 1. Since (µ,u,v)

is a stable outcome in the associated generalized assignment game, we have

0 ≤ ui expλ(−ai,j)− (bi,jN + πi − vj)

< expλ(ai,µ(i) + 1) expλ(−ai,j)− (bi,jN + πi − (bµ(j),j + 1)N)

≤ 1− πi,

where the second inequality follows from Lemma 3.1. Thus, πi < 1, a contradiction.

Lemma 3.4. Let (µ,u,v) be a stable outcome in an associated generalized assignment game

(I, J,π, N, λ, a,b). Let µ′ be an arbitrary matching. Then∑
i∈I

(
ui expλ(−ai,µ′(i))− πi

)
≥
∑
j∈J

(
bµ′(j),jN − vj

)
.

Furthermore, the inequality is tight if and only if the outcome (µ′,u,v) is stable.

Proof. Since (µ,u,v) is a stable outcome in the associated generalized assignment game, the

following conditions hold.

(1) ui ≥ πi expλ(ai,0) for every man i ∈ I such that µ′(i) = 0.

(2) ui expλ(−ai,µ′(i)) + vµ′(i) − (bi,µ′(i)N + πi) ≥ 0 for every man i ∈ I such that µ′(i) 6= 0.

(3) vj ≥ b0,jN for every woman j ∈ J such that µ′(j) = 0.
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Hence, we have

∑
i∈I

(
ui expλ(−ai,µ′(i))− πi

)
=

∑
i∈I

µ′(i)6=0

(
ui expλ(−ai,µ′(i))− πi

)
+
∑
i∈I

µ′(i)=0

(
ui expλ(−ai,0)− πi

)

≥
∑
i∈I

µ′(i)6=0

(
ui expλ(−ai,µ′(i))− πi

)

≥
∑
i∈I

µ′(i)6=0

(
bi,µ′(i)N − vµ′(i)

)

=
∑
j∈J

µ′(j)6=0

(
bµ′(j),jN − vj

)

=
∑
j∈J

(
bµ′(j),jN − vj

)
−
∑
j∈J

µ′(j)=0

(
b0,jN − vj

)

≥
∑
j∈J

(
bµ′(j),jN − vj

)
,

where the three inequalities follow from conditions (1), (2), and (3), respectively.

Furthermore, if the outcome (µ′,u,v) is stable, then conditions (1), (2), and (3) are

all tight. Hence, the inequality in the lemma statement is also tight.

Conversely, if the inequality in the lemma statement is tight, then conditions (1), (2),

and (3) are all tight. Hence, the outcome (µ′,u,v) is feasible. So, the stability of outcome

(µ′,u,v) follows from the stability of outcome (µ,u,v).

Theorem 3.5 (Pareto-stability). Let (µ,u,v) be a stable outcome in the generalized assign-

ment game (I, J,π, N, λ, a,b) associated with stable matching market (I, J, {≥i}i∈I ,{≥j}j∈J).

Then µ is a Pareto-stable matching in the stable matching market.
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Proof. Since the outcome (µ,u,v) is stable in the associated generalized assignment game,

Lemma 3.3 implies that the matching µ is weakly stable in the stable matching market. It

remains to show that the matching µ is not Pareto-dominated.

Let µ′ be a matching of the stable matching market such that µ′ ≥I∪J µ. Then

µ′(i) ≥i µ(i) and µ′(j) ≥j µ(j) for every man i ∈ I and woman j ∈ J . Hence ai,µ′(i) ≥ ai,µ(i)

and bµ′(j),j ≥ bµ(j),j for every man i ∈ I and woman j ∈ J . Since ai,µ′(i) ≥ ai,µ(i) for every

man i ∈ I, we have∑
i∈I

(
ui expλ(−ai,µ′(i))− πi

)
≤
∑
i∈I

(
ui expλ(−ai,µ(i))− πi

)
.

Applying Lemma 3.4 to both sides, we get∑
j∈J

(
bµ′(j),jN − vj

)
≤
∑
j∈J

(
bµ(j),jN − vj

)
.

Since bµ′(j),j ≥ bµ(j),j for every woman j ∈ J , the inequalities are tight. Hence ai,µ′(i) = ai,µ(i)

and bµ′(j),j = bµ(j),j for every man i ∈ I and woman j ∈ J . Thus µ(i) ≥i µ′(i) and

µ(j) ≥j µ′(j) for every man i ∈ I and woman j ∈ J . We conclude that µ ≥I∪J µ′.

3.6 Group Strategyproofness

In this section, we study the group strategyproofness of matchings in the stable

matching market that correspond to man-optimal outcomes in the associated generalized

assignment game. First, in Lemma 3.6, we show that the utilities of the men in man-

optimal outcomes in the associated generalized assignment game reflect the utilities of the

men in the stable matching market. Then, in Theorem 3.7, we prove group strategyproofness

in the stable matching market using group strategyproofness in the associated generalized

assignment game.
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Lemma 3.6. Let (µ,u,v) be a man-optimal outcome in the generalized assignment game

(I, J,π, N, λ, a,b) associated with stable matching market (I, J, {≥i}i∈I , {≥j}j∈J). Then

expλ(ai,µ(i)) ≤ ui < expλ(ai,µ(i) + 1) for every man i ∈ I.

Proof. Since the outcome (µ,u,v) is individually rational in the associated generalized as-

signment game, Lemma 3.1 implies that ui < expλ(ai,µ(i)+1) for every man i ∈ I. It remains

only to prove the lower bound expλ(ai,µ(i)) ≤ ui for every man i ∈ I.

Let I ′ = {i ∈ I : ui < expλ(ai,µ(i))}. For the sake of contradiction, suppose I ′ is

nonempty. Let J ′ = {j ∈ J : j = µ(i) for some man i ∈ I ′}. Notice that for every man

i ∈ I ′, we have µ(i) 6= 0, for otherwise ui = πi expλ(ai,0) ≥ expλ(ai,0) by the feasibility of

(µ,u,v). Thus J ′ is nonempty. Let

J ′′ = {j ∈ J : 0 < βN + πi − vj < 1 for some man i ∈ I ′ and β ∈ Z such that β ≥ 0}.

Notice that for every man i ∈ I ′ and woman j ∈ J ′ such that j = µ(i), we have

0 < bi,jN + πi − vj < 1

because Lemma 3.1 and the definition of I ′ imply

0 < ui expλ(−ai,j) < 1,

and the feasibility and stability of (µ,u,v) imply

ui expλ(−ai,j) + vj − (bi,jN + πi) = 0.

Thus J ′ ⊆ J ′′. Also, for every woman j ∈ J ′′, we have vj 6= b0,jN by a simple non-integrality

argument.
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So, by applying Lemma 2.1 on J ′′, there exists a man i′ ∈ I and a woman j′′ ∈ J ′′

such that µ(i′) /∈ J ′′ and

ui′ expλ(−ai′,j′′) + vj′′ − (bi′,j′′N + πi′) = 0. (3.1)

Since j′′ ∈ J ′′, there exists i′′ ∈ I ′ and β′′ ∈ Z such that β′′ ≥ 0 and

0 < β′′N + πi′′ − vj′′ < 1. (3.2)

Let j′ = µ(i′). We have

ui′ =

{
(bi′,j′N + πi′ − vj′) expλ(ai′,j′) if j′ 6= 0

πi′ expλ(ai′,0) if j′ = 0
(3.3)

since (µ,u,v) is stable. We consider two cases.

Case 1: j′ = 0. Combining (3.1), (3.2), and (3.3), we get

0 < (β′′ − bi′,j′′)N + (πi′′ − πi′) + πi′ expλ(ai′,0 − ai′,j′′) < 1. (3.4)

By a simple non-integrality argument, we have ai′,0 < ai′,j′′ . Let ∆ = πi′ expλ(ai′,0 − ai′,j′′).

Since ai′,0 − ai′,j′′ ≤ −1, we have 0 < ∆ < 1. Since (3.4) implies

0 < (β′′ − bi′,j′′)N + (πi′′ − πi′) + ∆ < 1,

we have β′′ = bi′,j′′ and πi′′ = πi′ . Thus i′′ = i′ by the distinctness of π. Since i′ = i′′ ∈ I ′,

we have µ(i′) ∈ J ′ ⊆ J ′′, which is a contradiction.

Case 2: µ(i′) 6= 0. Combining (3.1), (3.2), and (3.3), we get

0 < (β′′ − bi′,j′′)N + (πi′′ − πi′) + (bi′,j′N + πi′ − vj′) expλ(ai′,j′ − ai′,j′′) < 1. (3.5)
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We consider three subcases.

Case 2.1: ai′,j′ ≤ ai′,j′′ + 1. Let ∆ = (bi′,j′N + πi′ − vj′) expλ(ai′,j′ − ai′,j′′). Then

∆ ≤ (bi′,j′N + πi′ − vj′)λ−1 ≤ (bi′,j′N + πi′ − 0)λ−1 < 1,

where the second inequality follows from Lemma 3.1. Also, (3.3) implies

∆ = ui′ expλ(−ai′,j′′) > 0,

where the inequality follows from Lemma 3.1. Hence 0 < ∆ < 1. Since (3.5) implies

0 < (β′′ − bi′,j′′)N + (πi′′ − πi′) + ∆ < 1,

we have β′′ = bi′,j′′ and πi′′ = πi′ . So, i′′ = i′ by the distinctness of π. Since i′ = i′′ ∈ I ′, we

have µ(i′) ∈ J ′ ⊆ J ′′, which is a contradiction.

Case 2.2: ai′,j′ = ai′,j′′ . Substituting into (3.5), we get

0 < (β′′ − bi′,j′′ + bi′,j′)N + πi′′ − vj′ < 1. (3.6)

This shows that

β′′ − bi′,j′′ + bi′,j′ ≤ −1, (3.7)

for otherwise µ(i′) = j′ ∈ J ′′. Combining (3.7) with the lower bound in (3.6), we get

0 ≤ −N + πi′′ − vj′ < −vj′ ,

which contradicts Lemma 3.1.
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Case 2.3: ai′,j′ ≥ ai′,j′′ + 1. The upper bound in (3.5) gives

bi′,j′N + πi′ − vj′ < ((bi′,j′′ − β′′)N + πi′ − πi′′ + 1) expλ(ai′,j′′ − ai′,j′)

≤ ((bi′,j′′ − 0)N + πi′ − 1 + 1) expλ(−1)

= (bi′,j′′N + πi′)λ
−1

< 1.

This shows that

bi′,j′N + πi′ − vj′ < 0, (3.8)

for otherwise µ(i′) = j′ ∈ J ′′. Combining (3.8) with (3.3), we get

ui′ expλ(−ai′,j′) < 0,

which contradicts Lemma 3.1.

Since the compensation received by a man i ∈ I matched with a woman µ(i) 6= 0

is given by ui expλ(−ai,µ(i)), Lemma 3.6 implies that the amount of compensation in man-

optimal outcomes is at least 1 and at most λ. In fact, no woman is willing to pay more than

λ under any individual rational outcome.

Theorem 3.7 (Group strategyproofness). If a mechanism produces matchings that corre-

spond to man-optimal outcomes of the generalized assignment game associated with the stable

matching markets, then it is Pareto-stable and group strategyproof for the men.

Proof. We have shown Pareto-stability in the stable matching market in Theorem 3.5. It

remains only to show group strategyproofness.
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Let (I, J, {≥i}i∈I , {≥j}j∈J) and (I, J, {≥′i}i∈I , {≥j}j∈J) be stable matching markets

where {≥i}i∈I and {≥′i}i∈I are different preference profiles. Let (I, J,π, N, λ, a,b) and

(I, J,π, N, λ, a′,b) be the generalized assignment games associated with the stable match-

ing markets (I, J, {≥i}i∈I , {≥j}j∈J) and (I, J, {≥′i}i∈I , {≥j}j∈J), respectively. Let (µ,u,v)

and (µ′,u′,v′) be man-optimal outcomes of the associated generalized assignment games

(I, J,π, N, λ, a,b) and (I, J,π, N, λ, a′,b), respectively.

Consider I ′ = {i ∈ I : the preference relations ≥i and ≥′i are different}. By The-

orem 2.2, there exists a man i′ ∈ I ′ such that µ′(i′) 6= 0 implies ui′ expλ(−ai′,µ′(i′)) ≥

u′i′ expλ(−a′i′,µ′(i′)). It suffices to show that µ(i′) ≥i′ µ′(i′). We consider two cases.

Case 1: µ′(i′) = 0. Then individual rationality of µ implies µ(i′) ≥i′ 0 = µ′(i′).

Case 2: µ′(i′) 6= 0. Then

expλ(ai′,µ(i′) + 1) > ui′

≥ u′i′

expλ(a
′
i′,µ′(i′))

expλ(ai′,µ′(i′))

≥ expλ(ai′,µ′(i′)),

where the first and third inequalities follow from Lemma 3.6. This shows that ai′,µ(i′) + 1 >

ai′,µ′(i′). Hence ai′,µ(i′) ≥ ai′,µ′(i′), and we conclude that µ(i′) ≥i′ µ′(i′).

The implementation of our group strategyproof Pareto-stable mechanism amounts to

computing a man-optimal outcome for the associated generalized assignment game. Since all

utility functions in the associated generalized assignment game are linear functions, we can

perform this computation using the algorithm of Dütting et al. [24], which was developed

for multi-item auctions. If we model each woman j as a non-dummy item in the multi-item
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auction with price given by utility vj, then the utility function of each man on each non-

dummy item is a linear function of the price with a negative slope. Using the algorithm of

Dütting et al., we can compute a man-optimal outcome using O(n5) arithmetic operations,

where n is the total number of agents. Since poly(n) precision is sufficient, our mechanism

admits a polynomial-time implementation.

For the purpose of solving the stable matching problem, it is actually sufficient for

a mechanism to produce the matching without the utility vectors u and v of the associated

generalized assignment game. This can be computed in O(n4) time using the equivalence of

our mechanism and a process based on iterated unit-demand auctions [18].

31



Chapter 4

Maximum Stable Matchings

In this chapter, we study the problem of finding large weakly stable matchings.

Our main result is a polynomial-time algorithm that achieves an approximation ratio of

1 + (1− 1
L

)L for maximum stable matching with one-sided ties and incomplete lists where

the lengths of the ties are at most L. Our algorithm is based on a proposal process in which

numerical priorities are adjusted according to the solution of a linear program. This result

extends the 1 + 1
e

approximation ratio for one-sided ties with unbounded lengths established

in our conference paper [63] using a variant of this algorithm.

In Section 4.1, we review the prior work related to this problem. In Section 4.2, we

present an overview of our techniques. In Section 4.3, we provide some formal definitions.

In Section 4.4, we present the linear programming formulation used by our algorithm. In

Section 4.5, we present the proposal process and the implementations of our algorithm. In

Section 4.6, we analyze the approximation ratio of our algorithm.

4.1 Related Work

In Section 4.1.1, we review the prior work on the maximum stable matching problem

where ties are allowed on both sides of the market. In Section 4.1.2, we review the prior work

for the case where ties are only allowed on one side. In Section 4.1.3, we review the prior
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work for the case where the maximum tie length is restricted. In Section 4.1.4, we mention

other special cases of maximum stable matching that have been studied in the literature.

In Section 4.1.5, we mention recent work on strategic issues associated with approximation

algorithms for the maximum stable matching problem.

4.1.1 Two-Sided Ties

The problem of finding large weakly stable matchings with ties and incomplete lists

has been intensively studied. When either ties or incomplete lists are absent, all weakly

stable matchings have the same size [34, 82]. However, when both ties and incomplete lists

are present, weakly stable matchings can vary in size.

It is straightforward to see that any weakly stable matching is a 2-approximate so-

lution [68]. Using a local search approach, Iwama et al. [51] gave an algorithm with an

approximation ratio of 15
8

(= 1.875). Király [58] improved the approximation ratio to 5
3

(≈ 1.6667) by introducing the idea of promoting unmatched agents to higher priorities for

tie-breaking. The current best approximation ratio for two-sided ties and incomplete lists

is 3
2

(= 1.5), which is attained by the polynomial-time algorithm of McDermid [70], and the

linear-time algorithms of Paluch [75] and of Király [59].

For hardness results, Iwama et al. [50] were the first to prove that finding a maximum

weakly stable matching with ties and incomplete lists is NP-hard. Halldórsson et al. [37]

showed that it is NP-hard to get an approximation ratio of 1+ε. Results by Yanagisawa [97]

imply that getting an approximation ratio of 33
29
− ε (≈ 1.1379) is NP-hard, and that of 4

3
− ε

(≈ 1.3333) is UG-hard. These hardness results hold even when the maximium tie length is

two.

33



In the case of two-sided ties, Iwama et al. [52] showed that the integrality gap for

the associated linear programming formulation is at least 3L−2
2L−1 , where L is the maximum

tie length. For the case of unbounded tie lengths, this implies a lower bound of 3
2

for

the integrality gap, which coincides with the best approximation ratio known [59, 70, 75],

indicating a potential barrier to further improvements.

4.1.2 One-Sided Ties

For the case where ties appear only on one side of the market, Király [58] showed an

approximation ratio of 3
2

(= 1.5) for an algorithm based on the idea of promotion, and con-

jectured that a (3
2
−ε)-approximation is UG-hard. However, Iwama et al. [52] later presented

an algorithm based on linear programming with an approximation ratio of 25
17

(≈ 1.4706).

Dean and Jalasutram [15] improved on this approach to obtain an approximation ratio of

19
13

(≈ 1.4615). Huang and Kavitha [46] established an approximation ratio of 22
15

(≈ 1.4667)

using an algorithm based on rounding half-integral stable matchings. Subsequently, a tight

analysis [6, 80] of their algorithm established an approximation ratio of 13
9

(≈ 1.4444).

With one-sided ties, the problem of finding a maximum weakly stable matching re-

mains NP-hard [68]. Results by Halldórsson et al. [39] imply that getting an approximation

ratio of 21
19
− ε (≈ 1.1053) is NP-hard, and that achieving 5

4
− ε (≈ 1.25) is UG-hard. These

hardness results hold even when each tie has length at most two.

In the case of one-sided ties, Iwama et al. [52] showed that the integrality gap for the

associated linear programming formulation is at least 1 + (1− 1
L

)L, where L is the maximum

tie length. For the case of unbounded tie lengths, this implies a lower bound of 1 + 1
e

(≈ 1.3679) for the integrality gap. In a paper by Huang et al. [45], the integrality gap is
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claimed to be at least 3
2
, but as pointed out in our conference paper [63], their proof contains

an error.

4.1.3 Ties with Restricted Lengths

For the case of two-sided ties where the length of each tie is at most two, Halldórsson et

al. [39] presented an algorithm based on checking a small subset of tie breakers that achieves

an approximation ratio of 13
7

(≈ 1.8571). For the same special case, the randomized algorithm

of Halldórsson et al. [38] gives an expected approximation ratio of 7
4

(= 1.75). Huang and

Kavitha [46] established an approximation ratio of 10
7

(≈ 1.4286) using the approach of

rounding half-integral stable matchings. A better analysis [11] of their algorithm improved

the approximation ratio to 4
3

(≈ 1.3333), which matches the UG-hardness result [97] and the

lower bound of the integral gap [52].

For the case of one-sided ties, the deterministic algorithm of Halldórsson et al. [39]

attains an approximation ratio of 2
1+L−2 , where L is the maximum length of the ties. The ran-

domized algorithm of Halldórsson et al. [38] attains an approximation ratio of 10
7

(≈ 1.4286)

for the case of one-sided ties where the length of each tie is at most two.

4.1.4 Other Special Cases

Further known NP-hard problems include the case where ties are restricted to the

tail of the preference lists [39], where preference lists have length at most three [48], where

preferences are symmetric [4], or where preferences are derived from master lists [49]. Some

parameterized complexity results are also known [69].
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4.1.5 Strategyproofness

Recently, Hamada et al. [40] studied the strategic issues related to approximation

algorithms for the maximum stable matching problem. For the case where ties appear only

on one side, they showed that no (3
2
− ε)-approximation algorithm is strategyproof for the

side with ties, and no (2− ε)-approximation algorithm is strategyproof for the side without

ties. They also showed that these bounds are tight even for group strategyness mechanisms.

4.2 Overview of the Techniques

The key techniques for the design and analysis of our approximation algorithm are

based on linear programming. We focus on the maximum stable matching problem with one-

sided ties and incomplete lists, and obtain a polynomial-time (1 + (1− 1
L

)L)-approximation

algorithm, where L is the maximum tie length.

Our algorithm is motivated by a proposal process similar to that of Iwama et al. [52],

and that of Dean and Jalasutram [15], in which numerical priorities are adjusted according to

the linear programming solution, and are used for tie-breaking purposes. However, instead

of using their priority manipulation schemes, we introduce a method of priority incremen-

tation based on an adjustable step size parameter. We first present the description and the

properties of our process in terms of the step size parameter. We then consider the limit of

this process as the step size becomes infinitesimally small, and present a polynomial-time

algorithm which satisfies the key properties with the step size parameter set to zero.

Using these key properties, we analyze the approximation ratio of our algorithm by

directly comparing the size of our output matching with the optimal value of the linear

36



program. Although this is a standard approach to analyze approximation algorithms, it

has not been used in prior work on this problem. Prior analyses [6, 46, 58, 80] which are

not based on linear programming consider the symmetric difference of the output matching

and an unknown optimal matching, and count augmenting paths of various lengths. Such

symmetric difference arguments are also used in the analyses of Iwama et al. [52], and Dean

and Jalasutram [15], where the output matching is compared to both an unknown optimal

matching and an optimal linear programming solution. Instead of focusing on the symmetric

difference, we develop a scheme that assigns charges to the matched man-woman pairs based

on an exchange function. By applying the stability constraint and the tie-breaking criterion

to the charges incurred due to indifferences in the preferences, we show that the charges

cover the value of the linear programming solution. While none of the prior analyses directly

implies an upper bound for the integrality gap, our approach enables us to obtain an upper

bound of 1 + (1 − 1
L

)L for the integrality gap, where L is the maximum tie length. This

matches the known lower bound for the integral gap [52]. When the maximum length of

the ties is two, our result implies an approximation ratio and integrality gap of 5
4

(= 1.25),

which matches the known UG-hardness result [39].

As part of our analysis, we formulate an infinite-dimensional factor-revealing linear

program to find a good exchange function. The finite-dimensional factor-revealing linear

programming technique was introduced by Jain et al. [53], and since then a number of variants

have been proposed [29, 66, 72]. However, it is often difficult to obtain a nice closed-form

solution. For the maximum stable matching problem with one-sided ties and incomplete

lists, Dean and Jalasutram [15] obtained an approximation ratio of 19
13

by enumerating the

combinatorial structures of augmenting paths and resorting to a computer-assisted proof for
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solving a large factor-revealing linear program. In contrast, our infinite-dimensional factor-

revealing linear program is derived from our charging argument. Using numerical results

as guidance, we are able to obtain an an analytical solution for our infinite-dimensional

factor-revealing linear program.

The analysis presented in this dissertation simplifies and extends the proofs in our

conference paper [63]. Our conference paper considers only the case of one-sided ties without

any restriction on the length of the ties, and establishes an approximation ratio and inte-

grality gap of 1 + 1
e
. For one-sided ties with a small maximum length L, we show in this

dissertation an improved approximation ratio and integrality gap of 1 + (1 − 1
L

)L. In the

limit as L tends to infinity, this implies the same ratio of 1 + 1
e
. The charging argument in

the conference paper is also replaced with a new one that is more easy to understand.

4.3 Preliminary Definitions

Recall that a tie in the preference list of an agent k ∈ I ∪ J is an equivalence class

of size at least 2 with respect to the equivalence relation =k. We consider the case where

ties only appear on one side of the stable matching market. Without loss of generality, we

assume that ties only appear on the preference lists of the women in the rest of this chapter.

Moreover, we also assume that there is at least one tie in the stable matching market, for

otherwise every stable matching has the same size.

For every woman j ∈ J , we define the length of a tie in the preference list of woman j

as the size of the equivalence class corresponding to the tie. We use L to denote the maximum

length of the ties in the preference lists of the women, where 2 ≤ L ≤ |I|+ 1.
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The goal of the maximum stable matching problem is to find a maximum-cardinality

weakly stable matching for a given stable matching market. We say that a polynomial-time

algorithm is a k-approximation algorithm, or has an approximation ratio of k, where k ≥ 1,

if the algorithm produces a weakly stable matching with cardinality at least 1
k

times that

of the largest weakly stable matching. We also say that a linear program has an integrality

gap of k ≥ 1 if k is the minimum ratio such that the objective value of an optimal fractional

solution is at most k times that of an optimal integral solution.

4.4 The Linear Programming Formulation

The following linear programming formulation is based on that of Rothblum [90],

which extends that of Vande Vate [95].

maximize
∑

(i,j)∈I×J

xi,j

subject to
∑
j∈J

xi,j ≤ 1 ∀i ∈ I (C1)∑
i∈I

xi,j ≤ 1 ∀j ∈ J (C2)∑
j′∈J
j′>ij

xi,j′ +
∑
i′∈I
i′≥ji

xi′,j ≥ 1 ∀(i, j) ∈ I × J such that j >i 0 and i >j 0 (C3)

xi,j = 0 ∀(i, j) ∈ I × J such that 0 >i j or 0 >j i (C4)

xi,j ≥ 0 ∀(i, j) ∈ I × J (C5)

For the model with strict preferences and incomplete lists, it is known [90] that an integral

solution x = {xi,j}(i,j)∈I×J corresponds to the indicator variables of a weakly stable matching

if and only if x satisfies constraints (C1)–(C5). Our model allows ties to appear on the
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preference lists of the women. We also allow a woman to be indifferent between being

unmatched and being matched with some of the men. Accordingly, we provide a proof of

Lemma 4.1 for the sake of completeness.

Lemma 4.1. An integral solution x corresponds to the indicator variables of a weakly stable

matching if and only if it satisfies constraints (C1)–(C5).

Proof. Suppose x satisfies constraints (C1)–(C5). Constraints (C1), (C2), and (C5) imply

that x corresponds to a valid matching µ. Constraint (C4) implies that µ is individually

rational. To show the weak stability of µ, consider man i ∈ I and woman j ∈ J . It suffices

to show that (i, j) is not a strongly blocking pair. We may assume that j >i 0 and i >j 0,

for otherwise individual rationality implies µ(i) ≥i 0 ≥i j or µ(j) ≥j 0 ≥j i. Consider

constraint (C3) associated with (i, j). At least one of the two summations is equal to 1. If

the first summation is equal to 1, then µ(i) >i j. If the second summation is equal to 1,

then µ(j) ≥j i. Thus, µ is a weakly stable matching.

Conversely, suppose x corresponds to a weakly stable matching µ. Since µ is a valid

matching, constraints (C1), (C2), and (C5) are satisfied. Also, the individual rationality of µ

implies that constraint (C4) is satisfied. To show that constraint (C3) is satisfied, consider

(i, j) ∈ I × J such that j >i 0 and i >j 0. It suffices to show that at least one of the two

summations in constraint (C3) associated with (i, j) is equal to 1. By the weak stability

of µ, we have either µ(i) ≥i j or µ(j) ≥j i. We consider two cases.

Case 1: µ(j) ≥j i. Since µ(j) ≥j i >j 0, the second summation is equal to 1.

Case 2: i >j µ(j) and µ(i) ≥i j. Since i >j µ(j), we have (i, j) /∈ µ. Since µ(i) ≥i j

and (i, j) /∈ µ, we have µ(i) >i j. Since µ(i) >i j >i 0, the first summation is equal to 1.
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Given x which satisfies constraints (C1)–(C5), it is useful to define auxiliary variables

yi,j =
∑
j′∈J
j≥ij′

xi,j′

for every (i, j) ∈ I × (J ∪ {0}), and

zi,j =
∑
i′∈I
i>ji

′

xi′,j

for every (i, j) ∈ (I ∪ {0})× J .

Lemma 4.2. The auxiliary variables satisfy the following conditions.

(1) For every i ∈ I, we have yi,0 = 0.

(2) For every i ∈ I and j ∈ J , we have xi,j ≤ yi,j ≤ 1.

(3) For every i ∈ I and j, j′ ∈ J such that j >i j
′, we have yi,j ≥ xi,j + yi,j′.

(4) For every i, i′ ∈ I ∪ {0} and j ∈ J such that i =j i
′, we have zi,j = zi′,j.

(5) For every i ∈ I and j ∈ J such that j ≥i 0 and i ≥j 0, we have yi,j + zi,j ≤ 1.

Proof.

(1) Let i ∈ I. Then the definition of yi,0 implies

yi,0 =
∑
j′∈J
0≥ij′

xi,j′ =
∑
j′∈J
0>ij

′

xi,j′ = 0,

where the last equality follows from constraint (C4).
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(2) Let i ∈ I and j ∈ J . By the definition of yi,j, we have

yi,j =
∑
j′∈J
j≥ij′

xi,j′ ≥ xi,j,

where the inequality follows from constraint (C5). Also by the definition of yi,j, we

have

yi,j =
∑
j′∈J
j≥ij′

xi,j′ ≤
∑
j′∈J

xi,j′ ≤ 1,

where the first inequality follows from constraint (C5), and the second inequality follows

from constraint (C1).

(3) Let i ∈ I and j, j′ ∈ J such that j >i j
′. Then the definitions of yi,j and yi,j′ imply

yi,j =
∑
j′′∈J
j≥ij′′

xi,j′′ ≥ xi,j +
∑
j′′∈J
j′≥ij′′

xi,j′′ = xi,j′ + yi,j′ .

(4) Let i, i′ ∈ I ∪ {0} and j ∈ J such that i =j i
′. Then the definitions of zi,j and zi,j′

imply

zi,j =
∑
i′′∈I
i>ji

′′

xi′′,j =
∑
i′′∈I
i′>ji′′

xi′′,j = zi′,j,

where the second equality follows from i =j i
′.

(5) Let (i, j) ∈ I × J such that j ≥i 0 and i ≥j 0. We consider two cases.

Case 1: i =j 0. Then the definition of zi,j implies

zi,j =
∑
i′∈I
i>ji

′

xi′,j =
∑
i′∈I
0>ji

′

xi′,j = 0 ≤ 1− yi,j,
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where the second equality follows from i =j 0, the third equality follows from con-

straint (C4), and the last inequality follows from part (2).

Case 2: i >j 0. Since j ∈ J and j ≥i 0, we have j >i 0. Since j >i 0 and i >j 0,

constraints (C1)–(C3) imply

0 ≤
(

1−
∑
j∈J

xi,j

)
+
(

1−
∑
i∈I

xi,j

)
+
(
−1 +

∑
j′∈J
j′>ij

xi,j′ +
∑
i′∈I
i′≥ji

xi′,j

)

= 1−
∑
j′∈J
j≥ij′

xi,j′ −
∑
i′∈I
i>ji

′

xi′,j

= 1− yi,j − zi,j,

where the last equality follows from the definitions of yi,j and zi,j.

4.5 The Algorithm

In Section 4.5.1, we present a proposal process along with some key properties in

terms of a step size parameter. In Section 4.5.2, we present a polynomial-time algorithm to

simulate this process with an infinitesimally small step size. In Section 4.5.3, we present some

properties of the loop body of our algorithm. In Section 4.5.4, we show that our algorithm

satisfies the key properties. In Section 4.5.5, we present an alternative implementation of

our algorithm.

4.5.1 A Proposal Process with Priorities

Our proposal process with priorities takes a stable matching market and a step size

parameter η > 0 as input, and produces a weakly stable matching µ as output. In the

preprocessing phase, we compute an optimal fractional solution x to the associated linear
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program. Then, in the initialization phase, we assign the empty matching to µ and each

man i is assigned a priority pi equal to 0. For each man i, we also maintain a set Si of

women that is initialized to the empty set. We use the set Si to store the women to whom

man i must propose before his priority pi is increased by η. After that, the process enters

the proposal phase and proceeds iteratively.

In each iteration, we pick an unmatched man i with priority pi < 1 + η. If the set Si

is empty, we increment his priority pi by η and then update Si to the set

{j ∈ J : j ≥i 0 and pi ≥ 1− yi,j}.

Otherwise, the man i that we pick has a non-empty set Si of women. Let j denote the most

preferred woman of man i in Si. We remove j from Si and man i proposes to woman j. When

woman j receives the proposal from man i, she tentatively accepts him if she is currently

unmatched and he is acceptable to her. Otherwise, if woman j is currently matched to

another man i′, she tentatively accepts her preferred choice between men i and i′, and

rejects the other. In the event of a tie, she compares the current priorities pi and pi′ of the

men and accepts the one with higher priority. (If the priorities of i and i′ are equal, she

breaks the tie arbitrarily.) If man i is tentatively accepted by woman j, the matching µ is

updated accordingly.

When every unmatched man i has priority pi ≥ 1 + η, the process terminates and

outputs the final matching µ.

Our process is similar to that of Iwama et al. [52], and that of Dean and Jalasu-

tram [15], which also use a proposal scheme with priorities. In particular, the way that we

populate the set Si with a subset of women by referring to the linear programming solution is
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based on their methods. The major difference is that, in our process, priorities only increase

by a small step size η, whereas in their algorithms, the priorities may increase by a possibly

larger amount, essentially to ensure that a new woman is added to Si. As in their algorithms,

for every woman j, the sequence of tentative partners µ(j) of woman j satisfies a natural

monotonicity property. Woman j is initially unmatched, and becomes matched the first time

she receives a proposal from a man who is acceptable to her. In each subsequent iteration,

she either keeps her current partner or gets a weakly preferred partner. Furthermore, if

she is indifferent between her new partner and her old partner, then the new partner has a

weakly larger priority. When the process terminates, the following properties hold, which

are analogous to properties satisfied by the algorithms of Iwama et al. [52] and Dean and

Jalasutram [15].

(P1) Let (i, j) ∈ µ. Then j ≥i 0 and i ≥j 0.

(P2) Let i ∈ I be a man and j ∈ J be a woman such that j ≥i µ(i) and i ≥j 0. Then

µ(j) 6= 0 and µ(j) ≥j i.

(P3) Let i ∈ I be a man. Then 1− yi,µ(i) ≤ pi ≤ 1 + 2η.

(P4) Let i ∈ I be a man and j ∈ J be a woman such that j ≥i 0 and i ≥j 0. Suppose

pi − η > 1 − yi,j. Then µ(j) 6= 0 and µ(j) ≥j i. Furthermore, if µ(j) =j i, then

pµ(j) ≥ pi − η.

For (P1), it is easy to see that man i proposes to woman j only if she is acceptable

to him, and woman j accepts a proposal from man i only if he is acceptable to her. For

(P2), if man i weakly prefers woman j to µ(i) and is acceptable to woman j, then man i has
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proposed to woman j. Thus the monotonicity property implies that µ(j) 6= 0 and µ(j) ≥j i.

For (P3), it is easy to see that the priority pi of man i lies within the specified range when

he proposes to woman µ(i). For (P4), if man i and woman j satisfy the stated assumptions,

then man i proposed to woman j when his priority was equal to pi−η, and this proposal was

eventually rejected. Immediately after this proposal was rejected, woman j was matched

with a man i′ such that i′ 6= i and i′ ≥j i. The monotonicity property implies that µ(j) 6= 0

and µ(j) ≥j i′ ≥j i. Furthermore, if µ(j) =j i, then µ(j) =j i
′ =j i. Since i′ =j i, the

priority of man i′ was at least pi − η when the aforementioned proposal was rejected. Since

µ(j) =j i
′, the monotonicity property implies that pµ(j) ≥ pi − η.

4.5.2 A Polynomial-Time Implementation

The proposal process with priorities of Section 4.5.1 depends on a step size parameter

η > 0. To obtain a good approximation ratio, we would like the step size parameter η to be

small. However, the running time of a naive implementation grows in proportion to η−1. We

can imagine that if we take an infinitesimally small step size, then (P1)–(P4) can be satisfied

with η = 0.

Our algorithm is motivated by the idea of simulating the process of Section 4.5.1

with an infinitesimally small step size. We maintain for every man i ∈ I a priority pi and

a pointer `i ∈ J ∪ {0} into the preference list of man i. For every man i ∈ I and woman

j ∈ J , we think of man i as having proposed to woman j if and only if j >i `i and j ≥i 0.

Given ` = {`i}i∈I and j ∈ J , we define

Ij(`) = {i ∈ I : j >i `i and j ≥i 0}

as the set of all men i who have proposed to woman j. Given ` = {`i}i∈I , we define G(`) as
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the bipartite graph with vertex set I ∪ J and edge set

E(`) = {(i, j) ∈ I × J : i ∈ Ij(`) and i ≥j i′ for every i′ ∈ Ij(`) ∪ {0}}.

Given ` and µ, we say that a (possibly zero-length) path π in G(`) is µ-alternating if it

alternates between edges not in µ and edges in µ. We say that a µ-alternating path π

is oriented from k to k′ if no edge in π ∩ µ is incident to vertex k. The details of the

implementation are given in Algorithm 4.1.

Algorithm 4.1 Maximum stable matching implemented with alternating paths

1: compute an optimal fractional solution x to the associated linear program
2: for every (i, j) ∈ I× (J ∪{0}), let w(i, j) = 1−yi,j, where yi,j is defined as in Section 4.4
3: initialize µ to the empty matching
4: for every man i ∈ I, initialize `i to the most preferred j ∈ J ∪ {0} with respect to ≥i
5: for every man i ∈ I, initialize pi to w(i, `i)
6: while there exists a man i ∈ I such that µ(i) = 0 and `i >i 0 do
7: let i0 be such a man, and let j0 denote the woman `i0
8: update `i0 to the most preferred j ∈ {j′ ∈ J : j0 >i0 j

′} ∪ {0} with respect to ≥i0
9: if µ(j0) = 0 and i0 ≥j0 0 then

10: update µ to µ ∪ {(i0, j0)}
11: else

12: let i1 =

{
µ(j0) if i0 >j0 µ(j0) or (i0 =j0 µ(j0) and pi0 > pµ(j0))

i0 otherwise

13: let µ0 = (µ ∪ {(i0, j0)}) \ {(i1, j0)}
14: let I0 denote {i ∈ I : i is reachable from i1 via a µ0-alternating path in G(`)}
15: let i2 be a man in I0 such that w(i2, `i2) = mini∈I0 w(i, `i)
16: let π0 be a µ0-alternating path from i1 to i2 in G(`)
17: update pi to max(pi, w(i2, `i2)) for each man i in I0
18: update µ to the symmetric difference µ0 ⊕ π0
19: end if
20: end while
21: return matching µ

It is straightforward to prove that throughout any execution of Algorithm 4.1, the
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program variable µ corresponds to a matching. Likewise, where it is defined, the program

variable µ0 corresponds to a matching. Accordingly, throughout our analysis, we assume

that µ and µ0 are matchings.

4.5.3 The Loop Body of the Algorithm

In the subsection, we analyze the loop body of Algorithm 4.1. It is convenient to

define the following predicates.

Q1(`): for every i ∈ I , we have `i ≥i 0.

Q2(`, µ): µ is a matching of G(`) such that for every i ∈ I and j ∈ J , if i ∈ Ij(`) and

i ≥j 0, then µ(j) 6= 0.

Q3(`,p): for every i ∈ I, we have pi ≤ w(i, `i).

Q4(`, µ,p): for every i ∈ I such that µ(i) = 0, we have pi = w(i, `i).

Q5(`,p): for every i ∈ I and j ∈ J such that j >i `i, we have w(i, j) ≤ pi.

Q6(`, µ,p): for every i, i′ ∈ I and j ∈ J such that (i, j) ∈ E(`) and µ(i′) = j, we have

pi ≤ pi′ .

Q(`, µ,p): all of Q1(`), Q2(`, µ), Q3(`,p), Q4(`, µ,p), Q5(`,p), and Q6(`, µ,p) hold.

Consider the loop body of Algorithm 4.1. Throughout the rest of this subsection, we let `−,

µ−, and p− denote the values of `, µ, and p before the iteration such that Q(`−, µ−,p−)

and the loop condition are satisfied. Also, we also let `+, µ+, p+ denote the values of `, µ,

and p after the iteration.
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Lemma 4.3. For every i ∈ I, we have `+i ≥i 0.

Proof. The only line in the loop body that modifies ` is line 8, which updates `i0 . The

definition of i0 implies that `−i0 >i0 0. It follows that `+i0 ≥i0 0 holds.

The following lemma characterizes how E(`) changes in a single iteration of the loop

of Algorithm 4.1. We omit the proof, which is straightforward but tedious.

Lemma 4.4. The following conditions hold.

(1) For every j ∈ J , we have µ−(j) ≥j 0.

(2) If i0 <j0 µ
−(j0), then E(`+) = E(`−).

(3) If µ−(j0) = 0 and i0 ≥j0 0, then E(`+) = E(`−) ∪ {(i0, j0)}.

(4) If µ−(j0) 6= 0 and i0 =j0 µ
−(j0), then E(`+) = E(`−) ∪ {(i0, j0)}.

(5) If µ−(j0) 6= 0 and i0 >j0 µ
−(j0), then E(`+) = {(i, j) ∈ E(`−) : j 6= j0} ∪ {(i0, j0)}.

Lemma 4.5. Condition Q2(`
+, µ+) holds. Furthermore, if µ−(j0) 6= 0 or 0 >j0 i0, then

Q2(`
+, µ0) holds.

Proof. Since Q2(`
−, µ−) holds, we know that µ− is a matching of G(`−). Let i ∈ I and j ∈ J

be such that i ∈ Ij(`+) and i ≥j 0.

Case 1: µ−(j0) = 0 and i0 ≥j0 0. Then µ+ = µ− ∪ {(i0, j0)}. Since µ−(j0) = 0,

i0 ≥j0 0, andQ2(`
−, µ−) holds, part (3) of Lemma 4.4 implies that E(`+) = E(`−)∪{(i0, j0)}.

Since µ− is a matching of G(`−), µ−(i0) = 0, µ−(j0) = 0, E(`+) = E(`−) ∪ {(i0, j0}, and
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µ+ = µ− ∪ {(i0, j0)}, we find that µ+ is a matching of G(`+). To establish that Q2(`
+, µ0)

holds, it remains to prove that µ+(j) 6= 0.

Case 1.1: j 6= j0. Then Ij(`
+) = Ij(`

−), and hence i ∈ Ij(`
−). Since i ∈ Ij(`

−),

i ≥j 0, and Q2(`
−, µ−) holds, we have µ−(j) 6= 0. Since µ+ = µ− ∪ {(i0, j0)} and j 6= j0, we

have µ+(j) = µ−(j). Since µ+(j) = µ−(j) and µ−(j) 6= 0, we have µ+(j) 6= 0.

Case 1.2: j = j0. Since µ+ = µ− ∪ {(i0, j0)}, µ+ is a matching of G(`+), and j = j0,

we deduce that µ+(j) = i0 6= 0.

Case 2: µ−(j0) 6= 0 or 0 >j0 i0. We need to prove that Q2(`
+, µ0) and Q2(`

+, µ+)

hold. We begin by establishing two useful claims.

The first claim is that µ0 is a matching of G(`+) that matches the same set of women

as µ−. To prove this claim, we consider three cases.

(a) i0 <j0 µ
−(j0). Then i1 = i0 and part (2) of Lemma 4.4 implies E(`+) = E(`−). Since

i1 = i0, we have µ0 = µ−. Since µ0 = µ−, E(`+) = E(`−), and µ− is a matching of

G(`−), the claim follows.

(b) i0 =j0 µ
−(j0). Then part (4) of Lemma 4.4 implies E(`+) = E(`−) ∪ {(i0, j0)}. Since

µ0 = (µ− ∪ {(i0, j0)}) \ {(i1, j0)}, E(`+) = E(`−) ∪ {(i0, j0)}, and µ− is a matching of

G(`−), the claim follows.

(c) i0 >j0 µ
−(j0). Then i1 6= i0 and part (5) of Lemma 4.4 implies E(`+) = {(i, j) ∈

E(`−) : j 6= j0} ∪ {(i0, j0)}. Since µ0 = (µ− ∪ {(i0, j0)}) \ {(i1, j0)}, E(`+) = {(i, j) ∈

E(`−) : j 6= j0} ∪ {(i0, j0)}, and µ− is a matching of G(`−), the claim follows.
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The second claim is that µ+ is a matching of G(`+) that matches the same set of

women as µ0. Since µ0 is a matching of G(`+) and µ+ is the symmetric difference between

µ0 and an oriented µ0-alternating path in G(`+) from i1 to i2, the second claim follows.

Given the two preceding claims, we can establish that Q2(`
+, µ0) and Q2(`

+, µ+) hold

by proving that µ−(j) 6= 0. If j = j0, the latter inequality follows from the Case 2 condition.

Now suppose that j 6= j0. Then Ij(`
+) = Ij(`

−), and hence i ∈ Ij(`−). Since i ∈ Ij(`−),

i ≥j 0, and Q2(`
−, µ−) holds, we have µ−(j) 6= 0.

Lemma 4.6. For every i ∈ I, we have p+i ≤ w(i, `+i ).

Proof. Let i ∈ I. We consider two cases.

Case 1: p+i = p−i . Since Q3(`
−,p−) holds, we have p−i ≤ w(i, `−i ). Line 8 of Algo-

rithm 4.1 implies w(i, `−i ) ≤ w(i, `+i ). Thus p+i = p−i ≤ w(i, `−i ) ≤ w(i, `+i ).

Case 2: p+i 6= p−i . Then line 17 of Algorithm 4.1 implies i ∈ I0 and p+i = w(i2, `
+
i2

).

Since i ∈ I0, line 15 of Algorithm 4.1 implies w(i2, `
+
i2

) ≤ w(i, `+i ). Thus p+i = w(i2, `
+
i2

) ≤

w(i, `+i ).

Lemma 4.7. For every i ∈ I such that µ+(i) = 0, we have p+i = w(i, `+i ).

Proof. Let i ∈ I be such that µ+(i) = 0. Then Lemma 4.6 implies that p+i ≤ w(i, `+i ). It

remains to show that p+i ≥ w(i, `+i ). We consider two cases.

Case 1: µ−(j0) = 0 and i0 ≥j0 0. Then p+i = p−i . Since µ+(i) = 0, line 10 of

Algorithm 4.1 implies i 6= i0 and µ−(i) = 0. Since µ−(i) = 0, condition Q4(`
−, µ−,p−)

implies p−i = w(i, `−i ). Since i 6= i0, line 8 of Algorithm 4.1 implies `+i = `−i . Thus p+i =

p−i = w(i, `−i ) = w(i, `+i ).
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Case 2: µ−(j0) 6= 0 or 0 >j0 i0. We consider two subcases.

Case 2.1: i = i2. Then line 15 of Algorithm 4.1 implies i2 ∈ I0. Since i = i2 ∈ I0,

line 17 of Algorithm 4.1 implies p+i ≥ w(i, `+i ).

Case 2.2: i 6= i2. Since µ+(i) = 0, i 6= i2, and {i′ ∈ I : µ+(i′) 6= 0} = ({i′ ∈ I : µ−(i′) 6=

0} ∪ {i0}) \ {i2}, we deduce that i 6= i0 and µ−(i) = 0. Line 17 of Algorithm 4.1 implies

p+i ≥ p−i . Since µ−(i) = 0, condition Q4(`
−, µ−,p−) implies p−i = w(i, `−i ). Since i 6= i0,

line 8 of Algorithm 4.1 implies `+i = `−i . Thus p+i ≥ p−i = w(i, `−i ) = w(i, `+i ).

Lemma 4.8. For every i ∈ I and j ∈ J such that j >i `
+
i , we have w(i, j) ≤ p+i .

Proof. Let i ∈ I and j ∈ J be such that j >i `
+
i . Line 17 of Algorithm 4.1 implies p+i ≥ p−i .

We consider two cases.

Case 1: j >i `
−
i . Then Q5(`

−,p−) implies p−i ≥ w(i, j). Thus p+i ≥ p−i ≥ w(i, j).

Case 2: `−i ≥i j. Since `−i ≥i j >i `
+
i , line 8 of Algorithm 4.1 implies i = i0

and j = `−i . Since i = i0, line 7 of Algorithm 4.1 implies µ−(i) = 0. Since µ−(i) = 0,

condition Q4(`
−, µ−,p−) implies p−i = w(i, `−i ). Thus p+i ≥ p−i = w(i, `−i ) = w(i, j).

Lemma 4.9. Suppose that µ−(j0) 6= 0 or 0 >j0 i0. Then the following conditions hold.

(1) For every i, i′ ∈ I and j ∈ J such that (i, j) ∈ E(`+) and µ0(i
′) = j, we have p−i ≤ p−i′ .

(2) For every i, i′ ∈ I and j ∈ J such that (i, j) ∈ E(`+) and µ0(i
′) = j, we have p+i ≤ p+i′ .

(3) For every i ∈ I on path π0, we have p+i = w(i2, `
+
i2

).

(4) For every i, i′ ∈ I and j ∈ J such that (i, j) ∈ E(`+) and µ+(i′) = j, we have p+i ≤ p+i′ .
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Proof.

(1) Let i, i′ ∈ I and j ∈ J be such that (i, j) ∈ E(`+) and µ0(i
′) = j. We consider two

cases.

Case 1: j 6= j0. Since j 6= j0, we have µ−(j) = µ0(j) = i′. In addition, Lemma 4.4 im-

plies that (i, j) ∈ E(`−). Since µ−(j) = i′ and (i, j) ∈ E(`−), condition Q6(`
−, µ−,p−)

implies p−i ≤ p−i′ .

Case 2: j = j0. Thus i′ = µ0(j0). Let i′′ ∈ I denote µ−(j0). We consider two subcases.

Case 2.1: i 6= i0. Since i 6= i0, Lemma 4.4 implies that (i, j0) ∈ E(`−). Since (i, j0) ∈

E(`−), condition Q6(`
−, µ−,p−) implies p−i ≤ p−i′′ . Since i 6= i0 and (i, j0) ∈ E(`+),

Lemma 4.4 implies that i ≥j0 i0. Since i ≥j0 i0, lines 12 and 13 of Algorithm 4.1 imply

that p−i′′ ≤ p−i′ . Thus p−i ≤ p−i′′ ≤ p−i′ .

Case 2.2: i = i0. Since (i0, j0) ∈ E(`+), we have i0 ≥j0 i′′. Since i0 ≥j0 i′′, lines 12

and 13 of Algorithm 4.1 imply that p−i0 ≤ p−i′ .

(2) Let i, i′ ∈ I and j ∈ J be such that (i, j) ∈ E(`+) and µ0(i
′) = j. We consider two

cases.

Case 1: p+i = p−i . Then line 17 of Algorithm 4.1 implies p+i′ ≥ p−i′ . Part (1) implies

p−i′ ≥ p−i . Thus p+i′ ≥ p−i′ ≥ p−i = p+i .

Case 2: p+i 6= p−i . Then line 17 of Algorithm 4.1 implies i ∈ I0 and p+i = w(i2, `
+
i2

). Since

i ∈ I0, line 14 of Algorithm 4.1 implies there exists an oriented µ0-alternating path in

G(`+) from i1 to i. Since (i, j) ∈ E(`+) and µ0(i
′) = j, there exists an oriented µ0-

alternating path in G(`+) from i to i′. Hence there exists an an oriented µ0-alternating
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path in G(`+) from i1 to i′. So the line 14 of Algorithm 4.1 implies i′ ∈ I0. Since

i′ ∈ I0, line 17 of Algorithm 4.1 implies p+i′ ≥ w(i2, `
+
i2

). Thus p+i′ ≥ w(i2, `
+
i2

) = p+i .

(3) Let i1 = i′1, . . . , i
′
s = i2 denote the sequence of men on path π0. By part (1), we have

p−i′t
≤ p−i′t+1

for 1 ≤ t < s. It follows that p−i ≤ p−i2 for every man i on path π0. Since

Q3(`
−,p−) holds, we have p−i2 ≤ w(i2, `

−
i2

) ≤ w(i2, `
+
i2

). Thus p−i ≤ w(i2, `
+
i2

) for every

man i on path π0. Since every man on path π0 belongs to I0, line 17 of Algorithm 4.1

implies that p+i = w(i2, `
+
i2

) for every man i on path π0.

(4) Let J ′ denote the set of women who are matched in µ0. Line 18 of Algorithm 4.1 ensures

that the set of women who are matched in µ+ is also J ′. Moreover, by part (3), p+µ+(j) =

p+µ0(j) for every woman j in J ′. Consequently, part (2) implies that Q6(`
+, µ+,p+)

holds.

Lemma 4.10. Let i, i′ ∈ I and j ∈ J be such that (i, j) ∈ E(`+) and µ+(i′) = j. Then

p+i ≤ p+i′ .

Proof. If µ−(j0) 6= 0 or 0 >j0 i0, then part (4) of Lemma 4.9 implies that p+i ≤ p+i′ . For the

remainder of the proof, assume that µ−(j0) = 0 and i0 ≥j0 0. Thus µ+ = µ− ∪ {(i0, j0)},

p+ = p−, and part (3) of Lemma 4.4 implies E(`+) = E(`−) ∪ {(i0, j0)}. We consider two

cases.

Case 1: j 6= j0. Since j 6= j0 and µ+ is equal to µ− ∪ {(i0, j0)}, we have µ−(j) =

µ+(j) = i′. Since (i, j) ∈ E(`+) = E(`−) ∪ {(i0, j0)} and j 6= j0, we have (i, j) ∈ E(`−).

Since (i, j) ∈ E(`−), µ−(i′) = j, and Q6(`
−, µ−,p−) holds, we have p−i ≤ p−i′ . Since p−i ≤ p−i′

and p+ = p−, we have p+i ≤ p+i′ .
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Case 2: j = j0. Since µ−(j0) = 0 and Q2(`
−, µ−) holds, we deduce that none of the

edges in E(`−) are incident on j0. Since j = j0 and none of the edges in E(`−) are incident

on j0, we have (i, j) /∈ E(`−). Since (i, j) /∈ E(`−) and (i, j) ∈ E(`+) = E(`−)∪{(i0, j0)}, we

have (i, j) = (i0, j0). Since µ+ = µ− ∪ {(i0, j0)}, we have µ+(j0) = i0. Since (i, j) = (i0, j0)

and µ+(j0) = i0, we have i′ = µ+(j) = µ+(j0) = i0 = i. Since i = i′ we have p+i = p+i′ .

Lemma 4.11. Consider the loop body of Algorithm 4.1. Let `−, µ−, and p− denote the

values of `, µ, and p at the start of the iteration. Assume that the loop condition is satisfied,

and that Q(`−, µ−,p−) holds. Let `+, µ+, and p+ denote the values of `, µ, and p at the

end of the iteration. Then Q(`+, µ+,p+) holds.

Proof. Lemma 4.3 implies that Q1(`
+) holds. Lemma 4.5 implies that Q2(`

+, µ+) holds.

Lemma 4.6 implies that Q3(`
+,p+) holds. Lemma 4.7 implies that Q4(`

+, µ+,p+) holds.

Lemma 4.8 implies that Q5(`
+,p+) holds. Lemma 4.10 implies that Q6(`

+, µ+,p+) holds.

Thus Q(`+, µ+,p+) holds.

4.5.4 Correctness of the Algorithm

Lemma 4.12. Let `, µ, and p be such that Q(`, µ,p) holds. Suppose that for every i ∈ I,

either µ(i) 6= 0 or 0 ≥i `i. Then (µ,p) satisfies (P1)–(P4) with η = 0.

Proof. We begin by proving that (P1) holds. Let (i, j) ∈ µ. Since Q2(`, µ) holds, µ is

matching of G(`). Since (i, j) ∈ µ and µ is a matching of G(`), we have (i, j) ∈ E(`). Since

(i, j) ∈ E(`), we have i ∈ Ij(`) and i ≥j 0. Since i ∈ Ij(`), we have j >i `i. Since Q1(`)

holds, we have `i ≥i 0. Since j >i `i and `i ≥i 0, we have j >i 0.
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We now prove that (P2) holds. Let i ∈ I be a man and j ∈ J be a woman such that

j ≥i µ(i) and i ≥j 0. We prove that i ∈ Ij(`) by considering two cases.

Case 1: µ(i) = 0. Then 0 ≥i `i. Since j ∈ J and j ≥i µ(i) = 0, we have j >i 0. Since

j >i 0 ≥i `i, we have i ∈ Ij(`).

Case 2: µ(i) 6= 0. Since (i, µ(i)) ∈ µ ⊆ E(`), we have i ∈ Ij(`).

Having established that i ∈ Ij(`), we now complete the proof that (P2) holds. Since

i ∈ Ij(`) and i ≥j 0, condition Q2(`, µ) implies µ(j) 6= 0. Since (µ(j), j) ∈ E(`) and

i ∈ Ij(`), the definition of E(`) implies µ(j) ≥j i.

We now prove that (P3) holds. Let i ∈ I be a man. We consider two cases.

Case 1: µ(i) = 0. Then 0 ≥i `i. Since Q1(`) holds, we have `i ≥i 0. Since 0 ≥i `i

and `i ≥i 0, we have `i = 0. Since `i = 0, we have w(i, `i) = 1 − yi,`i = 1. Since µ(i) = 0,

w(i, `i) = 1, and Q4(`, µ,p) holds, we have pi = 1.

Case 2: µ(i) 6= 0. Let j denote µ(i). Since Q2(`, µ) holds, µ is a matching of G(`).

Since µ(i) = j and µ is a matching of G(`), we have (i, j) ∈ E(`). Since (i, j) ∈ E(`), we have

i ∈ Ij(`) and hence j >i `i. Since j >i `i and Q5(`,p) holds, we have pi ≥ w(i, j) = 1− yi,j.

It remains to argue that pi ≤ 1. Since constraint (C1) holds, we have w(i, `i) ≤ 1. Since

w(i, `i) ≤ 1 and Q3(`,p) holds, we have pi ≤ 1.

It remains to prove that (P4) holds. Let i ∈ I be a man and j ∈ J be a woman such

that j ≥i 0, i ≥j 0, and pi > 1−yi,j. Since pi > 1−yi,j = w(i, j) and Q3(`,p) holds, we have

j >i `i and hence i ∈ Ij(`). Since i ∈ Ij(`), i ≥j 0, and Q2(`, µ) holds, we know that µ is a

matching of G(`) with µ(j) 6= 0. Let i′ ∈ I denote µ(j). Since µ is a matching of G(`) and

(i′, j) belongs to µ, we have (i′, j) ∈ E(`). Since (i′, j) ∈ E(`) and i ∈ Ij(`), the definition
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of E(`) implies that i′ ≥j i. It remains to prove that if i′ =j i then pi ≤ pi′ . Assume i′ =j i.

Since (i′, j) ∈ E(`), i ∈ Ij(`), and i′ =j i, the definition of E(`) implies that (i, j) ∈ E(`).

Since (i, j) ∈ E(`), µ(i′) = j, and Q6(`, µ,p) holds, we have pi ≤ pi′ .

Lemma 4.13. When Algorithm 4.1 terminates, (µ,p) satisfies (P1)–(P4) with η = 0.

Proof. It is straightforward to verify that Q(`, µ,p) holds before the first iteration of the

algorithm. So, by Lemma 4.11 and induction on the number of iterations, Q(`, µ,p) holds

when the algorithm terminates. Moreover, line 6 implies that for every i ∈ I, we have

µ(i) 6= 0 or 0 ≥i `i when the algorithm terminates. Hence Lemma 4.12 implies that (µ,p)

satisfies (P1)–(P4) with η = 0 when the algorithm terminates.

Lemma 4.14. Let µ be a matching such that (µ,p) satisfies (P1) and (P2) for some p.

Then µ is a weakly stable matching.

Proof. Since (P1) holds, µ is individually rational. To establish weak stability of µ, consider

(i, j) ∈ I × J . It suffices to show that (i, j) is not a strongly blocking pair. For the sake of

contradiction, suppose j >i µ(i) and i >j µ(j). If 0 >j i, then 0 >j i >j µ(j), contradicting

the individual rationality of µ. If i ≥j 0, then since j >i µ(i), i ≥j 0, and (P2) holds, we

deduce that µ(j) ≥j i, contradicting the assumption that i >j µ(j).

4.5.5 An Alternative Implementation

In this subsection, we present a more succinct alternative algorithm that does not

maintain a priority vector p. This alternative algorithm is implemented with weighted

matchings.
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Let us define the weight of any edge (i, j) ∈ E(`) as w(i, `i). Also we define the weight

of µ ⊆ E(`) as the total weight of all the edges in µ. We use the abbreviations MCM and

MWMCM to denote the terms maximum-cardinality matching and maximum-weight MCM,

respectively. Our algorithm iteratively updates ` and computes an MWMCM in G(`). The

details of the implementation are given in Algorithm 4.2.

Algorithm 4.2 Maximum stable matching implemented with weighted matchings

1: compute an optimal fractional solution x to the associated linear program
2: for every (i, j) ∈ I× (J ∪{0}), let w(i, j) = 1−yi,j, where yi,j is defined as in Section 4.4
3: initialize µ to the empty matching
4: for every man i ∈ I, initialize `i to the most preferred j ∈ J ∪ {0} with respect to ≥i
5: while there exists a man i ∈ I such that µ(i) = 0 and `i >i 0 do
6: let i0 be such a man, and let j0 denote the woman `i0
7: update `i0 to the most preferred j ∈ {j′ ∈ J : j0 >i0 j

′} ∪ {0} with respect to ≥i0
8: update µ to an arbitrary MWMCM of G(`)
9: end while

10: return matching µ

Lemma 4.15. Let `, µ, and p satisfy Q6(`, µ,p), let i, i′ ∈ I, and let π be an oriented

µ-alternating path in G(`) from i to i′. Then pi ≤ pi′.

Proof. If i = i′ then pi = pi′ , so we can assume that i 6= i′. Let i = i1, i2, . . . , ik = i′

denote the sequence of k > 1 men appearing on path π. Since Q6(`, µ,p) holds and π is an

oriented µ-alternating path in G(`) from i to i′, we deduce that pij ≤ pij+1
for all j such that

1 ≤ j < k. Hence pi = pi1 ≤ pik = pi′ .

Lemma 4.16. Let `, µ, and p satisfy Q2(`, µ), Q3(`,p), Q4(`, µ,p), and Q6(`, µ,p). Then

µ is an MWMCM of G(`).
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Proof. Since Q2(`, µ) holds, µ is an MCM of G(`). Let µ′ be an MWMCM of G(`). Since

µ′ is an MCM of G(`), Q2(`, µ) implies that µ and µ′ match the same set of women. Thus

µ⊕µ′ corresponds to a collection X of cycles (of positive even length) and man-to-man paths

(of positive even length). For any cycle γ in X , the edges of µ on γ match the same set of

men as the edges of µ′ on γ. Thus the total weight (in G(`)) of the edges of µ on γ is equal

to the total weight of the edges of µ′ on γ.

Now consider a man-to-man path π in X . Let the endpoints of π be i and i′, where i

is matched in µ and not in µ′, and i′ is matched in µ′ and not in µ. Since µ′ is an MWMCM

of G(`), and since µ′ ⊕ π is an MCM of G(`), we deduce that w(i, `i) ≤ w(i′, `i′). Since

µ(i′) = 0 and Q4(`, µ,p) holds, we have pi′ = w(i′, `i′). Since Q6(`, µ,p) holds and π is an

oriented µ-alternating path in G(`) from i to i′, Lemma 4.15 implies that pi ≥ pi′ . Since

Q3(`,p) holds, we have pi ≤ w(i, `i). Since pi ≥ pi′ and pi ≤ w(i, `i) ≤ w(i′, `i′) = pi′ , we

deduce that pi = w(i, `i) = w(i′, `i′) = pi′ . Thus the total weight (in G(`)) of the edges of µ

on π is equal to the total weight of the edges of µ′ on π.

The foregoing analysis of the cycles and paths in X implies that the weight of µ is

equal to that of µ′, and hence that µ is an MWMCM of G(`).

Lemma 4.17. An invariant of the Algorithm 4.1 loop is that µ is an MWMCM of G(`).

Proof. It is easy to check that µ is an MWMCM of G(`) when the Algorithm 4.1 loop is

first encountered. Hence the claim of the lemma follows by Lemmas 4.11 and 4.16.

Lemma 4.18. Let `, µ, and p satisfy Q2(`, µ), Q3(`,p), Q4(`, µ,p), and Q6(`, µ,p), and

let µ′ be an MWMCM of G(`). Then Q2(`, µ
′), Q4(`, µ

′,p), and Q6(`, µ
′,p) hold.
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Proof. Lemma 4.16 implies that µ is an MWMCM of G(`). Let J ′ denote the set of women

with nonzero degree in G(`). Since Q2(`, µ) holds, the set of women matched by µ is J ′.

Since µ′ is an MCM, we deduce that the set of women matched by µ′ is also J ′, and hence

that Q2(`, µ
′) holds. Thus µ ⊕ µ′ corresponds to a collection X of cycles (of positive even

length) and man-to-man paths (of positive even length).

Consider a cycle γ in X . Since Q6(`, µ,p) holds and there is an oriented µ-alternating

path in G(`) from i to i′ for every pair of men i and i′ on γ, Lemma 4.15 implies that pi = pi′

for all men i and i′ on γ.

Consider a path π in X . Let the endpoints of π be i and i′, where i is matched in µ and

not in µ′, and i′ is matched in µ′ and not in µ. Since Q6(`, µ,p) holds and π is an oriented

µ-alternating path in G(`) from i′ to i, there are oriented µ-alternating paths in G(`) from

i′ to i′′ and from i′′ to i for every man i′′ on π. Thus Lemma 4.15 implies that pi′ ≤ pi′′ ≤ pi

for every man i′′ on π. Since µ and µ′ are each MWMCMs, and µ⊕ π and µ′⊕ π are MCMs

of G(`), we deduce that w(i, `i) = w(i′, `i′). Since Q4(`, µ,p) holds, we have pi′ = w(i′, `i′).

Since Q3(`,p) holds, we have pi ≤ w(i, `i). Since pi ≤ w(i, `i) = w(i′, `i′) = pi′ ≤ pi, we

deduce that pi = w(i, `i) = pi′ . Since pi = w(i, `i), we conclude that Q4(`, µ
′,p) holds. Since

pi = pi′ and pi′ ≤ pi′′ ≤ pi for every man i′′ on π, we deduce that pi = pi′′ for every man i′′

on π.

The foregoing analysis of the cycles and paths in X implies that pµ(j) = pµ′(j) for

every woman j in J ′. Since Q6(`, µ,p) holds, we deduce that Q6(`, µ
′,p) holds.

We now use our results concerning Algorithm 4.1 to reason about Algorithm 4.2.

To do this, it is convenient to introduce a hybrid algorithm, which we define by modifying
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Algorithm 4.1 as follows: At the end of each iteration of the while loop, update the matching

µ to to an arbitrary MWMCM of G(`).

Lemma 4.19. Consider the loop body of the hybrid algorithm. Let `−, µ−, and p− denote

the values of `, µ, and p at the start of the iteration. Assume that the loop condition is

satisfied, and that Q(`−, µ−,p−) holds. Let `+, µ+, and p+ denote the values of `, µ, and p

at the end of the iteration. Then Q(`+, µ+,p+) holds.

Proof. Lemma 4.11 implies that Q(`, µ,p) holds just before µ is updated to an arbitrary

MWMCM of G(`). Lemma 4.16 implies that µ is an MWMCM of G(`) at this point in the

execution. Thus Lemma 4.18 implies that Q2(`
+, µ+), Q4(`

+, µ+,p+), and Q6(`
+, µ+,p+)

hold. Since Q(`, µ,p) holds just before µ is updated to an arbitrary MWMCM of G(`),

we conclude that Q1(`
+), Q3(`

+,p+), and Q5(`
+,p+) hold. Hence Q(`+, µ+,p+) holds, as

required.

The converse of the following lemma also holds, but we only need the stated direction.

Lemma 4.20. Fix an execution of Algorithm 4.2, and let T denote the number of times

the body of the loop is executed. For 0 ≤ t ≤ T , let `(t) and µ(t) denote the values of the

corresponding program variables after t iterations of the loop. Then there is a T -iteration

execution of the hybrid algorithm such that, for 0 ≤ t ≤ T , the program variables ` and µ

are equal to `(t) and µ(t), respectively, after t iterations of the loop.

Proof. Observe that Algorithm 4.2 and the hybrid algorithm are equivalent in terms of their

initialization of ` and µ, and also in terms of the set of possible updates to ` and µ associated

with any given iteration. (While the hybrid algorithm also maintains a priority vector p,
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this priority vector has no influence on the overall update applied to ` and µ in a given

iteration.) Given this observation, the claim of the lemma is straightforward to prove by

induction on t.

Lemma 4.21. When Algorithm 4.2 terminates, there exists p such that (µ,p) satisfies (P1)–

(P4) with η = 0.

Proof. Fix an execution of Algorithm 4.2, and let `∗ and µ∗ denote the final values of ` and

µ. Lemma 4.20 implies that there exists an execution of the hybrid algorithm with the same

final values of ` and µ. Fix such an execution of the hybrid algorithm, and let p∗ denote

the final value of p. It is straightforward to verify that Q(`, µ,p) holds the first time the

loop is reached in this execution of the hybrid algorithm. Thus, Lemma 4.19 implies that

Q(`∗, µ∗,p∗) holds. Moreover, line 6 implies that for every i ∈ I, we have µ∗(i) 6= 0 or

0 ≥i `∗i . Hence Lemma 4.12 implies that (µ∗,p∗) satisfies (P1)–(P4) with η = 0.

4.6 Analysis of the Approximation Ratio

In this section, we analyze the approximation ratio and the integrality gap. Our anal-

ysis applies to both Algorithm 4.1 and 4.2. Throughout this section, whenever we mention x

and µ, we are referring to their values when the algorithm terminates. Given x, we let the

auxiliary variables {yi,j}(i,j)∈I×(J∪{0}) and {zi,j}(i,j)∈(I∪{0})×J be defined as in Section 4.4. By

Lemmas 4.13 and 4.21, there exists p such that (µ,p) satisfies (P1)–(P4) with η = 0. We

fix such priority values p throughout this section.

In Section 4.6.1, we describe a charging scheme which covers the value of the linear

programming solution. In Section 4.6.2, we bound the charge incurred by each matched man-
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woman pair. In Section 4.6.3, we show that the approximation ratio is at most 1 + (1− 1
L

)L.

4.6.1 The Charging Argument

Our charging argument is based on an exchange function h : [0, 1]× [0, 1]→ R which

satisfies the following properties.

(H1) For every ξ1, ξ2 ∈ [0, 1], we have 0 = h(0, ξ2) ≤ h(ξ1, ξ2) ≤ 1.

(H2) For every ξ1, ξ2 ∈ [0, 1] such that ξ1 > ξ2, we have h(ξ1, ξ2) = 1.

(H3) The function h(ξ1, ξ2) is non-decreasing in ξ1 and non-increasing in ξ2.

(H4) For every ξ1, ξ2 ∈ [0, 1], we have

L ·
∫ ξ2

ξ2·(1−1/L)

(
1− h(ξ1, ξ)

)
dξ ≤ max(ξ2 − ξ1, 0).

Given an exchange function h that satisfies (H1)–(H4), our charging argument is as follows.

For every (i, j) ∈ I × J , we assign to man i a charge of

θi,j =

∫ xi,j

0

h(1− pi, yi,j − ξ) dξ

and to woman j a charge of

φi,j =


0 if µ(j) = 0 or i >j µ(j)

xi,j if µ(j) 6= 0 and µ(j) >j i

xi,j −
∫ xi,j

0

h(1− pµ(j), 1− zµ(j),j − ξ) dξ if µ(j) 6= 0 and µ(j) =j i

The following lemma shows that the charges are non-negative and cover the value of an

optimal solution to the linear program. We prove this using the stability constraint in the

linear program and the tie-breaking criterion of our algorithm.
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Lemma 4.22. Let i ∈ I and j ∈ J . Then θi,j and φi,j satisfy the following conditions.

(1) θi,j ≥ 0 and φi,j ≥ 0.

(2) xi,j ≤ θi,j + φi,j.

Proof.

(1) The definition of θi,j implies

θi,j =

∫ xi,j

0

h(1− pi, yi,j − ξ) dξ ≥ 0,

where the inequality follows from (H1). Also, the definition of φi,j implies

φi,j ≥ min
(

0, xi,j, xi,j −
∫ xi,j

0

h(1− pµ(j), 1− zµ(j),j − ξ) dξ
)

≥ min
(

0, xi,j, xi,j −
∫ xi,j

0

1 dξ
)

= 0,

where the second inequality follows from (H1).

(2) We consider two cases.

Case 1: yi,j ≤ 1− pi. Then (H3) implies

0 ≤
∫ xi,j

0

(
h(1− pi, yi,j − ξ)− h(1− pi, 1− pi − ξ)

)
dξ

=

∫ xi,j

0

(
h(1− pi, yi,j − ξ)− 1

)
dξ

= θi,j − xi,j

≤ θi,j + φi,j − xi,j,
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where the first equality follows from (H2), the second equality follows from the defini-

tion of θi,j, and the last inequality follows from part (1).

Case 2: yi,j > 1 − pi. We may assume that xi,j 6= 0, for otherwise part (1) implies

θi,j + φi,j ≥ 0 = xi,j. Since xi,j 6= 0, constraint (C4) implies j ≥i 0 and i ≥j 0. So (P4)

with η = 0 implies µ(j) 6= 0 and µ(j) ≥j i. We consider two subcases.

Case 2.1: µ(j) >j i. Then the definition of φi,j implies

0 = φi,j − xi,j ≤ θi,j + φi,j − xi,j,

where the inequality follows from part (1).

Case 2.2: µ(j) =j i. Then (P4) with η = 0 implies pi ≤ pµ(j). Also, since µ(j) =j i,

parts (4) and (5) of Lemma 4.2 imply zµ(j),j = zi,j ≤ 1 − yi,j. Since pi ≤ pµ(j) and

yi,j ≤ 1− zµ(j),j, (H3) implies

0 ≤
∫ xi,j

0

(
h(1− pi, yi,j − ξ)− h(1− pµ(j), 1− zµ(j),j − ξ)

)
dξ = θi,j + φi,j − xi,j,

where the equality follows from the definitions of θi,j and φi,j.

4.6.2 Bounding the Charges

To bound the approximation ratio, Lemma 4.22 implies that it is sufficient to bound

the charges. In Lemma 4.23, we derive an upper bound for the charges incurred by a man

using the strict ordering in his preferences. In Lemma 4.24, we derive an upper bound for the

charges incurred by a woman due to indifferences using the constraint on the tie length. In

Lemma 4.25, we derive an upper bound for the total charges incurred by a matched couple

by combining the results of Lemmas 4.23 and 4.24.
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Lemma 4.23. Let i ∈ I be a man. Then∑
j∈J

θi,j ≤
∫ 1

0

h(1− pi, ξ) dξ.

Proof. Let j1, . . . , j|J | ∈ J such that j|J | >i j|J |−1 >i · · · >i j1. Then part (2) of Lemma 4.2

implies yi,j|J| ≤ 1. Also parts (2) and (3) of Lemma 4.2 imply

yi,jk − xi,jk ≥

{
0 if k = 1

yi,jk−1
if 1 < k ≤ |J |

(4.1)

for every 1 ≤ k ≤ |J |. Hence the definitions of {θi,jk}1≤k≤|J | imply

θi,jk =

∫ xi,jk

0

h(1− pi, yi,jk − ξ) dξ

=

∫ yi,jk

yi,jk−xi,jk

h(1− pi, ξ) dξ

≤


∫ yi,jk

0

h(1− pi, ξ) dξ if k = 1∫ yi,jk

yi,jk−1

h(1− pi, ξ) dξ if 1 < k ≤ |J |

for every 1 ≤ k ≤ |J |, where the inequality follows from (4.1) and (H1). Thus∑
j∈J

θi,j =
∑

1≤k≤|J |

θi,jk ≤
∫ yi,j1

0

h(1− pi, ξ) dξ +
∑

1<k≤|J |

∫ yi,jk

yi,jk−1

h(1− pi, ξ) dξ

=

∫ yi,j|J|

0

h(1− pi, ξ) dξ

≤
∫ 1

0

h(1− pi, ξ) dξ,

where the last inequality follows from yi,j|J| ≤ 1 and (H1).

Lemma 4.24. Let j ∈ J be a woman such that µ(j) 6= 0. Then∑
i∈I

µ(j)=ji

φi,j ≤ max(pµ(j) − zµ(j),j, 0).
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Proof. Let

H(ξ′) =

∫ 1−zµ(j),j

1−zµ(j),j−ξ′

(
1− h(1− pµ(j), ξ)

)
dξ

for every ξ′ ∈ [0, 1]. Then (H1) and (H3) imply that H is concave and non-decreasing. Also

(H4) implies

L·H
(1− zµ(j),j

L

)
= L·

∫ 1−zµ(j),j

(1−zµ(j),j)(1−1/L)

(
1−h(1−pµ(j), ξ)

)
dξ ≤ max(pµ(j)−zµ(j),j, 0). (4.2)

Let I ′ = {i ∈ I : µ(j) =j i}. Then |I ′| ≤ L since L is the maximum tie-length. Let

i1, . . . , i|I′| ∈ I such that I ′ = {i1, . . . , i|I′|}. Let

ξk =

{
xik,j if 1 ≤ k ≤ |I ′|
0 if |I ′| < k ≤ L

for every 1 ≤ k ≤ L. Then the definition of zµ(j),j implies

1− zµ(j),j = 1−
∑
i∈I

µ(j)>ji

xi,j ≥
∑
i∈I

xi,j −
∑
i∈I

µ(j)>ji

xi,j ≥
∑
i∈I

µ(j)=ji

xi,j =
∑

1≤k≤|I′|

xik,j =
∑

1≤k≤L

ξk,

where the first inequality follows from constraint (C2), the second equality follows from

the definitions of I ′ and {ik}1≤k≤|I′|, and the third equality follows from the definitions of

{ξk}1≤k≤L. Hence the monotonicity and concavity of H imply

L ·H
(1− zµ(j),j

L

)
≥ L ·H

( 1

L

∑
1≤k≤L

ξk

)
≥
∑

1≤k≤L

H(ξk). (4.3)
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Thus the definitions of the definitions of {φi,j}i∈I imply

∑
i∈I

µ(j)=ji

φi,j =
∑
i∈I

µ(j)=ji

(
xi,j −

∫ xi,j

0

h(1− pµ(j), 1− zµ(j),j − ξ) dξ
)

=
∑
i∈I

µ(j)=ji

∫ 1−zµ(j),j

1−zµ(j),j−xi,j

(
1− h(1− pµ(j), ξ)

)
dξ

=
∑
i∈I

µ(j)=ji

H(xi,j)

=
∑

1≤k≤|I′|

H(xik,j)

=
∑

1≤k≤L

H(ξk)

≤ L ·H
(1− zµ(j),j

L

)
≤ max(pµ(j) − zµ(j),j, 0),

where the third equality follows from the definition of H, the fourth equality follows from the

definitions of I ′ and {ik}1≤k≤|I′|, the fifth equality follows from the definitions of {ξk}1≤k≤L,

the first inequality follows from (4.3), and the second inequality follows from (4.2).

Lemma 4.25. Let i ∈ I and j ∈ J ∪ {0} such that µ(i) = j. Then the following conditions

hold.

(1) If j 6= 0, then ∑
j′∈J

θi,j′ +
∑
i′∈I

φi′,j ≤ 1 +

∫ 1

1−pi
h(1− pi, ξ) dξ.

(2) If j = 0, then θi,j′ = 0 for every j′ ∈ J .
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Proof.

(1) Suppose j 6= 0. Then (P1) implies j ≥i 0 and i ≥j 0. So part (5) of Lemma 4.2 implies

zi,j ≤ 1− yi,j ≤ pi,

where the second inequality follows from (P3) with η = 0. So the definitions of

{φi′,j}i′∈I imply

∑
i′∈I

φi′,j =
∑
i′∈I

µ(j)=ji
′

φi′,j +
∑
i′∈I

µ(j)>ji
′

xi′,j ≤ max(pi − zi,j, 0) + zi,j = pi, (4.4)

where the first inequality follows from Lemma 4.24 and the definition of zi,j, and the

last equality follows from pi ≥ zi,j. Also, by Lemma 4.23, we have

∑
j′∈J

θi,j′ ≤
∫ 1

0

h(1− pi, ξ) dξ

=

∫ 1−pi

0

h(1− pi, ξ) dξ +

∫ 1

1−pi
h(1− pi, ξ) dξ

=

∫ 1−pi

0

1 dξ +

∫ 1

1−pi
h(1− pi, ξ) dξ

= 1− pi +

∫ 1

1−pi
h(1− pi, ξ) dξ, (4.5)

where the second equality follows from (H2). Combining (4.4) and (4.5) gives the

desired inequality.

(2) Suppose j = 0. Let j′ ∈ J . Since µ(i) = j = 0, (P3) with η = 0 implies

1 ≥ pi ≥ 1− yi,j = 1− yi,0 = 1,
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where the last equality follows from part (1) of Lemma 4.2. Hence the definition of

θi,j′ implies

θi,j′ =

∫ xi,j′

0

h(1− pi, yi,j′ − ξ) dξ =

∫ xi,j′

0

h(0, yi,j′ − ξ) dξ = 0,

where the second equality follows from pi = 1, and the third equality follows from

(H1).

4.6.3 The Approximation Ratio

To obtain the approximation ratio, it remains to pick a good exchange function h

satisfying (H1)–(H4) such that the right hand side of part (1) of Lemma 4.25 is small. Using

a technique similar to that presented in our conference paper [63], we can formulate this as

an infinite-dimensional factor-revealing linear program. More specifically, we can minimize

sup
ξ1∈[0,1]

∫ 1

ξ1

h(ξ1, ξ) dξ

over the set of all functions h which satisfies (H1)–(H4). Notice that the objective value

and the constraints induced by (H1)–(H4) are linear in h. However, the space of all feasible

solutions is infinite-dimensional. One possible approach to the infinite-dimensional factor-

revealing linear program is to obtaining a numerical solution via a suitable discretization.

Using the numerical results as guidance, we obtain the candidate exchange function

h(ξ1, ξ2) = max
(
{0} ∪

{
(1− 1

L
)k : k ∈ {0, 1, 2, . . . } and ξ1 > ξ2 · (1− 1

L
)k
})
. (4.6)

The following lemma provides a formal analytical proof that it satisfies (H1)–(H4) and

achieves an objective value of (1− 1
L

)L.

Lemma 4.26. Let h be the function defined by (4.6). Then the following conditions hold.
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(1) The function h satisfies (H1)–(H4).

(2) For every ξ1 ∈ [0, 1], we have

∫ 1

ξ1

h(ξ1, ξ) dξ ≤
(

1− 1

L

)L
.

Proof.

(1) It is straightforward to see that (H1)–(H3) hold by inspecting the definition of h. To

show that (H4) holds, let ξ1, ξ2 ∈ [0, 1]. We consider three cases.

Case 1: ξ2 ≤ ξ1. Then

L ·
∫ ξ2

ξ2·(1−1/L)

(
1− h(ξ1, ξ)

)
dξ = L ·

∫ ξ2

ξ2·(1−1/L)
(1− 1) dξ = 0 = max(ξ2 − ξ1, 0).

Case 2: ξ2 > ξ1 = 0. Then

L ·
∫ ξ2

ξ2·(1−1/L)

(
1− h(ξ1, ξ)

)
dξ = L ·

∫ ξ2

ξ2·(1−1/L)
(1− 0) dξ = ξ2 = max(ξ2 − ξ1, 0).

Case 3: ξ2 > ξ1 > 0. Let k ∈ {0, 1, 2, . . . } such that (1− 1
L

)k+1 < ξ1
ξ2
≤ (1− 1

L
)k. Then

L ·
∫ ξ2

(1−1/L)·ξ2

(
1− h(ξ1, ξ) dξ

)
= ξ2 − L ·

∫ ξ2

(1−1/L)·ξ2
h(ξ1, ξ) dξ

= ξ2 − L ·
∫ ξ1/(1−1/L)k

(1−1/L)·ξ2
h(ξ1, ξ) dξ − L ·

∫ ξ2

ξ1/(1−1/L)k
h(ξ1, ξ) dξ

= ξ2 − L ·
∫ ξ1/(1−1/L)k

(1−1/L)·ξ2

(
1− 1

L

)k
dξ − L ·

∫ ξ2

ξ1/(1−1/L)k

(
1− 1

L

)k+1

dξ

= ξ2 − L · (ξ1 − ξ2 · (1− 1
L

)k+1)− L · (ξ2 · (1− 1
L

)k+1 − ξ1 · (1− 1
L

))

= ξ2 − ξ1

= max(ξ2 − ξ1, 0).
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(2) Let ξ1 ∈ [0, 1]. We may assume that ξ1 > 0, for otherwise∫ 1

ξ1

h(ξ1, ξ) dξ =

∫ 1

ξ1

0 dξ = 0 ≤
(

1− 1

L

)L
.

Let k ∈ {0, 1, 2, . . . } such that (1− 1
L

)k+1 < ξ1 ≤ (1− 1
L

)k. Then∫ 1

ξ1

h(ξ1, ξ) dξ =

∫ 1

ξ1/(1−1/L)k
h(ξ1, ξ) dξ +

∑
0≤k′<k

∫ ξ1/(1−1/L)k
′+1

ξ1/(1−1/L)k′
h(ξ1, ξ) dξ

=

∫ 1

ξ1/(1−1/L)k

(
1− 1

L

)k+1

dξ +
∑

0≤k′<k

∫ ξ1/(1−1/L)k
′+1

ξ1/(1−1/L)k′

(
1− 1

L

)k′+1

dξ

=
((

1− 1

L

)k+1

− ξ1 ·
(

1− 1

L

))
+
∑

0≤k′<k

ξ1
L

= (1− 1
L

)k+1 + ξ1
L

(k − L+ 1). (4.7)

We consider three cases.

Case 1: k = L− 1. Then (4.7) implies∫ 1

ξ1

h(ξ1, ξ) dξ = (1− 1
L

)k+1 + ξ1
L

(k − L+ 1) = (1− 1
L

)L.

Case 2: k ≥ L. Then (4.7) implies∫ 1

ξ1

h(ξ1, ξ) dξ = (1− 1
L

)k+1 + ξ1
L

(k − L+ 1)

≤ (1− 1
L

)k+1 + 1
L

(k − L+ 1)(1− 1
L

)k

= (1− 1
L

)L · k
L
· (1− 1

L
)k−L

≤ (1− 1
L

)L · ek/L−1 · e(L−k)/L

= (1− 1
L

)L,

where the first inequality follows from ξ1 ≤ (1− 1
L

)k, and the second inequality follows

from ek/L−1 ≥ k
L

and e−1/L ≥ 1− 1
L

.
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Case 3: k ≤ L− 2. Then (4.7) implies∫ 1

ξ1

h(ξ1, ξ) dξ = (1− 1
L

)k+1 + ξ1
L

(k − L+ 1)

< (1− 1
L

)k+1 − 1
L

(L− k − 1)(1− 1
L

)k+1

= (1− 1
L

)L · k+1
L−1 · (1 + 1

L−1)L−k−2

≤ (1− 1
L

)L · e(k+1)/(L−1)−1 · e(L−k−2)/(L−1)

= (1− 1
L

)L,

where the first inequality follows from ξ1 > (1 − 1
L

)k+1, and the second inequality

follows from e(k+1)/(L−1)−1 ≥ k+1
L−1 and e1/(L−1) ≥ 1 + 1

L−1 .

Lemma 4.27 below is obtained by combining Lemmas 4.22, 4.25, and 4.26. Our main

results are presented in Theorem 4.28 and 4.29 and proved using Lemma 4.27.

Lemma 4.27.
∑

(i,j)∈I×J

xi,j ≤
(

1 +
(

1− 1

L

)L)
· |µ|.

Proof. Consider the charging argument with the exchange function h as defined by (4.6).

By part (1) of Lemma 4.26, the function h satisfies (H1)–(H4). Lemma 4.22 implies

∑
(i,j)∈I×J

xi,j ≤
∑

(i,j)∈I×J

(θi,j + φi,j)

=
∑

(i,j)∈µ

(∑
j′∈J

θi,j′ +
∑
i′∈I

φi′,j

)
+
∑
i∈I

µ(i)=0

∑
j∈J

θi,j +
∑
j∈J

µ(j)=0

∑
i∈I

φi,j. (4.8)
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Part (1) of Lemma 4.25 implies

∑
(i,j)∈µ

(∑
j′∈J

θi,j′ +
∑
i′∈I

φi′,j

)
≤

∑
(i,j)∈µ

(
1 +

∫ 1

1−pi
h(1− pi, ξ) dξ

)
≤

∑
(i,j)∈µ

(
1 +

(
1− 1

L

)L)
= (1 + (1− 1

L
)L) · |µ|, (4.9)

where the second inequality follows from part (2) of Lemma 4.26. Part (2) of Lemma 4.25

implies ∑
i∈I

µ(i)=0

∑
j∈J

θi,j = 0. (4.10)

The definitions of {φi,j}(i,j)∈I×J imply

∑
j∈J

µ(j)=0

∑
i∈I

φi,j = 0. (4.11)

Combining (4.8)–(4.11) gives the desired inequality.

Theorem 4.28. For the maximum stable matching problem with one-sided ties and tie length

at most L, Algorithms 4.1 and 4.2 are polynomial-time (1 + (1 − 1
L

)L)-approximation algo-

rithms.

Proof. Algorithms 4.1 and 4.2 each run in polynomial time because linear programming is

polynomial-time solvable and the number of iterations of the loop is at most |I| × |J |.

By Lemma 4.13 and 4.21, Algorithms 4.1 and 4.2 each produce a matching µ such

that (µ,p) satisfies (P1)–(P4) with η = 0. So Lemma 4.14 implies that the output µ is

a weakly stable matching. Let µ′ be a maximum weakly stable matching, and x′ be the
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indicator variables of µ′. Since µ′ is weakly stable, x′ satisfies constraints (C1)–(C5). Hence

Lemma 4.27 implies(
1 +

(
1− 1

L

)L)
· |µ| ≥

∑
(i,j)∈I×J

xi,j ≥
∑

(i,j)∈I×J

x′i,j = |µ′|,

where the second inequality follows from the optimality of x.

Theorem 4.29. For the maximum stable matching problem with one-sided ties and tie

length at most L, the integrality gap of the linear programming formulation in Section 4.4 is

1 + (1− 1
L

)L.

Proof. Consider the matching µ produced by Algorithms 4.1 or 4.2. By Lemma 4.13 and 4.21,

there exists p such that (µ,p) satisfies (P1)–(P4) with η = 0. So Lemma 4.14 implies that

the output µ is a weakly stable matching. Hence Lemma 4.27 implies(
1 +

(
1− 1

L

)L)
· |µ| ≥

∑
(i,j)∈I×J

xi,j.

Let x′ be the indicator variables of µ. Since µ is weakly stable, Lemma 4.1 implies that x′

is an integral solution satisfying constraints (C1)–(C5). Since(
1 +

(
1− 1

L

)L)
·
∑

(i,j)∈I×J

x′i,j =
(

1 +
(

1− 1

L

)L)
· |µ| ≥

∑
i∈I

∑
j∈J

xi,j,

the integrality gap is at most 1 + (1 − 1
L

)L. This upper bound matches the known lower

bound for the integrality gap [52, Section 5.1].
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Chapter 5

Concluding Remarks

We conclude this dissertation by summarizing our results and mentioning some po-

tential future work.

5.1 Group Strategyproof Pareto-Stable Mechanism

In Chapter 3, we show the existence of a group strategyproof Pareto-stable mecha-

nism for stable matching markets with indifferences. We achieve this by drawing a connection

between the stable marriage market and the generalized assignment game. It would be in-

teresting to study this connection closely to discover more similarities between these two

models. Even though we show that every stable outcome of the associated generalized as-

signment game is Pareto-stable in the stable marriage market with indifferences, it is unclear

whether every Pareto-stable matching in a stable marriage market with indifferences appears

as some stable outcome of some associated generalized assignment game. Also, even though

the Gale-Shapley algorithm is the unique stable marriage mechanism that is strategyproof

for the men when preferences are strict, our mechanisms suggest that when preferences are

weak, there are multiple Pareto-stable marriage mechanisms that are strategyproof for the

men, since there are multiple ways to convert ordinal preferences into cardinal utilities. It

remains open to characterize all such mechanisms. Another possible direction is to study
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the effects of the different ways in which ordinal preferences can be converted into cardinal

utilities.

Extension of our results to more general models can be also considered. Since some

strategyproofness results are known for the models of matching with contracts [41] and

matching in networks [42] when preferences are strict, it would be interesting to know whether

our results can be extended to these models.

5.2 Maximum Stable Matchings

In Chapter 4, we present a polynomial-time algorithm for the maximum stable match-

ing problem that achieves an approximation ratio of 1 + (1 − 1
L

)L for the case of one-sided

ties where the tie length is at most L. When L = 2, this gives an approximation ratio and

integrality gap of 5
4
, matching the known UG-hardness result [39]. For L > 2, it remains

open whether better hardness results can be obtained.

For the case of two-sided ties where the length of each tie is at most L, it is known

that the integrality gap is at least 3L−2
2L−1 . A natural question is whether our algorithm can

be generalized to handle such cases and achieve an approximation ratio that matches the

integrality gap. Generalizing our algorithm to the case of two-sided ties seems to require

a better understanding of the linear programming formulation and its relationship with

the assignment game. Perhaps we can reformulate the proposal process with priorities as

a generalized assignment game, where the use of the numerical priorities as tie-breakers is

modeled as men paying women monetary compensation to break the ties. For the case where

both the men and the women are allowed to have ties in their preferences, a potential path

towards extending our algorithm is to treat the two sides of the market symmetrically and to
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allow both men and women to pay monetary compensation to their partner for tie-breaking

purposes.
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