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In recent years, there has been an explosion in the amount of dis-

tributed data due to the ever decreasing cost of both storage and bandwidth.

There is a growing need for automatic distributed data management tech-

niques. The three main areas in dealing with distributed data that we address

in this dissertation are (1) cooperative caching, (2) compression caching, and

(3) aggregation.

First, we address cooperative caching, in which caches cooperate to lo-

cate and cache data objects. The benefits of cooperative caching have been

demonstrated by various studies. We address a hierarchical generalization of

cooperative caching in which caches are arranged as leaf nodes in a hierarchical

tree network, and we call this variant Hierarchical Cooperative Caching. We

present a deterministic hierarchical generalization of LRU that is constant-

competitive when the capacity blowup is linear in d, the depth of the cache

viii



hierarchy. Furthermore, we show that any randomized hierarchical coopera-

tive caching algorithm with capacity blowup b has competitive ratio Ω(log d
b
)

against an oblivious adversary. Thus we establish that there is no resource

competitive algorithm for the hierarchical cooperative caching problem.

Second, we address a class of compression caching problems in which a

file can be cached in multiple formats with varying sizes and encode/decode

costs. In this work, we address three problems in this class of compression

caching. The first problem assumes that the encode cost and decode cost as-

sociated with any format of a file are equal. For this problem we present a

resource competitive online algorithm. To explore the existence of resource

competitive online algorithms for compression caching with arbitrary encode

costs and decode costs, we address two other natural problems in the afore-

mentioned class, and for each of these problems, we show that there exists a

non-constant lower bound on the competitive ratio of any online algorithm,

even if the algorithm is given an arbitrary factor capacity blowup. Thus,

we establish that there is no resource competitive algorithm for compression

caching in its full generality.

Third, we address the problem of aggregation over trees with the goal

of adapting aggregation aggressiveness. Consider a distributed network with

nodes arranged in a tree, and each node having a local value. We consider

the problem of aggregating values (e.g., summing values) from all nodes to

the requesting nodes in the presence of writes. The goal is to minimize the

total number of messages exchanged. The key challenges are to define a no-
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tion of “acceptable” aggregate values, and to design algorithms with good

performance that are guaranteed to produce such values. We formalize the ac-

ceptability of aggregate values in terms of certain consistency guarantees. We

propose a lease-based aggregation mechanism, and evaluate algorithms based

on this mechanism in terms of consistency and performance. With regard to

consistency, we adapt the definitions of strict and causal consistency to ap-

ply to the aggregation problem. We show that any lease-based aggregation

algorithm provides strict consistency in sequential executions, and causal con-

sistency in concurrent executions. With regard to performance, we propose an

online lease-based aggregation algorithm, and show that, for sequential execu-

tions, the algorithm is constant competitive against any offline algorithm that

provides strict consistency. Our online lease-based aggregation algorithm is

presented in the form of a fully distributed protocol, and the aforementioned

consistency and performance results are formally established with respect to

this protocol. We also present experimental results to show that the algorithm

performs well under various workloads.
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Chapter 1

Introduction

In recent years, there has been an explosion in the amount of distributed

data due to ever decreasing cost of both storage and bandwidth. There is a

growing need for automatic distributed data management techniques. Two

fundamental issues in dealing with the distributed data are data dissemination

and data collection, which are the focus of this dissertation.

Data distribution is a key issue in distributing data from a small number

of sources. An example is the world wide web, where a single site/page is

accessed by many users. Frequently, sites become hot spots due to increased

interest. Many techniques for data distribution have been proposed in the

literature, such as Harvest [14], Squid [47], content delivery networks [1, 23]

and cooperative caching [19]. We see caching as an important component of

data dissemination. In the internet environment, caching objects closer to

the user reduces client-side latency, network congestion, and server load. We

address two problems related to caching: (1) cooperative caching, and (2)

compression caching.

Data collection is another key issue in aggregating data from distributed

sources to answer various kind of queries. We see aggregation as a basic
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abstraction for querying distributed data sources, and is useful in many large-

scale distributed applications such as system management [25, 41], network

monitoring [29], and sensor networks [32]. The main problem that we address

in this domain is called aggregation over trees.

Next we describe some of the unifying themes of this dissertation

1.1 Unifying Themes

The three main unifying themes of this dissertation are as follows. The

first theme is the pursuit of self-tuning resource allocation algorithms. The

internet is evolving rapidly, and each new generation of applications reveals a

different set of performance bottlenecks. Therefore, we need algorithms that

are fundamentally self-tuning in order to operate efficiently under a wide range

of conditions. Our goal is to design self-tuning online algorithms and analyze

these algorithms in the framework of the competitive analysis, pioneered by

Sleator and Tarjan [39]. In this framework, we compare the cost of an online

algorithm to that of an optimal offline algorithm. An online algorithm exe-

cutes each request without any knowledge of future requests. On the other

hand, an offline algorithm has knowledge of all the requests in advance. An

online algorithm is c-competitive if, for any request sequence σ, the cost in-

curred by the online algorithm in executing σ is at most c times that incurred

by an optimal offline algorithm [13]. Often the online algorithm is given extra

resources to compensate for its lack of knowledge of future requests. We refer

to an online algorithm that is constant competitive with a constant factor ad-
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vantage in resources as a resource competitive algorithm. A good competitive

ratio ensures that the online algorithm provides good performance guarantees

even in a worst case scenario.

The second theme is the design of fully distributed protocols for key

primitives used in resource allocation schemes. By spreading the resource allo-

cation overhead over all the nodes of the network, a fully distributed protocol

has the potential to improve performance, by exploiting parallelism, and to

improve fault-tolerance, by ensuring that no single node failure has a drastic

impact on the system. It is often quite challenging — or even impossible (see,

e.g., [22]) — to design and verify distributed protocols. Still, there are key

primitives in resource allocation (e.g., aggregation) for which it is important

to address this challenge.

The third theme is our emphasis on hierarchical notions. For exam-

ple, we address questions concerning caching and aggregation in hierarchical

networks. Our motivation for emphasizing such hierarchical notions is that

many large-scale distributed systems tend to be hierarchical in nature, both

for scalability and to manage complexity. We expect hierarchical notions to

be used widely in the design of scalable distributed infrastructure.

Next we describe the three main components of this dissertation. For

each of these components, relevant related work is discussed in the later chap-

ters.
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1.2 Cooperative Caching

In cooperative caching, caches cooperate in order to locate and cache

data objects. The benefits of cooperative caching have been demonstrated by

various studies [5, 14, 19]. We address a hierarchical generalization of coop-

erative caching in which caches are arranged as leaf nodes in a hierarchically

well-separated tree network [10], and we call this variant hierarchical cooper-

ative caching (HCC).

Initially, we were attracted to the HCC problem in the hope that we

would be able to design an efficient online algorithm for solving it. One could

hope to design a strategy in which recently accessed files at a cache are placed

closer to the cache in the network, and less recent files are placed further

away from the cache in the network. One natural question is whether an

efficient online algorithm, which is also resource competitive, exists for the

HCC problem.

In [31], we present a deterministic hierarchical generalization of LRU

that is constant-competitive when the capacity blowup is linear in d, the depth

of the cache hierarchy. Furthermore, we exhibit an infinite family of depth-d hi-

erarchies such that any randomized hierarchical cooperative caching algorithm

with capacity blowup b has competitive ratio Ω(log d
b
) against an oblivious ad-

versary. Thus, we establish that there is no resource competitive algorithm

for the HCC problem, and our upper and lower bounds imply a tight bound

of Θ(d) on the capacity blowup required to achieve constant competitiveness.
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1.3 Compression Caching

Various studies have demonstrated the advantages of compression in

caching [2, 4, 28]. A compressed file takes up less space, effectively increasing

the size of the fast memory. However, this increase in size comes at the cost of

extra processing needed for compression and uncompression. Consequently, it

is desirable to keep frequently accessed files uncompressed in the fast memory.

More generally, we have the problem of determining — in an online manner

— which files to keep in the fast memory, and of these, which to keep in

compressed form. The problem becomes even more complicated if there are

multiple choices of formats for compressing a file, with varying sizes and costs

(for compressing and uncompressing the file).

We define the following class of compression caching problems in which

a file can be cached in multiple formats with varying sizes and costs (for com-

pression and uncompression). We are given a cache with a specified capacity,

a certain number of compression/uncompression algorithms, and a set of files,

each of which can be cached in the uncompressed format or in a compressed

format obtained by applying one of the compression algorithms. Each com-

pressed format of a file is specified by three parameters: encode cost, decode

cost, and size. The encode cost of a particular format is defined as the cost

of creating that format from the uncompressed format of the file. The decode

cost of a format is defined as the cost of creating the uncompressed format

from the given format. The miss-penalty of a file is defined as the cost of ac-

cessing the file if it is not present in the cache. To process a request for a file,
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the file is required to be loaded into the cache in the uncompressed format.

The goal of a compression caching algorithm is to minimize the total cost of

processing a given request sequence.

Since compression caching generalizes the disk paging problem consid-

ered by Sleator and Tarjan [39] and an efficient resource competitive algorithm

(e.g., LRU) exists for the disk paging problem, it is natural to ask whether

efficient algorithms exist for compression caching, and whether resource com-

petitive results can be obtained for compression caching.

In this work, we address three problems in the class of compression

caching. The first problem assumes that the encode cost and decode cost as-

sociated with any format of a file are equal. For this problem we present a

resource competitive online algorithm. To explore the existence of resource

competitive online algorithms for compression caching with arbitrary encode

costs and decode costs, we address two other natural problems in the afore-

mentioned class, and for each of these problems, we show that there exists a

non-constant lower bound on the competitive ratio of any online algorithm,

even if the algorithm is given an arbitrary factor advantage in cache capac-

ity. Thus, we establish that there is no resource competitive algorithm for

compression caching in its full generality. This line of research also leads to

problems related to the design of an outsourced storage service (see Chapter 3

for further details).
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1.4 Aggregation

As mentioned earlier, aggregation is a basic primitive for querying and

monitoring distributed data sources, and for building many large-scale dis-

tributed applications such as system management [25, 41], file location [12],

grid resource monitoring [18], network monitoring [29], and sensor networks [32].

Many generic aggregation frameworks have been proposed in the literature [18,

37, 45]. However, all of these frameworks either use a static aggregation strat-

egy, or require applications to know the read and write access patterns in

advance. In this work, we address the problem of aggregation over trees with

the goal of adapting aggressiveness in aggregation.

In our work [36], we consider a distributed network with nodes arranged

in a tree, and each node having a local value. We formulate the aggregation

problem as the problem of aggregating values (e.g., summing values) from all

nodes to the requesting nodes in the presence of writes. The goal is to minimize

the total number of messages exchanged. The key challenges are to define a

notion of “acceptable” aggregate values, and to design algorithms with good

performance that are guaranteed to produce such values. We formalize the

acceptability of aggregate values in terms of certain consistency guarantees

similar to traditional consistency guarantees defined in the distributed shared

memory literature. The aggregation problem admits solutions that trade off

between consistency and performance. The central question is whether there

exists an algorithm that provides strong performance and good consistency

guarantees.
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We propose a lease-based aggregation mechanism, and evaluate algo-

rithms based on this mechanism in terms of consistency and performance.

With regard to consistency, we generalize the definitions of strict and causal

consistency for the aggregation problem. We show that any lease-based ag-

gregation algorithm provides strict consistency in sequential executions, and

causal consistency in concurrent executions. With regard to performance, we

propose an online lease-based aggregation algorithm, and show that, for se-

quential executions, the algorithm is constant-competitive against any offline

algorithm that provides strict consistency. We present our online lease-based

aggregation algorithm in the form of a fully distributed protocol, and formally

establish the aforementioned consistency and performance results with respect

to this protocol. Thus, we provide a positive answer to the central question

posed above.

1.5 Outline

The rest of this dissertation is organized as follows. In Chapter 2 we

describe our results on hierarchical cooperative caching. In Chapter 3 we

discuss our results on compression caching. In Chapter 4 we present our results

on aggregation over trees. Finally, we conclude in Chapter 5.
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Chapter 2

Hierarchical Cooperative Caching

2.1 Introduction

In the classic disk paging problem, which has been extensively studied,

we are given a cache and a sequence of requests for pages. When a page is

requested, we incur a miss if it is not already present in the cache. In the event

of a miss, we are required to load the requested page into the cache, which

may necessitate the eviction of another page. Our goal is to minimize the cost

of processing the request sequence, where the cost is defined as the number of

misses incurred.

In the seminal paper introducing the notion of competitive analysis,

Sleator and Tarjan [39] show that LRU (Least-Recently-Used) and several

other online deterministic caching algorithms are k
k−h+1

-competitive, where k

is the cache capacity of the online algorithm and h is the cache capacity of

the offline algorithm. They also show that k
k−h+1

is the best competitive ratio

that can be achieved by any deterministic online caching algorithm. Young [46]

proposes the Landlord algorithm that achieves competitive ratio k
k−h+1

for

a case where the files being cached have nonuniform sizes and retrieval costs.

Note that LRU and Landlord are constant-competitive assuming a constant-
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factor capacity blowup over the corresponding optimal offline algorithm.

In cooperative caching [19], a set of caches cooperate in serving requests

for each other and in making caching decisions. The benefits of cooperative

caching have been supported by several studies. For example, the Harvest

cache [14] introduces the notion of a hierarchical arrangements of caches. Har-

vest uses the Internet Cache Protocol [43] to support discovery and retrieval

of documents from other caches. The Harvest project later became the public

domain Squid cache system [42]. Adaptive Web Caching [47] builds a mesh

of overlapping multicast trees; the popular files are pulled down towards their

users from their origin servers. In local-area network environments, the xFS [5]

system utilizes workstations cooperating with each other to cache data and to

provide serverless file system services.

A cooperative caching scheme can be roughly divided into three com-

ponents: placement, which determines where to place copies of files, search,

which directs each request to an appropriate copy of the requested file, and

consistency, which maintains the desired level of consistency among the var-

ious copies of a file. In this work, we study the placement problem, and we

assume that a separate mechanism enables a cache to locate a nearest copy of

a file, free of cost, and we assume that files are read-only (i.e., copies of a file

are always consistent).

We focus on a class of networks where the cost of communication among

caches is specified by an ultrametric distance function, the precise definition

of which is given in Section 2.2. An ultrametric corresponds to a kind of hi-
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erarchical distance function. For this reason, we call the cooperative caching

problem in networks with ultrametric distance function the hierarchical coop-

erative caching (HCC) problem. This is an important problem because many

actual networks have a hierarchical or approximately hierarchical structure.

Furthermore, various caching schemes [14, 16, 42] for a wide area network sug-

gest arranging caches hierarchically. Therefore, we believe that an ultrametric

is appropriate for modeling the distance function among caches distributed

over a wide area network.

Ultrametrics are equivalent up to a constant-factor to the hierarchically

well-separated tree (HST) metrics, as introduced by Bartal [8]. Refining ear-

lier results by Bartal [8, 10], Fakcharoenphol et al. [21] have shown that any

metric space can be approximated by the HST metrics with a logarithmic dis-

tortion. Hence, many results for the HST metrics imply corresponding results

for arbitrary metric spaces, at the expense of an extra logarithmic factor.

For the case where the access distribution of each file at each cache is

fixed and known in advance, Korupolu et al. [30] provide a polynomial-time

algorithm for the HCC problem that minimizes the average retrieval cost and

does not require a capacity blowup. In addition, they provide a faster constant-

factor approximation algorithm that does not require a capacity blowup. On

the other hand, the assumption in Korupolu et al. [30] of a fixed access dis-

tribution is rather strong. Furthermore, even in applications where the access

distribution is relatively stable, keeping track of this distribution may be ex-

pensive.
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Since the HCC problem generalizes the disk paging problem mentioned

earlier, we cannot hope to achieve constant competitiveness for the HCC prob-

lem without at least a constant-factor capacity blowup. Our main motivation

in pursuing the present research has been to determine whether there exists

a constant-competitive algorithm with a constant-factor capacity blowup for

the HCC problem. Since the Landlord algorithm by Young is designed

for files with non-uniform retrieval cost, one could think of applying Land-

lord to solve the HCC problem. However, simply running Landlord at

each cache does not provide a good competitive ratio for the HCC problem,

since Landlord is not designed to exploit the benefits of cooperation among

caches. As stated in Young [46], the focus of Landlord “is on simple local

caching strategies, rather than distributed strategies in which caches cooperate

to cache pages across a network”.

In this chapter, we show that if an online algorithm is given a sufficiently

large capacity blowup, then constant competitiveness can be achieved. In

Section 2.4, we present a deterministic hierarchical generalization of LRU that

is constant-competitive when the capacity blowup is linear in d, the depth of

the cache hierarchy. We content ourselves with handling files of unit size only.

However, a hierarchical generalization of Landlord can be used to deal with

files of nonuniform sizes.

Furthermore, we exhibit an infinite family of depth-d hierarchies such

that any randomized online HCC algorithm with a capacity blowup b has

competitive ratio Ω(log d
b
) against an oblivious adversary. In particular, we
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construct a hierarchy with a sufficiently large depth and show that an oblivious

adversary can generate an arbitrarily long request sequence such that the

randomized online HCC algorithm incurs a cost Ω(log d
b
) times that of an

optimal offline algorithm. In terms of n, the number of caches, our lower bound

result shows that the competitive ratio of any randomized HCC algorithm is

Ω(log log n− log b). Our upper and lower bounds imply a tight bound of Θ(d)

on the capacity blowup required to achieve constant competitiveness.

Several paging problems (e.g., distributed paging, file migration, and

file allocation) have been considered in the literature, some of which are related

to the HCC problem (e.g., see the survey paper by Bartal [9] for the definitions

of these problems). In particular, the HCC problem can be formulated as the

read-only version of the distributed paging problem on ultrametrics. And

the HCC problem without replication is a special case of the constrained file

migration problem where the cost accessing a file at distance d is equal to

the cost of migrating the file a distance of d. Most existing work on these

problems focuses on upper bound results, and lower bound results only apply

to algorithms without a capacity blowup. For example, for the distributed

paging problem, Awerbuch et al. [6] show that, given polylog(n, ∆) capacity

blowup, there exists a deterministic polylog(n, ∆)-competitive algorithm for

general networks, where ∆ is the normalized diameter of the network. For the

constrained file migration problem, if we let m denote the total capacity of the

n caches, Bartal [8] gives a deterministic lower bound of Ω(m), a randomized

lower bound of Ω(log m), and a randomized upper bound of O((log m) log2 n).
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Applying the recent result of Fakcharoenphol et al. [21], the latter upper bound

may be improved to O((log m) log n).

The rest of this chapter is organized as follows. Section 2.2 provides

some preliminary definitions. Section 2.3 presents our lower bound. Section 2.4

presents our upper bound.

2.2 Preliminaries

Assume that we are given a set of caches, each with a specified non-

negative capacity, and a distance function h that specifies the cost of commu-

nication between any pair of caches. Such a distance function is a metric if it

is nonnegative, symmetric, satisfies the triangle inequality, and h(u, v) = 0 if

and only if u = v for all caches u and v. A metric distance function h is an

ultrametric if h(u, v) ≤ max(h(u,w), h(v, w)) for all caches u, v, and w; note

that the latter condition subsumes the triangle inequality.

We now describe another method to specify a distance function over a

set of caches. In this method, the distance function is encoded as a rooted tree

where each node of the tree has an associated nonnegative diameter. There is

a one-to-one correspondence between the set of caches and the leaves of the

tree, and each leaf has a diameter of zero. The diameter of any node is required

to be less than that of its parent. The distance between two caches is then

defined as the diameter of the least common ancestor of the corresponding

leaves. It is well-known (and easy to prove) that a distance function can be

specified by a tree in this manner if and only if it is an ultrametric. We say
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that such a tree is λ-separated, where λ > 1, if the diameter of any node is at

least λ times that of any of its children.

In all of the caching problems addressed in this chapter, we assume

that the distance function specifying the cost of communication is an ultra-

metric, and we adopt the tree view of an ultrametric discussed in the preceding

paragraph. The main advantage of this view is that it enables us to leverage

standard tree terminology in our technical arguments. Table 2.1 lists a number

of useful definitions based on tree terminology.

Notation Meaning
root the root of the tree

α.parent the parent of α, where α 6= root
α.ch children of α

α.anc the ancestors of α (including α)
α.desc the descendants of α (including α)

α.depth the depth of α, where the root is considered to be at depth 0
α.diam the diameter of α

α.caches the set of caches in the subtree rooted at α
α.cap the total capacity of the caches in α.caches

Table 2.1: Some useful notation. The variable α refers to a tree node.

In the caching problems addressed in this chapter, we refer to the ob-

jects to be cached as files. The files are assumed to be read-only, so we do not

need to deal with the issue of consistency maintenance. Each file is assumed

to be indivisible; we do not consider schemes in which a copy of a file may

be broken into fragments and spread across multiple caches. Each file f has

a specified size, denoted size(f), and penalty, denoted penalty(f). We assume
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that any file can fit in any cache, that is, the maximum file size is assumed

to be at most the minimum cache capacity. The penalty associated with a

file represents the cost per unit size to retrieve the file when it is not stored

anywhere in the tree of caches, and is assumed to exceed the diameter of the

root of the tree.

A copy is a pair (u, f) where u is a cache and f is a file with size at

most the capacity of u. A set of copies is called a placement. If (u, f) belongs

to a placement P , we say that a copy of f is placed at u in P . A placement P

is b-feasible if the total size of the files placed in any cache is at most b times

the capacity of the cache.

A caching algorithm maintains a placement. Initially, the placement is

empty. Two basic operations, delete and add, may be used to update a given

placement P . A delete operation removes a copy from P ; the algorithm incurs

no cost for such a deletion. In an add operation, a copy (u, f) is added to P .

If, prior to the add, P does not place a copy of f at any cache, then the cost of

the add is defined to be penalty(f). Otherwise, the cost is size(f) · dist(u, v),

where v is the closest cache at which a copy of f is placed. A caching algorithm

A is b-feasible if it always maintains a b-feasible placement.

A request is a pair (u, f) where u is a cache and f is a file. To process

such a request, a caching algorithm performs an arbitrary sequence of add and

delete operations, subject only to the constraint that (u, f) belongs to at least

one of the placements traversed.
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The HCC problem is to process a given sequence of requests with the

goal of minimizing cost. For any (randomized) HCC algorithm A, and any

request sequence τ , we define TA(τ) as the (expected) cost for A to process τ .

An online HCC algorithm A is c-competitive if for all request sequences τ and

1-feasible HCC algorithms B, TA(τ) ≤ c · TB(τ). (Remark: The asymptotic

bounds established in this chapter are unchanged if we allow an additive slack

in the definition of c-competitiveness, as in [13, Chapter 1].)

An HCC algorithm is b-quasifeasible if it maintains a b-feasible place-

ment before and after processing a request, and while processing a request,

removal of at most one copy of a file from its placement makes its place-

ment b-feasible. Observe that any b-quasifeasible HCC algorithm is a (b + 1)-

feasible HCC algorithm. In Section 2.4, we present a deterministic constant-

competitive O(d)-quasifeasible online HCC algorithm; by the preceding obser-

vation, our algorithm is O(d)-feasible.

An HCC algorithm is nice if on a request (u, f), it first adds a copy

(u, f) to its placement and then performs an arbitrary sequence of add and

delete operations.

Observe that a nice (b+1)-feasible HCC algorithm A can simulate any

b-feasible HCC algorithm B by first retrieving the requested copy, and then

exactly following the steps of algorithm B. In performing this simulation,

algorithm A incurs at most twice the cost of algorithm B. Hence, any b-feasible

c-competitive HCC algorithm can be converted into a nice (b + 1)-feasible 2c-

competitive HCC algorithm. (Remark: With additional care it may be possible
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to argue that the factor of 2 appearing in the preceding observation can be

eliminated.) In Section 2.3 we prove that for any nice b-feasible randomized

online HCC algorithm A, there exists a request sequence τ and a 1-quasifeasible

offline HCC algorithm B such that TA(τ) = Ω(log d
b
) ·TB(τ). By the foregoing

observation, together with that of the preceding paragraph, we can conclude

that the competitive ratio of any b-feasible randomized online HCC algorithm

is Ω(log d
b
).

2.3 The Lower Bound

In this section, we present a lower bound that holds for an arbitrary

nice randomized b-feasible online HCC algorithm ON, where b is a positive

integer. The lower bound holds for ON with respect to the trees drawn from

an infinite family of k-ary, depth d trees, parameterized by integers d and k

such that d = 8bk − 1. We find it convenient to refer to an arbitrary tree in

this family as T (d, k). Furthermore, the diameter of an internal node, α, of

tree T (d, k) is set to be λd−i−1, where λ = max(15
7
, Ω(log k)), i = α.depth, and

0 ≤ α.depth < d. Recall from the previous section that the diameter of a leaf

is 0. For any file f placed in T (d, k), penalty(f) is set to be λ ·root .diam. Note

that T (d, k) is a λ-separated tree.

The lower bound discussed above is established in Sections 2.3.2 through

2.3.8. Section 2.3.1 illustrates some of the central ideas to be used in the proof

of the lower bound by addressing a simpler problem. It is not necessary to

read Section 2.3.1 before continuing to Section 2.3.2, but it might provide some
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useful intuition.

2.3.1 A Simple Lower Bound Result

In the present section, we restrict attention to instances of the HCC

problem satisfying the following characteristics.

• There are n caches, each with capacity ℓ, where ℓ is a positive integer.

• Each pair of distinct caches are unit distance apart. Note that such a

uniform metric space is a special case of an ultrametric; it corresponds to

a one-level hierarchy in which the root (which does not have an associated

cache) is at distance 1/2 to each of its n children (the caches), and the

shortest path between any pair of caches goes through the root.

• There are two sets of ℓ unit-sized files X and Y , and every access is to

a file in X ∪ Y .

• Each file in X ∪ Y has the same associated penalty ρ = Ω(log n).

In addition, we make the following simplifying assumptions.

• The online algorithm is deterministic. We make this assumption pri-

marily for ease of presentation. The Ω(log n) lower bound presented

in this section is easily generalized to hold for randomized online algo-

rithms. The proof of our main lower bound is generalized to handle the

randomized case.
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• The capacity blowup b afforded to the online algorithm is 1. Our as-

sumption that b = 1 allows for an easy Ω(ℓ) lower bound argument,

since the adversary can restrict all accesses to a single cache, and the

results of Sleator and Tarjan [39] then imply an Ω(ℓ) lower bound. But

the results of Sleator and Tarjan also imply that if we allow b to be a

constant greater than one, this approach cannot yield a non-constant

lower bound. In fact, as we show in Section 2.4, it is possible to give

a constant-competitive algorithm for the general HCC problem if the

capacity blowup b is at least the depth of the hierarchy. Since we are

currently focusing on the special case of a constant-depth hierarchy, we

cannot hope to establish a non-constant lower bound on the competitive

ratio while allowing an arbitrary constant capacity blowup b.

Given the foregoing assumptions, we now sketch a proof of an Ω(log n)

lower bound on the competitive ratio. At the end of this section, we briefly

indicate how the ideas used to prove this Ω(log n) lower bound are generalized

in Sections 2.3.2 through 2.3.8 to establish our main lower bound for the HCC

problem.

Fix an online algorithm A. Our objective is to produce a request se-

quence σ and an offline algorithm B such that A’s cost to serve σ is Ω(log n)

times that of B. Initially, the offline algorithm B loads one of its caches with

the files in the set X, and loads each of the remaining caches with the files in

the set Y . Note that the offline algorithm B incurs Θ((ρ + n)ℓ) cost to estab-

lish this initial configuration. We generate a sufficiently long request sequence
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σ so that the cost incurred by A exceeds the initial configuration cost of B by

an Ω(log n) factor. This allows us to ignore the initial configuration cost of B

in the remainder of this proof sketch.

The offline algorithm B maintains the invariant that one cache holds

the set of files X, and every other cache holds the set of files Y . Typically,

the configuration of B does not change when a read request is processed.

Occasionally, B selects a new cache to hold X, and updates its configuration

accordingly, paying Θ(ℓ) cost. These updates to B’s configuration partition

time into epochs. Within each epoch, we ensure that the online algorithm

A’s cost to service each request is Ω(log n) times that of B. Furthermore, we

ensure that the total cost paid by A within each completed epoch is Ω(ℓ log n).

Since the cost required by B to update its configuration at the end of each

epoch is Θ(ℓ), the desired lower bound follows.

To ensure that the online algorithm A’s cost to service each request

within an epoch is Ω(log n) times that of the offline algorithm B, B maintains

a partition of the n caches into two sets U and V . At the beginning of the

epoch, all of the caches are in the set U . During the epoch, B periodically

shifts caches from U to V . The epoch ends when there is exactly one cache

remaining in U . The offline algorithm B ensures that the cache belonging to

U throughout the epoch is the one that stores X in this epoch. Consequently,

during the epoch, a request for a file in Y at a cache in V costs B nothing.

At a general point within the epoch, the next request to be appended to σ is

determined in the following manner.
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• First, if some file x in X is not stored in any of A’s caches, then a

request is generated for x at a particular fixed cache, say the cache with

the lowest numerical identifier. In this case A pays at least ρ = Ω(log n)

to service the request, while B pays at most one unit.

• Second, if there exists a file y in Y that is not stored by A at some cache

v in V , then we generate a request for y at v. In this case A pays at

least one unit to service the request, while B pays zero.

• Otherwise, there exists (by a simple averaging argument) a cache u in

U at which A stores at least |X|/|U | files belonging to the set X. The

offline algorithm shifts u from U to V , and a request is generated at u

for a file y in Y that A does not currently store at u. As argued in the

next paragraph, as long as |U | > 1, we are able to ensure that the cache

u shifted to V is not the cache that the offline algorithm B is using to

store X in the current epoch. Therefore, A pays at least one unit to

service the request, while B pays zero.

Therefore, in every case, A’s cost to service a request within an epoch is

Ω(log n) times that of B.

To maintain the invariant that U contains the cache w currently used

by the offline algorithm B to store X, w is chosen in an adversarial manner.

Informally, the online algorithm is forced to play a shell game in each epoch,

where the shells are the n caches and the online algorithm makes successive
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guesses as to the identity of w. Since the online algorithm is deterministic, w

can be chosen to be the nth guess of the online algorithm.

It remains to prove that the total cost paid by the online algorithm A

within each completed epoch is Ω(ℓ log n). As we have argued above, A stores

at least |X|/|U | files belonging to the set X in cache u when u is shifted to

V . Since no other cache is shifted to V until A stores all of Y in u, A incurs a

cost at least |X|/|U | before V grows again. Thus the total cost incurred by A

during a completed epoch is at least |X| ·
∑

2≤i≤n 1/i = Ω(ℓ log n), establishing

the desired lower bound.

In the sections that follow, we establish our main lower bound by gen-

eralizing the shell game described above to ultrametrics corresponding to com-

plete, regular trees of non-constant depth. The basic intuition is that the online

algorithm is forced to play many shell games in parallel, one corresponding to

each node of the tree. The adversarial nature of the shell games ensures that

the online algorithm generally makes incorrect guesses related to the hierarchi-

cal configuration maintained by the offline algorithm. These incorrect guesses

erode the capacity advantage b enjoyed by the online algorithm: By employing

a sufficiently deep tree, the online algorithm can be forced to devote all of the

space in certain caches to files associated with such incorrect guesses. The

next request is introduced at such a cache.
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2.3.2 Algorithm ADV

In Figure 2.1, we present an algorithm for an oblivious adversary [13,

Chapter 4], ADV, that constructs a request sequence σ of any given length N .

The following definitions are useful for developing the ADV algorithm.

• For any nonnegative integer i and positive integer j, let

g(i, j) = kd−i ·

(

i − 1

8k
+

1

4j

)

.

• For any node α, we define associated “reactivation” and “deactivation”

values α.react = g(α.depth, k) and α.deact = g(α.depth, 2k).

• We define the “activation” value of α, denoted α.act , as g(α.depth, r)

where r = |{β : β ∈ α.parent .ch : β.x = 0}|. Note that α.act is a

function of the program state, since it depends on the values of certain

program variables (i.e., β.x for all β in α.parent .ch).

• We fix d + 1 disjoint sets of unit-sized files F (i), 0 ≤ i ≤ d, such that

|F (i)| = ⌈kd−i−1⌉ for 0 ≤ i ≤ d. Each request in the request sequence σ

generated by ADV involves a file drawn from these sets.

• We define α.placed as the set of distinct files placed by ON in α.caches

after processing the request sequence given by the program variable σ.

Since ON is a randomized algorithm, α.placed is a random set.

• We define α.load as the expected value of |(∪0≤i<α.depthF (i))∩α.placed |.
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• We define α.missing as the set of all files f in F (α.depth) and Pr(f ∈

α.placed) ≤ 1
2
.

Algorithm ADV is oblivious since it constructs the request sequence

without examining the random bits used by ON during its execution. When-

ever line 18 of ADV is executed, a request is appended to σ and ON processes

this request. The main technical result to be established in this section is

that, for N sufficiently large, TON(σ) is Ω(log d
b
) times TA(σ) for an optimal

1-quasifeasible offline algorithm A.

2.3.3 Correctness of ADV

We show in this section that ADV is well-defined (i.e., π 6= root just

before line 5, π is not a leaf just before line 8, and line 14 finds a child) and

that each round terminates with the generation of a request. For the sake

of brevity, in our reasoning below, we call a predicate a global invariant if it

holds everywhere in ADV (i.e., it holds initially and it holds between any two

adjacent lines of the pseudocode in Figure 2.1).

Lemma 2.3.1. Let I1 denote that every internal node has a child with x field

equal to 0, I2 denote that π is a node, and I3 denote that π.load ≥ π.deact.

Then I1 ∧ I2 is a global invariant and I3 holds everywhere in the down loop.

Proof. The predicate I1 ∧ I2 holds initially because π = root and α.x = 0 for

all α, and I3 holds just before the down loop due to the guard of the up loop.

We next show that every line of code outside the down loop preserves I1 ∧ I2
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{initially, N ≥ 0, count = 0, root .x = root .y = root .act = g(0, k),
π = root , α.x = α.y = 0 for all α 6= root , and σ is empty}

1 while count < N do {main loop}
2 while π.load < π.deact do {up loop}
3 π.y := π.react ;
4 for every child δ of π, set both δ.x and δ.y to 0;
5 π := π.parent
6 od; {end of up loop}
7 while π.missing = ∅ do {down loop}
8 if a child δ of π satisfies δ.x > 0 ∧ δ.load ≥ δ.react then

9 π := δ
10 else

11 if π has exactly one child with x equal to 0 then

12 for every child δ of π, set both δ.x and δ.y to 0
13 fi;
14 π := a child δ of π such that δ.x = 0 ∧ δ.load ≥ δ.act ;
15 set both π.x and π.y to π.act
16 fi

17 od; {end of down loop}
18 append to σ a request for an element in π.missing

at an arbitrary cache in π.caches ;
19 count := count + 1
20 od {end of main loop}

Figure 2.1: The ADV algorithm. We remark that the y field maintained at
each node has no impact on the computation of the request sequence σ. (To
see this, note that the y field is written, but never read.) The y field has been
introduced to facilitate our analysis.
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(i.e., if I1 ∧ I2 holds before the line, then it holds after the line) and every line

of code in the down loop preserves I1 ∧ I2 ∧ I3.

Each line of code outside the down loop preserves I1 because such lines

do not assign a nonzero value to an x field. The only line that affects I2 is line

5. We observe that π 6= root just before line 5, due to the guard of the up loop

and the observation that root .load ≥ root .deact = 0. Hence, line 5 preserves

I2. It follows that every line of code outside the down loop preserves I1 ∧ I2.

In the down loop, the only line that affects I1 is 15, but I3 and the

inner if statement establish that π has at least two children with x field equal

to 0 just before line 14. Hence, if I1 ∧ I3 holds before line 15, then I1 holds

after line 15.

We now argue that for each line of code in the down loop, if I1 ∧ I2 ∧ I3

holds before execution of the line, then I2 holds after execution of the line. It

is sufficient to prove that if the assignment statement of line 14 is executed,

the RHS is well-defined (i.e., some child δ of π satisfies δ.x = 0 and δ.load ≥

δ.act). To establish the claim, first we need to show that π.depth < 8bk − 1

(i.e., π is not a leaf) just before line 8. Let us assume to the contrary that

π.depth = 8bk−1 just before line 8. (Note that I2 implies that π.depth cannot

take on a higher value.) By the guard of the down loop, the probability that

π.placed contains the lone file in F (8bk − 1) is at least 1
2
. Furthermore, I3

implies that π.load ≥ π.deact = g(8bk − 1, 2k) = b − 1
8k

. It follows that the

expected number of files stored by ON in the cache associated with the leaf π

is at least b − 1
8k

+ 1
2

> b, which is a contradiction since π.cap = 1 and ON is
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b-feasible. Hence, π.depth < 8bk − 1 just before line 8.

We now argue that if the assignment statement of line 14 is executed,

the RHS is well-defined. Let A = {α : α ∈ π.ch ∧ α.x = 0} and B = {β : β ∈

π.ch ∧ β.x > 0}. Let r denote |A| and i denote π.depth. We observe that

∑

α∈A

α.load

=
∑

α∈π.ch

α.load −
∑

β∈B

β.load

≥ π.load +
|F (i)|

2
−

∑

β∈B

β.load

≥ π.deact +
|F (i)|

2
−

∑

β∈B

β.react

= g(i, 2k) +
kd−i−1

2
−

∑

β∈B

g(i + 1, k)

= kd−i ·
i

8k
+

kd−i−1

2
− (k − r) · kd−i−1 ·

(i + 2)

8k

= r · kd−i−1 ·

(

i

8k
+

1

4r
+

1

4k

)

.

(In the derivation above, the first inequality is due to the definition of load and

the guard of the down loop, i.e, for each file f in |F (i)|, Pr(f ∈ α.placed) > 1
2
,

and the second inequality is due to I3 and the guard of the outer if statement.

The formula for |F (i)| is valid in the second equality since i < 8bk−1.) Hence,

by an averaging argument (note that r > 0 by I1), there exists a child δ of π
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such that δ.x = 0 and

δ.load

≥ kd−i−1 ·

(

i

8k
+

1

4r

)

= δ.act .

Hence, the RHS of line 14 evaluates to a node.

Recall that we wish to show that every line of code in the down loop

preserves I1 ∧ I2 ∧ I3. Thus far we have established that for each line of code

in the down loop, if I1 ∧ I2 ∧ I3 holds before execution of the line, then I1 ∧ I2

holds after execution of the line. It remains to show that for each line of code

in the down loop, if I1 ∧ I2 ∧ I3 holds before execution of line, then I3 holds

after execution of the line. The only lines in the down loop that affect I3

are 9 and 14. By I2, π is a node and by definition, α.react ≥ α.deact and

α.act ≥ α.deact for all α. Hence, if I2 ∧ I3 holds before lines 9 and 14, then I3

holds after both of these lines.

This completes our proof of the lemma. �

Lemma 2.3.2. The up loop terminates.

Proof. Every iteration of the up loop moves π to its parent, and root .load ≥

root .deact by definition. Hence, the up loop terminates. �

Lemma 2.3.3. The down loop terminates.
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Proof. Every iteration of the down loop moves π to one of its children. By

I2 of Lemma 2.3.1, π is always a well defined node. Hence, the down loop

terminates. �

Lemma 2.3.4. After generating a sequence σ of N requests, ADV terminates.

Proof. Follows from Lemmas 2.3.2 and 2.3.3. �

2.3.4 Some Properties of ADV

We first prove some properties of ADV that follow directly from its

structure. For the sake of brevity, for a property that is a global invariant, we

sometimes only state the property but omit stating that the property holds

everywhere.

Lemma 2.3.5. For all α, α.x = 0 or α.x ≥ α.react.

Proof. The claim holds initially because α.x = 0 for all α. The only line

that assigns a nonzero value to x is 15, which preserves the claim because by

definition, α.act ≥ α.react for all α. �

Lemma 2.3.6. For all α, α.y equals 0 or α.react or α.x.

Proof. The claim holds initially because α.y = 0 for all α. The only lines that

modify x are 4, 12, and 15. The only lines that modify y are 3, 4, 12, and 15.

By inspection of the code, all of these lines trivially preserve the claim. �

30



Lemma 2.3.7. Let P denote the predicate that every node in π.anc has a

positive x value, and every node that is neither in π.anc nor a child of a node

in π.anc has a zero x value. Then P is a loop invariant of the up loop, the

down loop, and the main loop.

Proof. Let X denote π.anc and let Y denote the set of nodes that are neither

in X nor children of the nodes in X.

Every iteration of the up loop moves π to its parent. To avoid confusion,

we use π to denote the old node (i.e., child) and π′ to denote the new node

(i.e., parent). An iteration of the up loop removes π from X, adds π.ch to Y ,

and sets the x value of π.ch to 0. Therefore, it preserves P .

Every iteration of the down loop moves π to one of its children. To avoid

confusion, we use π to denote the old node (i.e., parent) and π′ to denote the

new node (i.e., child). Suppose the down loop takes the first branch of the

outer if statement. Then it adds π′, which has a positive x value, to X and

removes π′.ch from Y . Hence it preserves P . Suppose the down loop takes the

second branch of the outer if statement. If line 12 is executed, P is preserved

because line 12 leaves X and Y unchanged and only changes the x value of the

nodes in neither X nor Y . Then lines 14 and 15 preserves P because they add

π′, which has a positive x value after line 15, to X and removes π′.ch from Y .

Hence, it preserves P .

The main loop preserves P because both the up loop and the down

loop preserve P . �
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Lemma 2.3.8. For all α, α.y ≤ α.x.

Proof. The claim holds initially because α.x = α.y = 0 for all α. The only

lines that modify the x or y field are 3, 4, 12, and 15. At lines 4, 12, and 15,

the x and y fields become the same value. It follows from Lemma 2.3.7 and

the guard of the up loop that just before line 3, π 6= root and π.x > 0. It then

follows from Lemmas 2.3.5 and 2.3.6 that line 3 preserves π.y ≤ π.x. �

We now introduce the notion of an active sequence to facilitate our

subsequent proofs. A sequence 〈a0, a1, . . . , ar〉, where 0 ≤ r < k, is called

i-active if aj = g(i + 1, k − j) for all 0 ≤ j ≤ r.

Lemma 2.3.9. For every internal node α, the nonzero x fields of the children

of α form an i-active sequence, where i = α.depth.

Proof. The claim holds initially because α.x = 0 for all α. The only lines that

modify the x field are 4, 12, and 15. Lines 4 and 12 preserve the claim because

the x fields of the children of π all become 0. Line 15 preserves the claim (for

π.parent) because π.x becomes π.act , which by definition equals g(i+1, k−j),

where i = π.parent .depth and j equals the number of children of π.parent that

have a positive x field. �

Lemma 2.3.10. Let P (α) denote the predicate that for all β that are not

ancestors of α, β.y ≤ β.react. Then P (π) holds initially and P (π) is a loop

invariant of the up loop, the down loop, and the main loop.

32



Proof. The predicate P (π) holds initially because π = root and α.y = 0 for

all α. The up loop preserves P (π) because every iteration first establishes

π.y = π.react and then moves π to its parent. The down loop preserves P (π)

because it does not set the y field to a nonzero value. The main loop preserves

P (π) because both the up loop and the down loop preserve P (π). �

2.3.5 Colorings

In order to facilitate the presentation of an offline algorithm in Section

2.3.6, we introduce the notion of colorings in this section and the notion of

consistent placements in the next.

A coloring of T (d, k) (recall that T (d, k) is the tree of caches) is an

assignment of one of the colors {white, black} to every node in T (d, k) so that

the following rules are observed: (1) root is white, (2) every internal white

node has exactly one black child and k−1 white children, and (3) the children

of a black node are black. A coloring is called consistent (with ADV) if for

every α, if α.x > 0, then α is white.

For any coloring C and any pair of sibling nodes α and β, we define

swapc(C,α, β) (swap coloring) as the coloring obtained from C by exchanging

the color of each node in the subtree rooted at α with that of the corresponding

node in the subtree rooted at β. (Note that the subtrees rooted at α and β

have identical structure.)
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2.3.6 Consistent Placements

A placement is colorable if there exists a coloring C such that: (1) for

each white internal node α of T (d, k), the files in F (α.depth) are stored in

(and fill) the caches associated with the unique black child of α; (2) for each

white leaf α of T (d, k), the (singleton) file in F (α.depth) is stored in (and fill)

the cache α. Note that in the preceding definition of a colorable placement,

the coloring C, if it exists, is unique. A placement is called consistent if it is

colorable and the associated coloring is consistent.

For any placement P and any pair of siblings α and β, we define

swapp(P, α, β) (swap placement) as the placement obtained from P by ex-

changing the contents of each cache in α with that of the corresponding cache

in β. (It is convenient to assume that the children of each node in T (d, k)

are ordered from left to right. This induces an overall left to right ordering

of α.caches and β.caches . For all i, the ith cache in α.caches corresponds

to the ith cache in β.caches .) Note that for any colorable placement P with

associated coloring C and any pair of sibling nodes α and β, the placement

swapp(P, α, β) is colorable, and its associated coloring is swapc(C,α, β).

2.3.7 The Offline Algorithm OFF

For every internal node α, we maintain an additional variable α.last

defined as follows. First, we partition the execution of the adversary algorithm

into epochs with respect to α. The first epoch begins at the start of the

execution. Each subsequent epoch begins when either line 4 or line 12 is
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executed with π = α. The variable α.last is updated at the start of each

epoch, when it is set to the child β of α for which line 15 is executed with

π = β furthest in the future in that epoch. (If one or more children β of α are

such that line 15 is never executed with π = β in the future, then α.last is set

to an arbitrary such child β.) Note that the variables α.last are introduced

solely for the purpose of analysis and have no impact on the execution of ADV.

At any point in the execution of ADV, the values of the last fields

determine a unique coloring, denoted by COFF, as follows: root is white and

the black child of each internal white node α is α.last .

We define a 1-quasifeasible offline algorithm OFF that maintains a

placement POFF as follows. We initialize POFF to an arbitrary consistent place-

ment with associated coloring COFF. We update POFF to swapp(POFF, α, β)

whenever line 4 or line 12 is executed, where α and β denote the values of

π.last before and after the execution of the line. Whenever line 18 is executed,

a request is generated and the algorithm OFF uses the placement POFF to

process this request. On a request (u, f), if there is not already a copy of file

f at u, OFF creates a copy (u, f) in order to process the request and then im-

mediately discards the copy. Note that the capacity constraint can be violated

at u by one unit when the copy (u, f) is created, but the capacity constraint

is satisfied before processing the next request. Hence, the placement POFF

remains the same before and after line 18, and POFF is updated only at lines

4 and 12.
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Lemma 2.3.11. Throughout the execution of ADV, POFF is colorable and has

associated coloring COFF.

Proof. Immediate from the way POFF is updated whenever a last field is up-

dated. �

Lemma 2.3.12. Execution of line 4 or line 12 preserves the consistency of

COFF.

Proof. Assume that COFF is consistent before line 4. So π is white in COFF

before line 4, because by Lemma 2.3.7, π.x is positive before line 4. By the

definition of COFF, before line 4, π.last is black. Let α be π.last before line

4, and let β be π.last after line 4. Before and after line 4, the x values of the

descendants of α are equal to 0. By Lemma 2.3.7, the x values of all proper

descendants of β are equal to 0 before and after line 4. Since β.x = 0 after line

4, the x values of all descendants of α and β are equal to 0 after line 4. Hence,

the swapp operation preserves the consistency of COFF. The same argument

applies to line 12. �

Lemma 2.3.13. Execution of line 15 preserves the consistency of COFF.

Proof. Assume that COFF is consistent before line 15. Line 14 implies that

π 6= root just before line 15. Let π′ denote π.parent . By Lemma 2.3.7, π′.x > 0

and hence π′ is white before line 15. Therefore, by construction of ADV, π′.last

is the black child of π′.
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Let t denote the start of the current epoch for π′, i.e., t is the most

recent time at which π′.last was assigned. Just after time t, the x values of

all children of π′ were equal to 0. By the definition of t, no child of π′ has

been set to 0 since time t. By Lemma 2.3.1, every internal node has at least

one child with x equal to 0. Therefore, from time t until after the execution

of line 15, at most k − 1 children of π′ have had their x value set to a nonzero

value. (Note that line 15 is the only line that sets x to a nonzero value.) Thus,

by the definition of last , π′.last .x remains 0 after the execution of line 15.

Thus, π′.last 6= π. Since π′ is white and π′.last is black in COFF, we conclude

that π is white in COFF. So COFF remains consistent even with the additional

constraint that π is required to be white. (Note that π.x is set to a positive

value by line 15.) �

Lemma 2.3.14. The placement POFF is always consistent.

Proof. Lines 4, 12, and 15 are the only lines that can affect the consistency of

COFF since they are the only lines that modify the last field or the x field of any

node. From Lemmas 2.3.12 and 2.3.13, these lines preserve the consistency of

COFF. From Lemma 2.3.11 it follows that POFF is always consistent. �

2.3.8 A Potential Function Argument

In this section, we use a potential function argument to show that ON

is Ω
(

ν
ν
′

)

-competitive, where

ν = min

(

λ

16
,
ln k

8
−

1

8

)
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and ν ′ = λ
λ−1

. Let T ′
OFF(σ) denote the total cost incurred by OFF to process

request sequence σ, except that we exclude from T ′
OFF(σ) the cost of initializing

POFF. (This initialization cost is taken into account in the proof of Theorem 1

below.) We define Φ, a potential function, as:

Φ = ν · T ′
OFF(σ) − ν ′ · TON(σ) + (2.1)

∑

α∈π.anc∧α 6=root

α.parent .diam · α.x +

∑

α/∈π.anc

α.parent .diam · (α.x − α.y + α.load)

Lemma 2.3.15. The cost incurred by swapp(P, α, β) is at most 2 · kd−i ·

α.parent .diam, where i = α.depth.

Proof. The cost incurred is the cost of exchanging the files placed in α and

β with each other, which is at most 2 · α.cap · α.parent .diam = 2 · kd−i ·

α.parent .diam. Note that α and β have the same capacity. �

Lemma 2.3.16. The predicate Φ ≤ 0 is a loop invariant of the up loop.

Proof. Every iteration of the up loop moves π to its parent. To avoid confusion,

we use π to refer to the old node (i.e., child) and we use π′ to refer to the new

node (i.e., parent). Consider the change in Φ in a single iteration of the

up loop. ON incurs no cost in the up loop. By the definition of Φ, line 3

preserves Φ. By Lemma 2.3.8, line 4 does not increase Φ. Let i = π.depth.

By Lemma 2.3.15, after the execution of line 4, OFF incurs a cost of at most
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c = 2 · kd−i−1 · π.diam to move from the current consistent placement to the

next. Thus, the total change in Φ in an iteration is at most

ν · c − π′.diam · (π.y − π.load)

≤ ν · c − π′.diam · (π.react − π.deact)

= ν · c − π′.diam · (g(i, k) − g(i, 2k))

= ν · c − π′.diam · kd−i−1 ·
1

8

≤ ν · c −
λ

16
· c

≤ 0.

(In the derivation above, the first inequality is due to the guard of the up loop

and line 3, and the second inequality is due to the assumption that T (d, k) is

λ-separated.) �

Lemma 2.3.17. The predicate Φ ≤ 0 is a loop invariant of the down loop.

Proof. Every iteration of the down loop moves π to one of its children. To

avoid confusion, we use π to refer to the old node (i.e., parent) and π′ to refer

to the new node (i.e., child). ON incurs no cost in the down loop. We consider

the following three cases.

Suppose that the outer if statement takes the first branch. In this case,

39



OFF does not incur any cost. Thus, the change in Φ is

π.diam · (π′.y − π′.load)

≤ π.diam · (π.react − π.react)

= 0,

where the inequality is due to Lemma 2.3.10 and the guard of the outer if

statement.

Suppose that the outer if statement takes the second branch and that

line 12 is not executed. In this case, OFF does not incur any cost. Thus, the

change in Φ is

π.diam · (π′.y − π′.load)

= π.diam · (π′.x − π′.load)

≤ 0,

where the equality is due to line 15 and the inequality is due to lines 14 and

15.

Suppose that the outer if statement takes the second branch and that

line 12 is executed. By Lemma 2.3.15, in this case, OFF incurs a cost of

c = 2 · kd−i−1 · π.diam, where i = π.depth. Thus, the change in Φ due to line
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12 is at most

ν · c − π.diam ·
∑

δ∈π.ch

(δ.x − δ.y)

≤ ν · c − π.diam ·
∑

δ∈π.ch

(δ.x − δ.react)

= ν · c − π.diam ·
k−2
∑

j=0

(g(i + 1, k − j) − g(i + 1, k))

= ν · c − π.diam · kd−i−1

k−2
∑

j=0

(

1

4(k − j)
−

1

4k

)

≤ ν · c −

(

ln k

8
−

1

8

)

· c

≤ 0.

(In the above derivation, δ.x and δ.y denotes the values just before the ex-

ecution of line 12, the first inequality follows from Lemma 2.3.10, the first

equality follows from Lemma 2.3.9, and the second inequality follows from the

fact that Hk−1 > ln k, where Hk−1 denotes the (k − 1)th harmonic number,

that is, Hk−1 =
∑k−1

i=1
1
i
.) By the analysis of the previous case (i.e., the outer

if statement takes the second branch but line 12 is not executed), lines 14 and

15 do not increase Φ. Thus, every iteration of the down loop preserves Φ ≤ 0.

�

Lemma 2.3.18. Lines 18 to 19 preserve Φ ≤ 0.

Proof. Let the request appended to σ in line 18 be (u, f). The guard of the

down loop ensures that f is in π.missing . Algorithm OFF incurs cost at most
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π.diam to process such a request because it stores all the files in F (π.depth)

in a child of π, and π.missing ⊆ F (π.depth).

Since ON is nice, it processes a request (u, f) in two phases as follows:

in the first phase, ON adds a copy (u, f) to its placement; in the second phase,

ON performs an arbitrary sequence of add and delete operations. If π is equal

to root , then ON incurs expected cost at least λ
2
·π.diam in the first phase since

the miss penalty associated with any file is λ · root .diam. If π is not equal to

root , then ON incurs expected cost at least 1
2
·π.parent .diam = λ

2
·π.diam in the

first phase. Thus, in either case, ON incurs expected cost at least λ
2
·π.diam in

the first phase. Let X be the set of nodes on the path from π to u, excluding

π. Note that α.load , for α ∈ X, may increase by 1 during the first phase.

The change in Φ due to the first phase of ON and due to OFF in

processing a request is at most

ν · π.diam −
ν ′ · λ · π.diam

2
+

∑

α∈X

α.parent .diam

≤ π.diam ·

(

ν −
ν ′ · λ

2

)

+ π.diam ·
∑

j≥0

λ−j

≤ π.diam ·

(

ν −
ν ′ · λ

2
+

λ

λ − 1

)

= π.diam ·

(

ν −
λ2 − 2λ

2(λ − 1)

)

≤ π.diam ·
λ

16
·

(

15 − 7λ

λ − 1

)

≤ 0,
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(In the above derivation, the second last inequality follows from ν ≤ λ
16

and

the last inequality follows from λ ≥ 15
7
.)

For analyzing the second phase of ON in processing a request, it is

convenient to view the randomized online algorithm ON as a probability dis-

tribution over a collection of deterministic online algorithms. For each such

deterministic algorithm A, we define an associated potential function ΦA as

in Equation 2.1, but with TON(σ) replaced by the cost incurred by A on σ,

denoted TA(σ), and each term α.load appearing in the second summation re-

placed by |(∪0≤i<α.depthF (i)) ∩ α.placedA|, where α.placedA denotes the set of

distinct files placed by A in α.caches after processing the request sequence σ.

We denote |(∪0≤i<α.depthF (i))∩α.placedA| by α.loadA. Note that TON(σ) is the

expected value of TA(σ) when A is chosen at random from the probability dis-

tribution associated with ON. Similarly, for any node α, α.load is the expected

value of α.loadA and Φ is the expected value of ΦA. Thus it is sufficient to

prove that for any A, each individual operation (i.e., each addition or deletion

of a file) performed by A during the second phase does not increase ΦA. For

deletions, this claim is immediate since all terms in ΦA are unchanged except

that terms of the form α.loadA may decrease by one. When a file is added,

the set of nodes with an increased loadA value form a path P from some node,

say α, to a leaf, and A incurs a cost of α.parent .diam. Let the set of nodes on

path P be Y . (Note that root does not belong to Y since root .load is always

zero.) Since the diameters of the nodes of P are λ-separated, the change in
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ΦA is at most

−ν ′ · α.parent .diam +
∑

β∈Y

β.parent .diam

≤ −ν ′ · α.parent .diam + α.parent .diam ·
∑

j≥0

λ−j

= −ν ′ · α.parent .diam +
λ

λ − 1
· α.parent .diam

= 0.

The claim of the lemma then follows. �

Lemma 2.3.19. ON is Ω
(

ν
ν′

)

-competitive.

Proof. Initially, Φ = 0. By Lemmas 2.3.16, 2.3.17, and 2.3.18, Φ ≤ 0 is

a loop invariant of the main loop. Therefore, by Lemmas 2.3.5 and 2.3.8,

TON(σ) ≥ ν
ν′ · T

′
OFF(σ) holds initially and is a loop invariant of the main loop.

Let C be the cost incurred by OFF in moving from the empty placement to

the first placement. Note that ON serves every request with a cost at least 1

(because the diameter of an internal node is at least 1). Hence, TON(σ) tends

to ∞ as N (the length of the request sequence σ) tends to ∞. Therefore, we

can ensure that TON(σ)
T ′

OFF(σ)+C
= Ω

(

ν
ν′

)

by choosing N sufficiently large. �

Theorem 1. ON is Ω
(

log d
b

)

-competitive.

Proof. Recall that λ is Ω(log k). Hence, ν = Θ(log k) and ν ′ = Θ(1). From

Lemma 2.3.19, it implies that ON is Ω(log k)-competitive. The theorem follows
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since d = 8bk − 1, that is, k = Θ(d/b). �

It is also possible to express the preceding lower bound in terms of the

number of caches n and the capacity blowup b. Since, n = kd and d = 8bk−1,

we have n = k8bk−1. Solving these equations for k (e.g., using bootstrapping),

we find that k = Θ( log n
b(log log n−log b

) and hence,

log k = Θ(log log n − log b − log(log log n − log b))

= Θ(log log n − log b).

It follows that ON is Ω(log log n − log b)-competitive.

2.4 An Upper Bound

We show in this section that, given O(d) capacity blowup, where d is

the depth of the cache hierarchy, a simple LRU-like algorithm, which we refer

to as Hierarchical LRU (HLRU), is constant-competitive with respect to an

optimal offline algorithm OPT. For the sake of simplicity, we assume that

every file has unit size and uniform miss penalty. Our result can easily be

extended to handle variable file sizes and nonuniform miss penalties using an

approach similar to Landlord [46].

2.4.1 The HLRU Algorithm

In this section we present a 2(d+1)-quasifeasible HLRU algorithm that

is constant-competitive with respect to OPT. HLRU divides every cache into

d+1 equal-sized segments numbered from 0 to d. (For generalizing our results
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to variable sized files, the segments should be contiguous. For the case of unit

sized files considered here, the segments need not be contiguous.) For a node

α, we define α.small to be the union of segment α.depth of all the caches in

α.caches , and we define α.big to be the union of β.small for all β ∈ α.desc.

For the rest of this section, we extend the definitions of a copy and a

placement (defined in Section 2.2) to internal nodes as well. A copy is a pair

(α, f) where α is a node and f is a file that is stored in α.small . A placement

refers to a set of copies. The HLRU algorithm, shown in Figure 2.2, maintains

a placement P . Note that when a copy (α, f) is added to P in line 4, file

f is added to α.small . In HLRU, a node α uses a variable α.ts [f ] to keep

track of the timestamp of a file f . For the convenience of presentation, we

define root .parent to be a fake node that has every file in root .parent .small

(and hence also in root .parent .big), and we define root .parent .diam to be the

uniform miss penalty.

2.4.2 Analysis of the HLRU Algorithm

For any node α and file f , we partition time into epochs with respect to

α and f as follows. The first epoch begins at the start of the execution, which

is defined to be time 1. Subsequent epochs begin just after the execution of

line 11.

We define α.ts∗[f ] to be the time of the most recent access to file f in

a cache in α.caches in the current epoch with respect to node α and file f . If

no such access exists, we define α.ts∗[f ] to be 0.
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{On a request (α, f)}
1 t := now;
2 do

3 flag := false;
4 P := P ∪ {(α, f)};
5 α.ts [f ] := max(α.ts [f ], t);
6 if capacity is violated at α.small then

7 f := file with smallest nonzero α.ts [f ];
8 P := P\{(α, f)};
9 if f /∈ α.big then

10 t := α.ts [f ];
11 α.ts [f ] := 0;
12 α := α.parent ;
13 flag := true

14 fi

15 fi

16 while flag

Figure 2.2: The HLRU algorithm.

For the purpose of our analysis, we categorize the file movements in

HLRU into two types: retrievals and evictions. On a request (u, f), the

HLRU algorithm first performs a retrieval (this corresponds to the block of

code from the beginning of the code to line 5 of the first iteration of the loop)

of f from the nearest cache v that has a copy. Let α be the least common

ancestor of u and v. Then the cost of such a retrieval is α.diam. Let X denote

the set of nodes on the path from α to u, excluding α but including u. For

every node β in X, we charge a pseudocost of β.parent .diam to node α for

such a retrieval.

Each subsequent iteration of the loop performs an eviction (this corre-

sponds to the block of code from line 6 of an iteration to line 5 of the next
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iteration) of a file from α.small to α.parent .small for some node α. We charge

a pseudocost of α.parent .diam to α for such an eviction.

The only cost incurred by OPT is due to retrievals. Let OPT add

(or retrieve) a copy (u, f) by fetching f from v, let α be the least common

ancestor of u and v, and let X be the set of nodes on the path from from α to

u, excluding α but including u. Then the cost of such a retrieval is α.diam.

For every node β in X, we charge a pseudocost of β.parent .diam to node α

for such a retrieval by OPT.

For any node α and file f , we define auxiliary variables α.in[f ] and

α.out [f ] for the purpose of our analysis. These variables are initialized to 0.

We increment α.in[f ] whenever a retrieval of file f charges a pseudocost to

node α. We increment α.out [f ] whenever eviction of file f charges a pseudocost

to node α.

Lemma 2.4.1. Before and after every retrieval or eviction, for any node α

and file f , f ∈ α.big iff β.ts [f ] > 0 for some β ∈ α.desc.

Proof. Initially, both sides of the equivalence are false. If both sides of the

equivalence are false, then according to the code in Figure 2.2, the only event

that sets either side to true is a retrieval of f at a cache u in α.caches , which

in fact sets both sides to true. It remains to prove that if both sides of the

equivalence are true, and if one side becomes false, then the other side becomes

false.
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The only event that falsifies the left side is an eviction of the last copy

of f in α.big from α.small . Prior to this eviction, β.ts [f ] = 0 for all proper

descendants β of α (note that the equivalence holds for β) and α.ts [f ] > 0.

The eviction then sets α.ts [f ] to 0, falsifying the right side.

The only event that can falsify the right side (i.e., line 11) is an eviction

of f from α.small such that, after the eviction, f 6∈ α.big . Note that eviction

of f from β.small , for a proper descendant β of α, cannot falsify the right side

because such an eviction ensures β.parent .ts [f ] > 0 (line 5). Thus, falsification

of the right side implies falsification of the left side. �

Lemma 2.4.2. Before and after every retrieval or eviction, for any node α

and file f ,

α.ts∗[f ] = max
β∈α.desc

β.ts [f ].

Proof. Initially, both sides of the equality are zero. By the definition of

α.ts∗[f ], the value of α.ts∗[f ] changes from nonzero to 0 (i.e., a new epoch

with respect to α and f begins) after line 11. By the guard of the inner if

statement, f 6∈ α.big just before line 11. Hence, by Lemma 2.4.1, β.ts [f ] is 0

for all β ∈ α.desc.

The value α.ts∗[f ] increases due to some access of f at a cache u in

α.caches . The equality holds because the max value on the right side is at u.

Between the changes of α.ts∗[f ], only the eviction of f from α.big can

change the max (reset it to 0) on the right side of the equality. This eviction
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also resets α.ts∗[f ] to 0 because a new epoch begins. �

Lemma 2.4.3. Before and after every retrieval or eviction, for any node α

and file f , α.ts [f ] ≤ α.ts∗[f ]. Furthermore, just after line 8, if f 6∈ α.big, then

α.ts [f ] = α.ts∗[f ].

Proof. The first claim of the lemma follows immediately from Lemma 2.4.2.

For the second claim, note that we are evicting the last copy of f in α.big from

α.small . By Lemma 2.4.1, all proper descendants β of α have β.ts [f ] = 0. So

α.ts [f ] = α.ts∗[f ] by Lemma 2.4.2. �

Lemma 2.4.4. If a file movement (between two caches) has actual cost C and

charges a total pseudocost of C ′, then

C ≤ C ′ ≤
λ

λ − 1
C.

Proof. Suppose the file movement is from cache u to cache v. Let α be the

least common ancestor of u and v and let B be the nodes on the path from α
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to v, excluding α but including u. Then

C

= α.diam

≤
∑

β∈B

β.parent .diam

= C ′

≤ α.diam ·
∑

j≥0

λ−j

=
λ

λ − 1
· C.

�

Lemma 2.4.5. For any node α, the total pseudocost charged to node α due to

retrievals is
∑

f

α.in[f ] · α.parent .diam.

Proof. Follows from the observation that whenever a pseudocost is charged to

node α due to a retrieval, the pseudocost is α.parent .diam. �

Lemma 2.4.6. For any node α, the total pseudocost charged to node α due to

evictions is at most
∑

f

α.out [f ] · α.parent .diam.

Proof. Follows from the observation that whenever a pseudocost is charged to

node α due to an eviction, the pseudocost is at most α.parent .diam. �
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Lemma 2.4.7. For any node α and file f ,

α.out [f ] ≤ α.in[f ].

Proof. We observe that if a pseudocost is charged to a node α as a result of a

retrieval, then f /∈ α.big before the retrieval and f ∈ α.big after the retrieval.

Similarly, if a pseudocost is charged to node α as a result of an eviction, then

the eviction falsifies f ∈ α.big . It then follows that

α.out [f ] ≤ α.in[f ] ≤ α.out [f ] + 1

because f 6∈ α.big initially. �

Lemma 2.4.8. For any node α, α.big always contains the most recently ac-

cessed 2 · α.cap files by α.caches.

Proof. Let X denote the set of the most recently accessed 2 · α.cap files. We

consider the places where a file is added to X or removed from α.big .

A file f can be added to X only when f is requested at a cache u in

α.caches . In this case, f is added to u.small and is not evicted from u.small

because it is the most recently accessed item. Hence, f ∈ α.big .

A file f can be removed from α.big only when it is moved from α.small

to α.parent .small as the result of an eviction and there is no other copy of

f in α.big . This means that f is chosen as the LRU item at line 7. Since f

is the LRU item, there are 2 · α.cap items f ′ in α.small such that α.ts [f ] <
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α.ts [f ′] ≤ α.ts∗[f ′]. By Lemma 2.4.3, α.ts [f ] = α.ts∗[f ] just after line 8. It

follows then from the definition of ts∗ that f 6∈ X. �

Lemma 2.4.9. For any node α, the total pseudocost due to retrievals charged

to α by HLRU is at most twice the pseudocost charged to α by OPT.

Proof. Fix a node α. For OPT, we say that a request for a file f at a cache in

α.caches results in a miss if no copy of f exists at any cache in α.caches at the

time of the request. For HLRU, a miss occurs if no copy of f is in α.big . By

Lemma 2.4.8, HLRU incurs at most as many misses as an LRU algorithm with

capacity 2 ·α.cap running on the subsequence of requests originating from the

caches in α.caches . (Note that LRU misses whenever HLRU misses.) By the

well-known result of Sleator and Tarjan [39], such an LRU algorithm incurs at

most twice as many misses as OPT.

Note that a miss results in a pseudocost of α.parent .diam being charged

to α. Therefore, the total pseudocost charged to node α in OPT is at least the

number of misses in OPT times α.parent .diam. Furthermore, within HLRU, a

pseudocost is charged to node α only on a miss. Therefore, the total pseudocost

charged to node α in HLRU is at most the number of misses incurred by HLRU

times α.parent .diam. The claim of the lemma then follows. �

Lemma 2.4.10. For any node α, the total pseudocost charged to α by HLRU

is at most four times the total pseudocost charged to α by OPT.

Proof. Follows immediately from Lemmas 2.4.5, 2.4.6, 2.4.7, and 2.4.9. �
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Theorem 2. HLRU is constant-competitive.

Proof. Follows immediately from Lemmas 2.4.4 and 2.4.10. �
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Chapter 3

Compression Caching

3.1 Introduction

Recently we have seen an explosion in the amount of data distributed

over handheld devices, personal computers, and local and wide area networks.

There is a growing need for self-tuning data management techniques that can

operate under a wide range of conditions, and optimize various resources such

as storage space, processing, and network bandwidth. There is a large body

of work addressing different aspects of this domain of self-tuning data man-

agement.

An important aspect of this domain that merits further attention is that

data can be stored in different formats. For example, one can compress a text

file using different traditional compression techniques such as gzip and bzip.

Various studies [2, 4, 28] have experimentally demonstrated the advantages

of compression in caching. A compressed file takes up less space, effectively

increasing the size of the memory. However, this increase in size comes at the

cost of extra processing needed for compression and uncompression. Conse-

quently, it may be desirable to keep frequently accessed files uncompressed in

the memory.
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As another example, consider the option of storing only a TEX file or

the corresponding pdf file along with the TEX file. One can save space by

storing only the TEX file, but then one has to run a utility (such as pdflatex)

to generate the pdf file when needed. On the other hand, storing the pdf

file may require an order of magnitude more storage space than the TEX file,

but then the pdf file is readily accessible when needed. In general, many files

are automatically generated using some utility such as a compiler or other

translator. If the utility generates a large output compared to the input, then

by storing only the input one achieves a form of “compression”, not in the

traditional sense, but with analogous consequences. In this chapter, when

we refer to compression, we have in mind this broader notion of compression

where one can have a wide separation between storage space and processing

costs associated with different formats of a file.

By extending this notion further, one can create further room for op-

timization. Consider a distributed storage system to hold a collection of files,

where each file has an associated “makefile” that specifies how to generate

that file. Given requests for files at different locations, it is desirable to have

self-tuning techniques that decide which files to keep explicitly at which lo-

cations, and which files to generate dynamically. The problem of designing

such a storage system is quite challenging due to various aspects such as the

different sizes and processing costs associated with the different formats of a

file, dependencies among different files, and files distributed over the network.

In this work, we initiate a study towards modeling and designing such
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a storage system. We address the notion of compression and uncompression

of files, while contemplating the possibility of a richer variety of separation

between the sizes and processing costs associated with the different formats

of a file. We focus primarily on the single machine setting, however one of

our upper bound results (see Section 3.3.3) is applicable to a simple, but well-

motivated, special case of the distributed storage problem.

Problem Formulation. We define a class of compression caching

problems in which a file can be cached in multiple compressed formats with

varying sizes, and costs for compression and uncompression (see Section 3.2

for a formal description). We are given a cache with a specified capacity. Also

assume that for each file, there are multiple associated formats. Each format is

specified by three parameters: encode cost, decode cost, and size. The encode

cost of a particular format is defined as the cost of creating that format from

the uncompressed format of the file. The decode cost of a format is defined

as the cost of creating the uncompressed format. The miss penalty of a file

is defined as the cost of accessing the file if no format of the file is present

in the cache. To execute a request for a file, the file is required to be loaded

into the cache in the uncompressed format. The goal of a compression caching

algorithm is to minimize the total cost of executing a given request sequence.

The main challenge is to design algorithms that determine — in an

online manner — which files to keep in the fast memory, and of these, which to

keep in compressed form. The problem is further complicated by the multiple

compression formats for a file, with varying sizes and encode/decode costs.
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Since compression caching has the potential to be useful in many different

scenarios, a desirable property of an online algorithm is to provide a good

competitive ratio, which is defined as the maximum ratio of the cost of the

online algorithm and that of the offline algorithm over any request sequence

(see [13] for more details).

In a seminal work, Sleator and Tarjan [39] show that the competitive

ratio of any deterministic online paging algorithm without any capacity blowup

is the size of the cache, and they also show that LRU is resource competitive for

the disk paging problem. Since compression caching generalizes the disk paging

problem, it is natural to ask whether similar resource competitive results can

be obtained for compression caching.

Contributions. In this chapter, we address three problems in the class

of the compression caching. Our contributions for each of these three problems

are as follows.

• The first problem assumes that the encode cost and decode cost asso-

ciated with any format of a file are equal. For this problem we gener-

alize the Landlord algorithm [46] to obtain an online algorithm that is

resource competitive. We find that this problem also corresponds to a

special case of the distributed storage problem, and hence, our algorithm

is applicable to this special case. (See Section 3.3.3 for further details.)

• The second problem assumes that the decode costs associated with dif-

ferent formats of a file are the same. For this problem, we show that any
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deterministic online algorithm (even with an arbitrary factor capacity

blowup) is Ω(m)-competitive, where m is the number of possible formats

of a file. The proof of this lower bound result is the most technically chal-

lenging part of the chapter. Further, we give an online algorithm for this

problem that is O(m)-competitive with O(m) factor capacity blowup.

Thus, we tightly characterize the competitive ratio achievable for this

problem.

• The third problem assumes that the encode costs associated with dif-

ferent formats of a file are the same. For this problem we show that

any deterministic online algorithm (even with an arbitrary factor capac-

ity blowup) has competitive ratio Ω(log m). We also present an online

algorithm for this problem that is O(m)-competitive with O(m) factor

capacity blowup.

Related Work. The competitive analysis framework was pioneered

by Sleator and Tarjan [39]. For the disk paging problem, it has been shown

that LRU is k
k−h+1

-competitive, where k is the cache capacity of LRU and h is

the cache capacity of any offline algorithm [39]. In the same paper, it has been

shown that k
k−h+1

is the best possible competitive ratio for any deterministic

online paging algorithm. For the variable size file caching problem, which is

useful in the context of web-caching, Young [46] proposes the Landlord algo-

rithm, and shows that Landlord is k
k−h+1

-competitive. For the variable size file

caching problem, Cao and Irani [15] independently propose the greedy-dual-

size algorithm and show that it is k-competitive against any offline algorithm,
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where k is cache capacity of both greedy-dual-size and the offline algorithm.

For the distributed paging problem, Awerbuch et al. [6] give an algorithm that

is polylog(n, ∆)-competitive with polylog(n, ∆) factor capacity blowup, where

n is the number of nodes and ∆ is the diameter of the network.

Various studies [2, 4, 28] have shown experimentally that compression

effectively increases on-chip and off-chip chip cache capacity, as well as off-

chip bandwidth, since the compressed data is smaller in size. Further, these

studies show that compression in caching increases the overall performance of

the system.

Outline. The rest of this chapter is organized as follows. In Section 3.2

we provide some definitions. In Section 3.3 we present our results for the com-

pression caching problem with equal encode and decode costs. In Section 3.4

we describe our results for the compression caching problem with varying en-

code costs and uniform decode costs. In Section 3.5 we discuss our results

for the compression caching problem with uniform encode costs and varying

decode costs.

3.2 Preliminaries

Assume that we are given a cache with a specified capacity and m

different functions for encoding and decoding any file, denoted hi and h−1
i ,

where 0 ≤ i < m. Without loss of generality, we assume that h0 and h−1
0 are

the identity functions. We define index i as an integer i such that 0 ≤ i < m.

For any index i, we obtain the i-encoding of any file f by evaluating hi(f), and
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we obtain the file f from the i-encoding µ of f by evaluating h−1
i (µ). For any

file f , we refer to the 0-encoding of f as the trivial encoding f , and for i > 0,

we refer to the i-encoding of f as a nontrivial encoding of f . For any file f and

index i, the i-encoding of f is also referred to as an encoding of f , and we say f

is present in the cache if any encoding of f is present in the cache. For any file

f and index i, the i-encoding of f is characterized by three parameters: encode

cost, denoted encode(i, f); decode cost, denoted decode(i, f); and size, denoted

size(i, f). The encode cost encode(i, f) is defined as the cost of evaluating

hi(f), and the decode cost decode(i, f) is defined as the cost of evaluating

h−1
i (µ), where µ is the i-encoding of f . Note that for any file f , encode(0, f)

and decode(0, f) are 0.

For any file f , the access cost of f is defined as follows: if for some index

i, the i-encoding of f is present in the cache (break ties by picking minimum

such i), then the access cost is decode(i, f); if none of the encodings of f is

present in the cache, then the access cost is defined as the miss penalty p(f).

Without loss of generality, we assume that the miss penalty for any file f is

at least the decode cost of any of the encodings of f . The cost of deleting

any encoding of any file from the cache is 0. For any file f and index i, the

i-encoding of f can be added to the cache if there is enough free space to

store the i-encoding of f . For any file f and index i, the cost of adding the

i-encoding of f to the cache is the sum of the access cost of f and encode(i, f).

To execute a request for a file f , an algorithm A is allowed to modify its

cache content by adding/deleting encodings of files, and then incurs the access
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cost for f . The goal of the compression caching problem is to minimize the

total cost of executing a given request sequence. An online compression caching

algorithm A is c-competitive if for all request sequences τ and compression

caching algorithms B, the cost of executing τ by A is at most c times that of

executing τ by B.

Any instance I of the compression caching problem is represented by a

triple (σ,m, k), where σ is the sequence of request for the instance I, m is the

number of possible encodings for files in σ, and k is the cache capacity. For

any instance I = (σ,m, k), we define reqseq(I) = σ, numindex (I) = m, and

space(I) = k.

We define a configuration as a set of encodings of files. For any config-

uration S, we define the size of S as the sum, over all encodings µ in S, of size

of µ. We define a trace as a sequence of pairs, where the first element of the

pair is a request for a file and the second element of the pair is a configuration.

For any configuration S and any integer k, S is k-feasible if the size of S is

at most k. For any trace T and integer k, T is k-feasible if and only if any

configuration in T is k-feasible. For any two sequences τ and τ ′, we define

τ ◦ τ ′ as the sequence obtained by appending τ ′ to τ . For any trace T , we

define requests(T ) as the sequence of requests present in T , in the same order

as in T .

For any file f , any trace T , and any configuration S, we define costf (T, S)

inductively as follows. If T is empty, then costf (T, S) is zero. If T is equal to

〈(f ′, S ′)〉◦T ′, then costf (T, S) is costf (T
′, S ′) plus the sum, over all i-encodings
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µ of f such that µ is present in S ′ and µ is not present in S, of encode(i, f),

plus the access cost of f in S if f = f ′. For any file f and any trace T , we

define costf (T ) as costf (T, ∅). For any trace T and any configuration S, we

define cost(T, S) as the sum, over all files f , of costf (T, S). For any trace T ,

we define cost(T ) as cost(T, ∅).

3.3 Equal Encode and Decode Costs

In this section, we present a symmetric instance of the compression

caching problem which assumes that the encode cost and decode cost associ-

ated with any encoding of a file are equal. We present an online algorithm for

this problem, and show that the algorithm is resource competitive. Interest-

ingly, this problem also corresponds to a multilevel storage scenario, and so,

our algorithm applies to this scenario (see Section 3.3.3).

In this problem, we consider that for any file f and index i, encode(i, f) =

decode(i, f). At the expense of a small constant factor in the competitive ra-

tio, we can assume that, for any file f , the miss penalty p(f) is at least

q · encode(m − 1, f), where q > 1; and by preprocessing, we can arrange en-

codings of files in geometrically decreasing sizes and geometrically increasing

encode-decode costs. The basic idea behind the preprocessing phase is as

follows. First, consider any two encodings with similar sizes (resp., similar

encode-decode costs) within a constant factor. Second, from these two encod-

ings, select the one with smaller encode-decode cost (resp., smaller size), and

eliminate the other. While an encoding can be eliminated by one of the above

63



preprocessing steps, we do so. After the above preprocessing phase, we can ar-

range the encodings of files in geometrically decreasing sizes and geometrically

increasing encode-decode costs.

For ease of presentation, we assume that m encodings are selected for

each file in the preprocessing phase. More precisely, after the preprocessing

phase, for any file f and index i < m− 1, we have size(i + 1, f) ≤ 1
r
· size(i, f)

and encode(i + 1, f) ≥ q · encode(i, f), where r > 1. Also, we assume that the

capacity of the cache given to an online algorithm is b times that given to an

offline algorithm.

3.3.1 Algorithm

In Figure 3.1, we present our online algorithm ON. At a high level,

ON is a credit-rental algorithm. Algorithm ON maintains a “containment”

property on the encodings in the cache, defined as follows: If ON has the i-

encoding of some file f in the cache, then ON also has all the j-encodings of

f for any index j ≥ i in the cache. A credit is associated with each encoding

present in the cache. For any file f and index i, the i-encoding of f is created

with an initial credit decode(i + 1, f), for i < m − 1, and credit p(f), for

i = m−1. On a request for a file f , if the 0-encoding of f is not present in the

cache, then ON creates space for the 0-encoding of f , and for other i-encoding

of f that are necessary to maintain the containment property. Then, ON

creates the 0-encoding of f , and any other i-encodings of f that are necessary

to maintain the containment property, with an initial credit as described above.
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1 {Initially, for any encoding µ of any file, credit(µ) = 0}
2 On a request for a file f
3 if f is not present in the cache then

4 createspace(f, m − 1)
5 for all indices i, add the i-encoding µ of f , with credit(µ) := decode(i + 1, f), if i < m − 1,

and with credit(µ) := p(f), if i = m − 1
6 else if the i-encoding µ of f is present in the cache (break ties by picking minimum such i) then

7 evaluate h−1
i (µ)

8 credit(µ) := decode(i + 1, f)
9 if i > 0 then

10 createspace(f, i − 1)
11 for all indices j < i, add the j-encoding ν of f , with credit(ν) := decode(j + 1, f)
12 fi

13 fi

14 createspace(f, i)

15 sz :=
Pi

j=0 size(f, j)

16 while free space in the cache < sz do

17 δ := minµ∈X
credit(µ)
size(j,f ′)

, where µ is the j-encoding of f ′

18 for each file f ′ such that there is an encoding of f ′ in the cache do

19 let µ be the largest (in size) encoding of f ′ in the cache
20 let j be the index of µ
21 credit(µ) := credit(µ) − δ · size(j, f ′)
22 if credit(µ) = 0 then

23 delete µ
24 fi

25 od

26 od

Figure 3.1: The online algorithm ON for any symmetric instance of the com-
pression caching problem. Here, X is the cache content of ON.

In order to create space, for each file present in the cache, ON charges rent from

the credit of the largest encoding of the file, where rent charged is proportional

to the size of the encoding, and deletes any encoding with 0 credit. The credit-

rental algorithm described here can be viewed as a generalization of Young’s

Landlord algorithm [46].

3.3.2 Analysis

We use a potential function argument similar to that of Young to show

that ON is resource competitive.
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For any i-encoding µ and any j-encoding ν of the same file f , we say

that µ ≤ ν if i ≤ j. Let X be the cache content of ON and Y be that of the

offline algorithm. We define Y ∗ as ∪µ∈Y {ν | µ ≤ ν}. For any i-encoding µ of

any file f , we define cost(µ) as decode(i + 1, f) if i < m − 1, and as p(f), if

i = m − 1. We define a potential function Φ as follows, where β is defined as

r−1
r

· b.

Φ =
∑

µ∈X

credit(µ) + β
∑

ν∈Y ∗

(cost(ν) − credit(ν))

Consider the following model of executing a given request. To execute

a request for a file f , an algorithm performs an arbitrary sequence of addition

and deletion of encodings, subject only to the following two constraints: (1)

the 0-encoding of f is present in the cache immediately after executing the

request, and (2) for any file f ′, the i-encoding of f ′ can be added to the cache

only if the 0-encoding of f ′ is also present in the cache.

By using a scratch buffer space (of capacity at most the size of the

0-encoding of any file), it is not hard to see that any offline algorithm can

be simulated by another offline algorithm OFF that incurs the same costs as

the original offline algorithm, and adheres to the above model. Hence, in the

following, without loss of generality we restrict attention to algorithms that

adhere to the above model. Note that ON is such an algorithm.

To analyze the performance of ON, we execute ON alongside OFF. As

in the case of Young’s analysis of Landlord in [46], we execute each successive

request with OFF, and then with ON. Then, we observe the effect of each
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action on the potential function Φ. The actions taken by OFF to execute a

request for f can be broken down into a sequence of steps, with each step being

one of the following: OFF removes an encoding; OFF adds the 0-encoding of

f ; OFF adds a nontrivial encoding of f . Actions taken by ON to execute a

request for f can be broken down into a sequence of steps, with each step

being one of the following: ON charges rent; ON removes an encoding; ON

adds a set of encodings of f (note that as long as this set is not empty, the

0-encoding of f is in the set).

Lemma 3.3.1. The potential Φ is nonnegative.

Proof. Both of the terms in the two summations in Φ are nonnegative. �

Lemma 3.3.2. If OFF removes an encoding, Φ does not increase.

Proof. In this case, a nonnegative term from the second summation in Φ dis-

appears. Hence, Φ does not increase. �

Lemma 3.3.3. If OFF adds the 0-encoding of a file f by decoding from the

i-encoding µ of f , then Φ increases by at most β ·
∑

ν:ν<µ cost(ν).

Proof. The first summation does not change. The second summation increases

by at most β ·
∑

ν:ν<µ cost(ν). �

Lemma 3.3.4. If OFF adds the 0-encoding µ of a file f by retrieving f re-

motely, then Φ increases by at most β ·
∑

ν:µ≤ν cost(ν).
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Proof. The first summation does not change. The second summation increases

by at most β ·
∑

ν:µ≤ν cost(ν). �

Lemma 3.3.5. If OFF adds a nontrivial encoding of a file f , then Φ does not

change.

Proof. The first summation does not change. When OFF adds a nontrivial en-

coding of f , the 0-encoding of f is in the cache. Hence, the second summation

does not change. �

Lemma 3.3.6. If ON charges rent δ, then Φ does not increase.

Proof. Let h be the cache capacity of OFF. Then the cache capacity of ON is

bh. The sum over all files f present in X, the size of the largest encoding of f

in X, is at least r−1
r

· bh. Since ON charges rent from the largest encodings of

all files present in X, if ON charges rent δ, then the first summation decreases

by at least r−1
r

· bh · δ.

Since h is the cache capacity of OFF, the second summation increases

by at most β · δ · h. Since β = r−1
r

· b, Φ does not increase. �

Lemma 3.3.7. If ON removes an encoding, then Φ does not change.

Proof. Algorithm ON removes an encoding µ only when credit(µ) is 0. Hence,

Φ does not change. �

Lemma 3.3.8. If ON adds i encodings of a file f , for 0 < i < m, then Φ

decreases by at least (β − 1) ·
∑

ν:ν<µ cost(ν), where µ is the i-encoding of f .
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Proof. Algorithm ON adds to the cache all encodings ν of f such that ν < µ,

setting credit(ν) equal to cost(ν) in each case. Hence, the first summation in

Φ increases by at most
∑

ν:ν<µ cost(ν). Since OFF executes the request first,

and the 0-encoding of f is present in OFF’s cache at the end of the execution

of the request, the second summation decreases by at least β ·
∑

ν:ν<µ cost(ν).

Hence, Φ decreases by at least (β − 1) ·
∑

ν:ν<µ cost(ν). �

Lemma 3.3.9. If ON adds m encodings of a file f , then Φ decreases by at

least (β − 1) ·
∑

ν:µ≤ν cost(ν), where µ is the 0-encoding of f .

Proof. Algorithm ON adds to the cache all encodings ν of f such that µ ≤ ν,

setting credit(ν) equal to cost(ν) in each case. Hence, the first summa-

tion increases by at most
∑

ν:µ≤ν cost(ν). Since OFF executes the request

for f first, and adds the 0-encoding of f to its cache, the second summa-

tion decreases by at least β ·
∑

ν:µ≤ν cost(ν). Hence, Φ decreases by at least

(β − 1) ·
∑

ν:µ≤ν cost(ν). �

Theorem 3. Algorithm ON is resource competitive for any symmetric instance

of the compression caching problem.

Proof. Consider a request for a file f . By Lemmas 3.3.2 through 3.3.5, if the

total cost incurred by OFF to execute the request is c, then the potential Φ

increases by at most q
q−1

· β · c; other actions of OFF do not increase Φ. By

Lemmas 3.3.6 through 3.3.9, if the total cost incurred by ON to execute the

request is c, the potential Φ decreases by at least (β−1)·c; other actions of ON
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do not increase Φ. By Lemma 3.3.1, the potential Φ is always nonnegative.

Hence, the ratio of the cost of ON to that of OFF in executing any request

sequence σ is at most q
q−1

· β
β−1

.

Since β = r−1
r
·b, the competitive ratio is at most q

q−1
· r−1

r
·b/( r−1

r
· b − 1).

By choosing the values of q, r, and b appropriately, we find that ON is resource

competitive. For example, ON is 4-competitive with q = 2, r = 2, and b = 4.

Hence, Theorem 3 holds. �

3.3.3 Multilevel Storage

Consider an outsourced storage service scenario (for simplicity, here we

describe the problem for a single user) where we have multiple levels of storage.

Each storage space is specified by two parameters: storage cost and access

latency to the user. The user specifies a fixed overall budget to buy storage

space at the various levels, and generates requests for files. The goal is to

manage the user budget and minimize the total latency incurred in processing

a given request sequence.

Our credit-rental algorithm for the compression caching problem with

equal encode and decode costs can be easily generalized to this scenario, and

we can show (using a similar analysis as above) that the generalized algorithm

is constant competitive with a constant factor advantage in the budget for the

aforementioned multilevel storage problem.
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3.4 Varying Encode Costs and Uniform Decode Costs

We say that an instance I = (σ,m, k) of the compression caching prob-

lem is a uniform-decode instance if any file in σ satisfies the following proper-

ties. First, we consider that the decode cost associated with different encodings

of any file in σ are the same; for any file f and any index i > 0, we abbreviate

decode(i, f) to decode. Second, we consider that for any indexi, any file f and

f ′ in σ, size(i, f) = size(i, f ′), p(f) = p(f ′), and encode(i, f) = encode(i, f ′).

For the sake of brevity, we write encode(i, f) as encode(i).

We formulate this problem to explore the existence of resource com-

petitive algorithms for the problems in the class of compression caching. This

problem is also motivated by the existence of multiple formats of a multimedia

file with varying sizes and encode costs, and with roughly similar decode costs.

One might hope to generalize existing algorithms like Landlord for this

problem, and to achieve resource competitiveness. However, in this section we

show that any deterministic online algorithm (even with an arbitrary factor

capacity blowup) for this problem is Ω(m)-competitive, where m is the number

of possible encodings of each file. We also give an online algorithm for this

problem that is O(m)-competitive with O(m) factor capacity blowup.

3.4.1 The Lower Bound

In this section we show that any deterministic online algorithm (even

with an arbitrary factor capacity blowup) for any uniform-decode instance of

the compression caching problem is Ω(m)-competitive. We use an adversarial
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request generating algorithm and an associated offline strategy to demonstrate

the desired result.

For any algorithm A, any request sequence σ, and any real number k,

we define config(A, σ, k) as the configuration of A after executing σ with a

cache of size k, starting with an empty configuration.

For any algorithm A, any request sequence σ, any real number k, any

index i, and any k-feasible configuration S, we define pseudocost(A, σ, k, i, S)

as follows. If σ is empty, then pseudocost(A, σ, k, i, S) is zero. If σ is equal

to 〈f〉, then pseudocost(A, 〈f〉, k, i, S) is defined as follows. Let S ′ be the

configuration of A after executing the request for f starting with configuration

S and with a cache of size k. For i = 0, we define pseudocost(A, 〈f〉, k, 0, S)

as p(f), if f is not present in S, plus the sum, over all files f ′ 6= f such

that f ′ is present in S ′ while f ′ is not present in S, of p(f ′). For i = 1

to m− 1, we define pseudocost(A, 〈f〉, k, i, S) as pseudocost(A, 〈f〉, k, i − 1, S)

plus the sum, over all files f ′ such that for any index j ≥ i, the j-encoding µ

of f ′ is present in S ′ while µ is not present in S, of encode(i). If σ is equal

to σ′ ◦ 〈f〉, then pseudocost(A, σ, k, i, S) is the sum of pseudocost(A, σ′, k, i, S)

and pseudocost(A, 〈f〉, k, i, config(A, σ′, k)). We define pseudocost(A, σ, k, i) as

pseudocost(A, σ, k, i, ∅).

3.4.1.1 Informal overview

At a high level, the adversarial request generating algorithm Adversary

works recursively as follows. For a given online algorithm ON, a given number
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of encodings for a file m, a given cache capacity of the offline algorithm k,

and a blowup b, the algorithm Adversary(ON,m, k, b) picks a set of files X

such that any file in X is not in ON’s cache, and invokes a recursive request

generating procedure AdversaryHelper(X, i, σ, ON, k, b), where initially |X| is

the number of (m − 1)-encodings that can fit in a cache of size k, i = m − 1,

and σ is empty. This procedure returns a trace of the offline algorithm OFF.

(See Section 3.4.1.2 for formal definitions and a description of the algorithm.)

Consider an invocation of procedure AdversaryHelper(X, i, σ, ON, k, b).

The adversary picks a subset of the files Y from X such that any file f in Y

satisfies certain conditions. For i > 1, if Y contains sufficiently many files, then

the adversary invokes AdversaryHelper(Y, i−1, σ′, ON, k, b), where σ′ is the re-

quest sequence generated; otherwise, AdversaryHelper(X, i, σ, ON, k, b) is ter-

minated. For i = 1, the adversary picks a file f in Y , and repeatedly generates

requests for f until either ON adds an encoding of f to its cache, or a cer-

tain number of requests for f are generated. Finally, AdversaryHelper(X, 1, σ)

terminates when Y is empty.

At a high level, the offline algorithm OFF works as follows. When pro-

cedure AdversaryHelper(X, i, σ, ON, k, b) terminates, OFF decides the encod-

ings for the files in X. For any index j ≥ i, if ON adds the j-encodings of less

than a certain fraction of files in X any time during the execution of the request

sequence generated by AdversaryHelper(X, i, σ, ON, k, b), then OFF adds the

i-encodings of all the files in X, and incurs no miss penalties in executing the

request sequence generated by AdversaryHelper(X, i, σ, ON, k, b). Otherwise,
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OFF returns the concatenation of the traces generated during the execution

of procedure AdversaryHelper(X, i, σ, ON, k, b). By adding the j-encodings of

a certain fraction of files in X, ON incurs much higher cost than OFF in exe-

cuting the request sequence generated by AdversaryHelper(X, i, σ, ON, k, b).

Using an inductive argument, we show that ON is Ω(m)-competitive

for the compression caching problem with varying encode and uniform decode

costs.

3.4.1.2 Adversarial request generating algorithm

Some key notations used in the adversarial request generating algorithm

are as follows.

For any file f and any real number b, eligible(f,m, b) holds if the fol-

lowing conditions hold: (1) for any index i, size(i, f) = rm−i−1, where r = 8b;

(2) p(f) = p; (3) for any index i, encode(i, f) = p · qi, where q = m
20

; and

(4) decode = 0. The number of i-encodings of files that can fit in a cache of

size k is denoted num(k, i). Note that, for eligible files, num(k, i) is equal to

r · num(k, i − 1).

For any algorithm A, any request sequence σ, any real number k, any

file f , and any index i, we define a predicate aggressive(A, σ, k, f, i) as follows.

If σ is empty, then aggressive(A, σ, k, f, i) does not hold. If σ is equal to σ′◦〈f ′〉,

then aggressive(A, σ, k, f, i) holds if either aggressive(A, σ′, k, f, i) holds or, for

some index j ≥ i, the j-encoding of f is present in config(ON, σ, k).

For any request sequence σ, and any index i, any set of files X, we
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define trace(σ, i,X) as follows. If σ is empty, then trace(σ, i,X) is empty. If

σ is equal to σ′ ◦ 〈f〉, then trace(σ, i,X) is trace(σ′, i, X) ◦ 〈(f, Y )〉, where Y

is the set of the i-encodings of files in X.

In Figure 3.2 we describe the adversarial request generating algorithm

Adversary .

3.4.1.3 Analysis

The caching decisions of the offline algorithm OFF are given by the

trace T generated during the execution of Adversary (Figure 3.2).

Lemma 3.4.1. Consider any deterministic online algorithm ON with a cache

of size k. Let S ′ be the new configuration of ON after executing a request for

any eligible file f in some configuration S. The total cost of ON in the config-

uration change from S to S ′ and in executing request for f in configuration S

is at least q−1
q

· pseudocost(ON, 〈f〉, k, i, S), where 0 ≤ i < m.

Proof. The lemma follows from the definition of pseudocost , that is, for any

file f ′ and index j ≥ i, if the j-encoding µ of f ′ is present in S ′ while µ is not

present in S, then we add encode(i) to pseudocost(ON, 〈f〉, k, i, S). �

Lemma 3.4.2. Consider any execution of AdversaryHelper(X, 1, σ, ON, k, b).

Let σ′ be the sequence of requests for some file f generated in the loop of

Lines 15 to 19, and let T ′′ be the trace T just before Line 20. Then, in

Line 20, pseudocost(ON, σ′, bk, 0, config(ON, σ ◦ requests(T ′′), bk)) is at least

cost(trace(σ′, 0, {f})).
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1 Adversary(ON,m, k, b)
2 T := ∅
3 while |T | < N do

4 X := set of num(k,m − 1) files f such that (1) eligible(f,m, b) holds; and
(2) f is not present in config(ON, requests(T ), bk)

5 T := T ◦ AdversaryHelper(X,m − 1, requests(T ),ON, k, b)
6 od

7 return T

8 AdversaryHelper(X, i, σ,ON, k, b)
9 T, σ′ := ∅, ∅

10 Y := X
11 repeat

12 if i = 1 then

13 Let f be an arbitrary file in Y
14 count := 0
15 repeat

16 σ′ := σ′ ◦ 〈f〉
17 S := config(ON, σ ◦ requests(T ) ◦ σ′, bk)
18 count := count + 1
19 until f is not present in S or count ≥ 8
20 T := T ◦ trace(σ′, 0, {f})
21 σ′ := ∅
22 else

23 X ′ := arbitrary subset of num(k, i − 1) files in Y
24 T ′ := AdversaryHelper(X ′, i − 1, σ ◦ requests(T ),ON, k, b)
25 T := T ◦ T ′

26 fi

27 reassign Y as follows: for any file f, f is in Y if and only if (1) f is in X
(2) f is not present in config(ON, σ ◦ requests(T ), bk);
(3) costf (T ) < (8 · ei − 8 · ei−1); and
(4) aggressive(ON, requests(T ), bk, f, i) does not hold

28 until (i = 1 and |Y | = ∅) or (|Y | < num(k, i − 1))
29 if |{f ∈ X|aggressive(ON, requests(T ), bk, f, i)}| < 2b · num(k, i − 1) then

30 T := trace(requests(T ), i,X)
31 fi

32 return T

Figure 3.2: The adversarial request generating algorithm for the compression
caching problem with varying encode and uniform decode costs. Here, N is
the sufficient large number of requests to be generated.
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Proof. In Line 20, pseudocost(ON, σ′, bk, 0, config(ON, σ ◦ requests(T ′′), bk)) is

at least count · p(f), where count is at least 1. On the other hand, the value

of cost(trace(σ′, 0, {f}))) is at most p(f). �

Lemma 3.4.3. Consider any execution of AdversaryHelper(X, 1, σ, ON, k, b).

Let trace T be the return value of AdversaryHelper(X, 1, σ, ON, k, b), σ′ be

requests(T ), and S be config(ON, σ, bk). Then, pseudocost(ON, σ′, bk, 1, S) is

at least 1
40

· cost(T ).

Proof. Let Z be {f ∈ X | aggressive(ON, σ′, bk, f, i)}.

Case (1): In the execution of AdversaryHelper(X, 1, σ, ON, k, b), just

before Line 29, |Z| is less than 2b · num(k, 0). Let T ′ be the trace T in

Line 28. Procedure AdversaryHelper(X, 1, σ, ON, k, b) terminates when Y is

empty in Line 28. That is, r · num(k, 0) files in X do not satisfy one of

the last three conditions to be in Y . Since less than 2b · num(k, 0) files are

in |Z|, and ON can keep at most (b · num(k, 0)) 0-encodings of files, just

before Line 29, there are at least (r − 2b − b) · num(k, 0) files f for which

costf (T
′) is at least (8 · encode(1) − 8 · encode(0)). Hence, by Lemma 3.4.2,

pseudocost(ON, σ′, bk, 0, S) ≥ (r − 3b) · num(k, 0) · 8 · (encode(1)− encode(0)).

In this case, OFF overrides the trace (Line 30), adds 1-encodings of all

the files in X, and executes all the requests in requests(T ). Hence, after Line

30, cost(T ) = r·num(k, 0)·encode(1). Therefore, pseudocost(ON, σ′, bk, 0, S) ≥

(r−3b)
r

· 8 · (encode(1)−encode(0))
encode(1)

· cost(T ). Since pseudocost(ON, σ′, bk, 1, S) ≥

pseudocost(ON, σ′, bk, 0, S), and r = 8b, the lemma follows.
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Case (2): In the execution of AdversaryHelper(X, 1, σ, ON, k, b), just

before Line 29, if |Z| is at least 2b ·num(k, 0), then OFF does not commit any

additional costs to execute requests in σ′ (Line 32). Since

pseudocost(ON, σ′, bk, 1, S) ≥ pseudocost(ON, σ′, bk, 0, S)

by the definition of pseudocost , and

pseudocost(ON, σ′, bk, 0, S) ≥ cost(T )

by Lemma 3.4.2. Hence, the lemma follows. �

Lemma 3.4.4. Consider any execution of AdversaryHelper(X, i, σ, ON, k, b).

Let trace T be the return value of AdversaryHelper(X, i, σ, ON, k, b), σ′ be

requests(T ), and S be config(ON, σ, bk). Then, pseudocost(ON, σ′, bk, i, S) is

at least i
40

· cost(T ) for i ≥ 1.

Proof. We prove this lemma by induction on i. The base case (i = 1) follows

from Lemma 3.4.3.

Induction hypothesis: Let T ′′ be the trace T just before the execution of

Line 24, and T ′ be the return value of any execution of AdversaryHelper(X ′, i−

1, σ ◦ requests(T ′′), ON, k, b) in Line 24 during the execution of procedure

AdversaryHelper(X, i, σ, ON, k, b). Let S ′ be config(ON, σ ◦ requests(T ′′), bk)

Then, pseudocost(ON, requests(T ′), bk, i − 1, S ′) is at least i−1
40

· cost(T ′).

Induction step: Let Z be {f ∈ X | aggressive(ON, σ′, bk, f, i)}.

78



Case (1): In the execution of AdversaryHelper(X, i, σ, ON, k, b), just

before Line 29, |Z| is less than 2b · num(k, i − 1). Let T ′ be the trace T

in Line 28. For i > 1, AdversaryHelper(X, i, σ, ON, k, b) terminates when

there are less than num(k, i − 1) files in set Y (in Line 28). That is, at least

(r − 1) · num(k, i − 1) files do not satisfy one of the last three conditions to

be in Y . Since less than 2b · num(k, i − 1) files are in Z, and ON can keep

at most (b · num(k, i − 1)) j-encodings of files such that j ≤ i, there are at

least (r − 1 − 2b − b) · num(k, i − 1) files f , for which costf (T
′) is at least

8 · encode(i) − 8 · encode(i − 1).

By the induction hypothesis,

pseudocost(ON, requests(T ′), bk, i − 1, config(ON, σ ◦ requests(T ′), bk))

≥
i − 1

40
· (r − 3b − 1) · num(k, i − 1) · 8 · (encode(i) − encode(i − 1))

In this case OFF overrides the trace T ′ (Line 30), and adds the i-

encodings of all the files in X, and executes all the requests requests(T ). Hence,

after Line 30, cost(T ) is r · num(k, i − 1) · encode(i). Finally,

pseudocost(ON, σ′, i, S)

≥ pseudocost(ON, σ′, i − 1, S)

≥
i − 1

40
· (r − 3b − 1) · num(k, i − 1) · 8 · (encode(i) − encode(i − 1))

≥
i − 1

40
· (r − 3b − 1) ·

8

r
· (1 −

encode(i − 1)

encode(i)
) · cost(T )

≥
i

40
· cost(T )
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(The first inequality follows from the definition of pseudocost . The

second inequality follows from the induction hypothesis. The third inequality

follows from the fact that cost(T ) is r · num(k, i − 1) · encode(i). The fourth

inequality follows from the fact that i−1
40

· (r− 3b− 1) · 8
r
· (1− encode(i−1)

encode(i)
) ≥ i

40
,

for q ≥ 2 and i ≥ 2.)

Case (2): In the execution of AdversaryHelper(X, i, σ, ON, k, b), just

before Line 29, |Z| is at least 2b · num(k, i − 1).

Let ∆ = cost(T ). In this case, OFF does not incur any additional

costs to execute requests in σ′ (Line 32). By the design of AdversaryHelper ,

∆ ≤ r ·num(k, i − 1) ·(p+8 ·encode(i)). (For any file f in X selected in the set

X ′ in Line 24, i.e., T ′ := AdversaryHelper(X ′, i − 1, σ ◦ requests(T ), ON, k, b),

costf (T ) is at most 8 · encode(i)− 8 · encode(i− 1). Since costf (T
′) is at most

(p + 8 · encode(i − 1)), costf (T ) is at most (p + 8 · encode(i)).)

By the induction hypothesis,

pseudocost(ON, σ′, bk, i, S)

≥ pseudocost(ON, σ′, bk, i − 1, S) + 2b · num(k, i − 1) · encode(i)

≥
i − 1

40
· ∆ + 2b · num(k, i − 1) · encode(i)

≥
i

40
· ∆

(The first inequality follows from the fact that the second term of the

RHS is not included in the LHS. The second inequality follows from induction

hypothesis. The third inequality holds since 2b · encode(i) ≥ r
40

· (p + 8 ·

80



encode(i)).) �

The following theorem is immediate from Lemmas 3.4.1 and 3.4.4.

Theorem 4. Any deterministic online algorithm with an arbitrary factor ca-

pacity blowup is Ω(m)-competitive for any uniform-decode instance I of the

compression caching problem, where m = numindex (I).

3.4.2 An Upper Bound

In this section we present an online algorithm that is O(m)-competitive

with O(m) factor capacity blowup for any uniform-decode instance I of the

compression caching problem, where m = numindex (I). As in Section 3.3,

by preprocessing, we can arrange the encodings of files in decreasing sizes and

increasing encode costs; that is, after preprocessing, for any file f and any index

i < m − 1, size(i + 1, f) = 1
r
size(i, f), and encode(i + 1, f) = q · encode(i, f),

where r = 1 + ǫ, q = 1 + ǫ′, ǫ > 0, and ǫ′ > 0.

3.4.2.1 Algorithm

In this section we present an online algorithm ON for any uniform-

decode instance of the compression caching problem.

Algorithm ON divides its cache into m blocks. For any index i, block i

keeps only the i-encodings of files. For any integer k and index i, let num(k, i)

be the maximum number of i-encodings of files that can fit in any block of size

k.
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ON(σ,m, k)
{ Initially, for each index j and file g, misscount(g, j) := 0, filecount(j) := 0, and

trace T := ∅}
1 for i = 0 to |σ| − 1 do

2 Let σi be a request for a file f
3 if the j-encoding µ of f is present the cache

(break ties by picking minimum such j) then

4 evaluate h−1

j (µ)

5 else

6 foreach index j, increment misscount(f, j)
7 if for some j, misscount(f, j) · p(f) ≥ encode(j)

(break ties by picking maximum such j) then

8 if filecount(j) = num(k/m, j) then

9 foreach j′ ≤ j do

10 filecount(j′) := 0;
11 for all the j′-encodings µ of files f ′, misscount(f ′, j′) := 0; and unmark µ
12 od

13 fi

14 remove an unmarked encoding from block-j
15 add the j-encoding µ of f to block j, and mark µ
16 increment filecount(j)
17 fi

18 fi

19 S := the set of encodings present in the cache
20 T = T ◦ (σi, S)
21 od

Figure 3.3: The online algorithm ON for any uniform-decode instance of the
compression caching problem.

Roughly speaking, ON works as follows. For any index i, ON adds

the i-encoding of a file f after the miss penalties incurred by ON on f sum

to at least encode(i, f). We use a standard marking algorithm as an eviction

procedure for each block. The complete description of ON is presented in

Figure 3.3.
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3.4.2.2 Analysis

For any trace T and any configuration S, we define encodecost(T, S)

inductively as follows. If T is empty, then encodecost(T, S) is zero. If T is

equal to 〈(f, S ′)〉◦T ′, then encodecost(T, S) is encodecost(T ′, S ′) plus the sum,

over all i-encoding µ of f ′ such that µ is present in S ′ while µ is not present in

S ′, of encode(i). For any trace T , we define encodecost(T ) as encodecost(T, ∅).

For any trace T and any configuration S, we define penalty(T, S) in-

ductively as follows. If T is empty, then penalty(T, S) is zero. If T is equal

to 〈(f, S ′)〉 ◦ T ′, then penalty(T, S) is penalty(T ′, S ′) plus p(f), if f is not

present in S; otherwise, it is zero. For any trace T , we define penalty(T ) as

penalty(T, ∅).

Lemma 3.4.5. Consider any uniform-decode instance I = (σ,m, k) of the

compression caching problem. Let T = ON(σ,m, k). Then, requests(T ) = σ,

and space(T ) ≤ k.

Proof. Follows from inspection of the algorithm in Figure 3.3. �

Lemma 3.4.6. Consider any uniform-decode instance I = (σ,m, k) of the

compression caching problem. Let T = ON(σ,m, k). Then, encodecost(T ) ≤

m · penalty(T ).

Proof. For any file f and index i, ON adds the i-encoding of f only when

misscount(f, i)·p(f) is at least encode(i). Since on a miss by ON, we increment
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misscount(f, i) for all indices i, the lemma follows. �

For any trace T , miss(T ) returns a sequence of requests constructed as

follows. If T is empty, then miss(T ) is empty. If T is 〈(f, S)〉, then miss(T ) is

〈f〉. If T is equal to T ′◦〈(f, S)〉◦〈(f ′, S ′)〉, then miss(T ) is miss(T ′ ◦ 〈(f, S)〉)◦

〈f ′〉, if f ′ is not present in S, and is miss(T ′ ◦ (f, S)) otherwise.

An interval is a pair of nonnegative integers (i, j) such that i < j. For

any file f and any configuration S, we define configuration(f, S) as S.

For any trace T , any encoding µ, and any interval (i, j) such that 0 ≤ i

and j ≤ |T |, added(T, (i, j), µ) holds if, for some j′ such that i ≤ j′ < j, one of

the following conditions holds: (1) j′ = 0 and µ is present in configuration(T0);

or (2) j′ > 0 and µ is present in configuration(Tj′) while µ is not present in

configuration(T(j′−1)). For any trace T , any encoding µ, and any interval (i, j)

such that 0 ≤ i and j ≤ |T |, deleted(T, (i, j), µ) holds if, for some j′ such that

i ≤ j′ < j and j′ > 0, µ is not present in configuration(Tj′) while µ is present

in configuration(T(j′−1)). For any trace T , any encoding µ, and any interval

(i, j) such that 0 ≤ i and j ≤ |T |, throughout(T, (i, j), µ) holds if i > 0 and µ

is present in configuration(Tj′) for all j′ in [i − 1, j]. For any trace T and any

encoding µ, present(T , µ) holds if µ is present in any of the configurations in

T .

Lemma 3.4.7. Consider any uniform-decode instance I = (σ,m, k) of the

compression caching problem. Let T be any trace such that requests(T ) = σ,

and space(T ) ≤ k. Let T ′ = ON(σ,m, bmk). Then penalty(T ′) = O(cost(T )).
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Proof. Follows from Claims 1 through 5 (see below).

First we introduce some useful definitions. Consider the execution T ′ =

ON(σ,m, bmk). For any index ℓ, we define an ℓ-epoch as follows. The first

ℓ-epoch starts at the beginning of the request sequence σ. For any integer

i > 0, the ith ℓ-epoch ends if the request sequence σ ends or just before a

request such that, during the execution of the request, Line 11 (Figure 3.3) is

executed with j′ = ℓ. The (i + 1)st l-epoch starts when the ith ℓ-epoch ends.

Any ℓ-epoch is specified by an interval (i, j) such that the epoch starts just

before σi, and ends just before σj. For any index ℓ and any integer i such that

0 ≤ i < |σ|, enclosing(σ, i, ℓ) returns an interval (j, j′) for an ℓ-epoch such

that j ≤ i < j′.

For the request sequence σ, for any index ℓ, and any ℓ-epoch (i, j), we

define the predicate incomplete(ℓ, (i, j)) to hold if j = |σ|. For the request se-

quence σ, for any index ℓ, and any ℓ-epoch (i, j), the predicate complete(ℓ, (i, j))

holds if incomplete(ℓ, (i, j)) does not hold and after the execution of σj, the

filecount(ℓ) variable of ON is num(k, ℓ). For the request sequence σ, for

any index ℓ, and any ℓ-epoch (i, j), the predicate terminated(ℓ, (i, j)) holds if

incomplete(ℓ, (i, j)) does not hold and after the execution of σj, the filecount(ℓ)

variable of ON is less than num(k, ℓ).

Let σi be a request for file f . Then, penalty(T ′, i) = p(f), if σi is in

miss(T ′), and is zero otherwise.

We color all of the requests in σ using a coloring algorithm presented
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color(σ, i)
begin

color := nil Let the ith request in σ be for a file f
if σi is not in miss(T ′) then

// do not color σi

else if for some index ℓ > 0, added(T, enclosing(σ, i, ℓ), µ) holds,
where µ is the ℓ-encoding of f , then

color := white

else if for some index ℓ > 0, deleted(T, enclosing(σ, i, ℓ), µ) holds,
where µ is the ℓ-encoding of f , then

color := red

else if for some index ℓ > 0, incomplete(ℓ, enclosing(σ, i, ℓ)) holds and
present(T , µ) holds, where µ is the ℓ-encoding of f , then

color := blue

else if for some index ℓ, complete(ℓ, enclosing(σ, i, ℓ)) holds and
throughout(T, enclosing(σ, i, ℓ), µ) holds, where µ is the ℓ-encoding of f , then

color := black

else

color := gray

fi

return color
end

Figure 3.4: The coloring algorithm.

in Figure 3.4.

Note that encodecost(T ) is equal to the following sum:

∑

(∀index ℓ)

∑

(∀ℓ−epoch(i,j))

∑

(∀ℓ−encoding µ s.t. added(T,(i,j),µ))

encode(ℓ)

Claim 1.
∑

∀i:color(σ,i)=white penalty(T ′, i) ≤ encodecost(T )

Our proof of Claim 1 is as follows. For any index ℓ, consider any ℓ-

epoch (i, j). For any file f such that added(T, (i, j), µ) holds, where µ is the

ℓ-encoding of f , we color white all of the misses for f by ON during the ℓ-epoch.

Since ON adds the ℓ-encoding of f , µ, when misscount(f, ℓ) · p(f) ≥
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encode(ℓ)/p(f), and does not remove µ until the end of the epoch, there are

less than encode(ℓ)/p(f) + 1 misses for f by ON in the ℓ-epoch.

Claim 2.
∑

∀i:color(σ,i)=red penalty(T ′, i) ≤ encodecost(T )

Our proof for Claim 2 is as follows. Since there could be at most one

deletion per addition of any encoding, we can charge each addition twice, and

account for the misses in an epoch in which the encoding is deleted.

Claim 3.
∑

∀i:color(σ,i)=blue penalty(T ′, i) ≤ encodecost(T )

Our proof for the Claim 3 is as follows. Consider any incomplete ℓ-

epoch (i, j). For any file f such that present(T , µ) holds, where µ is the

ℓ-encoding of f , we color blue all of the misses for f during the ℓ-epoch. As

argued above, there are less than encode(ℓ)/p(f) + 1 misses for f in T ′ during

any ℓ-epoch.

Since present(T , µ) holds and there could be at most one incomplete

ℓ-epoch, we can charge the miss penalties incurred for f in T ′ during the epoch

to the encode cost incurred for µ in T .

Claim 4. At most a constant fraction of all the requests in miss(T ′) are

colored black by the coloring algorithm in Figure 3.4.

Our proof for Claim 4 is as follows. Consider any ℓ-epoch (i, j) such

that complete(i, j) holds. Note that if there are no complete epochs, then there

are no requests that are colored black .

By definition, a set of num(k, ℓ) files are marked in the ℓ-epoch. The

number of misses incurred by any file f in the set is at most encode(ℓ)/p(f)+1
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misses in the epoch. Since space(T ) ≤ k and capacity of any block of ON is

bk, for at most num(k, ℓ)/b files f throughout(T, (i, j), µ) can hold, where µ is

the ℓ-encoding of f . Hence, at most num(k, ℓ)/b · encode(ℓ)/p(f) misses in the

epoch can be colored black .

Since num(k, ℓ − 1) ≤ 1/r·num(k, ℓ), at most num(k, ℓ)/(r−1) files can

be flushed from lower-indexed blocks. At most num(k, ℓ)/(b·(r−1))·encode(ℓ−

1)/p(f) misses can be colored black . Hence, at most 2num(k,l)
b

· encode(ℓ)
p(f)

misses

can be colored black , Since there are at least 2num(k, l) · encode(ℓ)
p(f)

misses in the

ℓ-epoch, at most a constant fraction of misses attributed to a complete epoch

can be colored black . Hence, Claim 4 follows.

Claim 5. For any request q in miss(T ′) that is colored gray in the

coloring algorithm in Figure 3.4, q belongs to miss(T ).

Our proof of Claim 5 is as follows. Consider any request σi such that

color(σ, i) returns gray . Since color(σ, i) returns gray , all of the following con-

ditions hold: (a) there is no index ℓ > 0, such that added(T, enclosing(σ, i, ℓ), µ)

or deleted(T, enclosing(σ, i, ℓ), µ) holds, where µ is the ℓ-encoding of f ; (b)

there is no index ℓ > 0 such that incomplete(ℓ, enclosing(σ, i, ℓ)) holds and

present(T , µ) holds, where µ is the ℓ-encoding of f ; and (c) there is no index ℓ

such that complete(ℓ, enclosing(σ, i, ℓ)) and throughout(T, enclosing(σ, i, ℓ), µ)

hold, where µ is the ℓ-encoding of f . These conditions imply that σi belongs

to miss(T ).

From Claims 1 through 5, it follows that penalty(T ′) = O(cost(T )). �
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Lemma 3.4.8. Consider any uniform-decode instance I = (σ,m, k) of the

compression caching problem. Let T be any trace with requests(T ) = σ and

space(T ) ≤ k. Then there exists an online algorithm A, and a positive constant

b, such that T ′ = A(σ,m, bmk), space(T ′) ≤ bmk, and cost(T ′) = O(m) ·

cost(T ).

Proof. Follows from Lemmas 3.4.5, 3.4.6 and 3.4.7. �

Theorem 5. For any uniform-decode instance I of the compression caching

problem, there exists an online algorithm that is is O(m)-competitive with

O(m) factor capacity blowup, where m = numindex (I).

Proof. Follows from Lemma 3.4.8. �

3.5 Uniform Encode Costs and Varying Decode Costs

We say that an instance I(σ,m, k) of the compression caching problem

is a uniform-encode instance if any file in σ satisfies the following properties.

First, we consider that the encode costs of all the nontrivial encodings of any

file f in σ are the same; for any index i > 0, we abbreviate encode(i, f) to

encode. Second, we consider that for any index i, any file f and f ′ in σ,

size(i, f) = size(i, f ′), p(f) = p(f ′), and decode(i, f) = decode(i, f ′). For the

sake of brevity, for any file f in σ, we write decode(i, f) as decode(i).

This problem is a mathematically interesting compression caching prob-

lem, and analogous to the problem considered in Section 3.4.
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In this section we show that any deterministic online algorithm (even

with an arbitrary factor capacity blowup) for any uniform-encode instance

of the compression caching problem is Ω(log m)-competitive, where m is the

number of possible encodings for each file. Further, we present an online

algorithm for this problem that is O(m)-competitive with O(m) factor capacity

blowup.

3.5.1 The Lower Bound

In this section, we show that any deterministic online algorithm (even

with an arbitrary capacity blowup) for any uniform-encode instance of the

compression caching problem is Ω(log m)-competitive.

For any given online algorithm ON with a capacity blowup b, we con-

struct a uniform-encode instance of the compression caching problem. For any

file f and index i < m−1, we consider that size(i+1, f) ≤ 1
r
· size(i, f), where

r > b. For any file f and index i such that 0 < i < m − 1, we consider that

decode(i + 1, f) ≥ decode(i, f) · log m. We also set the miss-penalty p(f) to be

encode, and encode ≥ decode(m − 1, f) · log m.

3.5.1.1 Adversarial request generating algorithm

Our adversarial request generating algorithm ADV takes ON as input,

and generates a request sequence σ and an offline algorithm OFF such that

ON incurs at least log m times the cost incurred by OFF in executing σ. For

any file f , ADV maintains two indices denoted wu(f) and wℓ(f); initially,
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wu(f) = m and wℓ(f) = 0. The complete description of ADV is presented in

Figure 3.5.

Roughly, ADV operates as follows. Algorithm ADV forces ON to do a

search over the encodings of a file to find the encoding that OFF has chosen for

that file. Before any request is generated, ADV ensures that for any f , there

is no i-encoding of f in ON’s cache such that wℓ(f) ≤ i < wu(f). On a request

for any file f , if ON adds the i-encoding of f such that wℓ(f) ≤ i < wu(f),

then ADV readjusts wℓ(f) and wu(f) to ensure that the above condition is

satisfied. If ON does not keep the i-encoding of f such that i < wu(f), then

ADV continues to generate requests for f . Finally, when wu(f) = wℓ(f), OFF

claims that OFF has kept the i-encoding of f , where i = wℓ(f), throughout this

process, and has executed the requests for f . Then, ADV resets the variables

wu(f) and wℓ(f) to m and 0, respectively, and OFF deletes the encoding of f

from its cache. In this process, OFF incurs encoding cost of adding only one

encoding of file f . On the other hand ON incurs much higher cost than OFF

because of adding multiple encodings of f .

3.5.1.2 Analysis

We define an epoch for a file f as follows. The first epoch starts when

OFF executes the first request for f . An epoch for f ends when wu(f) is equal

to wℓ(f). A new epoch for f starts when OFF executes the first request for f

after the previous epoch ended.

Lemma 3.5.1. For any request, if OFF incurs decode cost c, then ON incurs
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{Initially, for any file f , wu(f) = m and wℓ(f) = 0. }
1 σ := ∅
2 while |σ| < N do

3 If there exists a file f such that f is present in OFF’s cache, but no i-encoding
of f is present in ON’s cache, where i < wu(f), then pick f

Otherwise, pick a file f such that f is not present in ON’s cache
4 append 〈f〉 to σ
5 OFF executes the request for f : if f is not present in OFF’s cache, then OFF

adds hi(f), where i is to be specified later (Line 16)
6 ON executes the request for f
7 while there exists a file f ′ such that ON has stored the i-encoding of f ′ and

wℓ(f
′) ≤ i < wu(f ′) do

8 mid = ⌊(wℓ(f
′) + wu(f ′))/2⌋

9 if mid ≤ i < wu(f ′)
10 wu(f ′) := mid

11 else

12 wℓ(f
′) := mid

13 fi

14 od

15 while there exists a file f ′ such that wu(f ′) = wℓ(f
′) do

16 OFF chooses the wℓ(f
′)-encoding of f ′, that is, in Line 5, i is set to wℓ(f

′)
17 wu(f ′) := m; and wℓ(f

′) := 0
18 OFF deletes the encoding of f ′

19 od

20 od

Figure 3.5: The adversarial request generating algorithm to construct a
uniform-encode instance of the compression caching problem. Here, N is the
number of requests to be generated.
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cost at least c · log m to execute the request.

Proof. In Lines 3 and 4, if ADV generates a request for a file f such that f

is present in OFF’s cache, but for any index i < wu(f), no i-encoding of f is

present in ON’s cache, then the cost incurred by ON is at least log m times

that incurred by OFF to execute the request.

Otherwise, if ADV generates a request for a file f such that f is in

OFF’s cache but not in ON’s cache, then ON incurs miss penalty p(f), and

so the cost incurred by ON is at least log m times that incurred by OFF to

execute the request. �

Lemma 3.5.2. For any file f and any epoch of f , the total miss penalty

incurred by OFF on f is p(f) and the total encode cost of OFF on f is encode.

Proof. To execute the first request for f in the epoch, OFF incurs the miss

penalty p(f) and adds an encoding of f (Line 5). Since OFF removes the

encoding of f at the end of the epoch, in the rest of the epoch, OFF does not

incur any miss penalty or encode cost on f . �

Lemma 3.5.3. For any file f and any epoch of f , if wu(f)−wℓ(f) = m
2k , then

the encode cost of ON on f is at least k times encode during the epoch.

Proof. For any index i, if ON adds the i-encoding of f to its cache such that

wℓ(f) ≤ i < wu(f), ADV reduces (wu(f) − wℓ(f)) by exactly half. Hence,
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wu(f) − wℓ(f) reduces to m
2k in the epoch only after addition of k different

encodings of f by ON. �

Lemma 3.5.4. For any file f and any complete epoch of f , the total encode

cost incurred by ON on f in the epoch is at least log m times that by OFF on

f in the epoch.

Proof. From Lemma 3.5.2, in any epoch of f , the total encode cost of OFF on

f is encode. On the other hand, from Lemma 3.5.3, the total encode cost of

ON on f is at least log m times encode. �

Lemma 3.5.5. The total number of incomplete epochs is at most k, where k

is the number of (m − 1)-encodings of files that can fit in ON’s cache.

Proof. The lemma follows from the fact that the maximum number of encod-

ings of files ON can have in the cache is k. �

Theorem 6. Any deterministic online algorithm with an arbitrary factor ca-

pacity blowup is Ω(log m)-competitive for any uniform-encode instance of the

compression caching problem.

Proof. Let n be the number of complete epochs and k be the number of in-

complete epochs. Let D be the total decode cost of OFF.

From Lemma 3.5.2, the total cost of OFF is at most (n + k) · (p +

encode) + D.
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By Lemma 3.5.1 and 3.5.4, the total cost of ON is at least np + kp +

n · encode · log m + D log m.

Hence, the ratio of the total cost of ON and that of OFF is at least

np + kp + n · encode · log m + D log m

(n + k) · (p + encode) + D

=
n + k + (n + D

encode
) log m

n + k + D
encode

=

n+k
n+ D

encode

+ log m

k
n+ D

encode

+ 1

= Ω(log m)

(The first equality follows since p(f) = encode. The last equality follows

from Lemma 3.5.5 and the fact that by generating a sufficiently large number

of requests, n + D
encode

can be made much larger than k.) �

3.5.2 An Upper Bound

In this section we present O(m)-competitive online algorithm ON with

O(m) factor capacity blowup for any uniform-encode instance I of the com-

pression caching problem, where m = numindex (I).

As in Section 3.3.1, by preprocessing, we can arrange the encodings of

the files in such a way that sizes are decreasing and decode costs are increasing.

In other words, after preprocessing, for any file f and index i < m−1, size(i+

1, f) < size(i, f), and decode(i + 1, f) > decode(i, f). Recall that for any file
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f , decode(m − 1, f) < p(f).

3.5.2.1 Algorithm

For any uniform-encode instance I = (σ,m, k), the online algorithm

ON is given a 2bm factor capacity blowup, where b is at least 1 + ǫ for some

constant ǫ > 0. We divide ON’s cache into 2m blocks, denoted i-left and

i-right , 0 ≤ i < m, such that the capacity of each block is bk. For any index i,

i-left keeps only the i-encodings of files, and i-right keeps only the 0-encodings

of files. For any file f and index i, we maintain an associated value charge(f, i).

Roughly, whenever the cost incurred in miss penalties or decode costs on a file

f exceeds encode, then ON adds an encoding of the file that is cheaper in

terms of the access cost than the current encoding (if any) of f .

The complete description of algorithm ON is given in Figure 3.6.

3.5.2.2 Analysis

Lemma 3.5.6. Consider any uniform-encode instance I = (σ,m, k). Let

T = ON(σ,m, k). Then, cost(T ) is at most twice that of the total increase in
∑

f,i charge(f, i) during the execution of ON.

Proof. From the description of the algorithm, if ON incurs a decode cost or

miss penalty c, then the increase in
∑

f,i charge(f, i) is at least c. Further, for

any file f and index i, ON adds an encoding hi(f) only when charge(f, i) is
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at least encode. Hence, the lemma follows. �

For any trace T , any file f , and any interval (i, j) such that j ≤ |T |, we

define costf (T, (i, j)) as costf (T
′, S), where T ′ is equal to the subsequence of T

starting from Ti and ending after Tj−1, and S is equal to configuration(Ti−1).

We define cost(T, (i, j)) as the sum, over all files f , of costf (T, (i, j)).

For any trace T , any file f , any index ℓ, and any interval (i, j) such

that 0 ≤ i and j ≤ |T |, added(T, f, ℓ, (i, j)) holds if, for some j′ such that

i ≤ j′ < j, one of the following conditions hold: (1) j′ = 0 and, for some

ℓ′ < ℓ, ℓ′-encoding of f is present in configuration(T0); (2) for all ℓ′ ≤ ℓ, ℓ′-

encoding of f is not present in Tj′−1, while for some ℓ′′ ≤ ℓ, ℓ′′-encoding of f

is present in configuration(Tj′).

For any trace T , any file f , any index ℓ, and any interval (i, j) such

that 0 ≤ i and j ≤ |T |, deleted(T, f, ℓ, (i, j)) holds if, for some j′ > 0 such that

i ≤ j′ < j, for all ℓ′ < ℓ, the ℓ′-encoding of f is not present in configuration(Tj′)

while for some ℓ′′ < ℓ, the ℓ′′-encoding of f is present in configuration(T(j′−1)).

For any trace T , any file f , any index ℓ, and any interval (i, j) such

that 0 ≤ i and j ≤ |T |, throughout(T, f, ℓ, (i, j)) holds if i > 0 and for all j′

in [i − 1, j], there exists some ℓ′ < ℓ such that ℓ′-encoding of f is present in

configuration(Tj′).

Lemma 3.5.7. Consider any uniform-encode instance I = (σ,m, k). Let T be

any trace such that reqseq(T ) = σ and space(T ) ≤ k. Let T ′ = ON(σ,m, 2bmk),
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where b > (1 + ǫ) for some constant ǫ greater than 0. Then, during the execu-

tion of ON, the total increase in
∑

f,i charge(f, i) is O(m) · cost(T ).

Proof. Consider the execution of T ′ = ON(σ,m, 2bmk). For any index ℓ, we

define an ℓ-superepoch (respectively, ℓ-epoch) as follows. The first ℓ-superepoch

(resp., ℓ-epoch) starts at the beginning of the request sequence σ. Any ℓ-

superepoch (resp., ℓ-epoch) ends if the request sequence σ ends or just before

a request such that, during the execution of the request, ℓ-left (resp., ℓ-right)

is flushed in Line 30 (resp., Line 17 or Line 30) in Figure 3.6. The next

ℓ-superepoch (resp., ℓ-epoch) starts when the previous ℓ-superepoch (resp.,

ℓ-epoch) ends. Any ℓ-superepoch is specified by an interval (i, j) such that

the superepoch starts just before σi and ends just after σj−1. For any index ℓ

and any ℓ-superepoch (i, j), we define increase(charge(f, ℓ), (i, j)) as the total

increase in charge(f, ℓ) during superepoch (i, j).

The lemma is immediate from the following claim.

Claim: For any index ℓ, the sum, over all files f and all ℓ-superepochs

(i, j), of increase(charge(f, ℓ), (i, j)) is at most O(1) times the sum, over all

ℓ-superepochs (i, j), of cost(T, (i, j)).

The proof of the claim is as follows. In the following we fix an ℓ-

superepoch (i, j).

An ℓ-epoch is defined to be complete if the epoch ends due to the

execution of Line 30; otherwise, the epoch is incomplete. An ℓ-epoch (i′, j′) is

enclosed in the superepoch (i, j) if i ≤ i′ and j′ ≤ j. Let kℓ be the maximum
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number of ℓ-encodings of files that can fit in any block. Let the number of

complete ℓ-epochs enclosed in the superepoch be n. Note that n is at least 1

since kℓ is at least k0. Also, since the superepoch ends when an incomplete

epoch ends, the number of enclosed incomplete ℓ-epochs is at most 1.

First, we show that
∑

f increase(charge(f, ℓ), (i, j)) is Θ(n·k0·decode(ℓ+

1)). Consider any complete ℓ-epoch (i′, j′) enclosed in the superepoch. For

any file f , since ON increases charge(f, ℓ) by decode(ℓ + 1) when ON adds f

to ℓ-right, and the ℓ-epoch ends after addition of k0 files to ℓ-right , the sum

over all f , of increase(charge(f, ℓ), (i′, j′)) is at most k0 · decode(ℓ + 1). Since

the number of incomplete ℓ-epochs enclosed in the superepoch is at most 1,

the following inequalities hold.

n · k0 · decode(ℓ + 1) ≤
∑

f

increase(charge(f, ℓ), (i, j)) (3.1)

≤ (n + 1) · k0 · decode(ℓ + 1) (3.2)

Next we show that cost(T, (i, j)) is Ω(n · k0 · decode(ℓ + 1)).

For any file f , ON adds the ℓ-encoding of f to ℓ-left when charge(f, i)

is at least encode. Hence,

increase(charge(f, ℓ), (i, j)) < encode + decode(ℓ + 1) (3.3)

For any file f such that added(T, f, ℓ, (i, j)) holds, costf (T, (i, j)) is at

least encode+decode(ℓ+1), which is more than increase(charge(f, ℓ), (i, j)), as

argued above in Equation 3.3. Note that there could be at most one deletion
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per addition of any encoding. For any file f such that deleted(T, f, ℓ, (i, j))

holds, we can charge addition twice, and attribute encode + decode(ℓ + 1)

to deletion, which is more than increase(charge(f, ℓ), (i, j)), as argued above

in Equation 3.3. For any file f with x requests during the superepoch, the

value of increase(charge(f, ℓ), (i, j)) is at most x · decode(ℓ + 1) since on each

request charge(f, ℓ) increases by at most decode(ℓ + 1). For any file f , if

added(T, f, ℓ, (i, j)) does not hold, or deleted(T, f, ℓ, (i, j)) does not hold, or

throughout(T, f, ℓ, (i, j)) does not hold, then costf (T, (i, j)) is at least x ·

decode(ℓ + 1), where x is the number of requests for f during the supere-

poch, and the latter quantity is at least increase(charge(f, ℓ), (i, j)). Let X be

a set of files f such that throughout(T, f, ℓ, (i, j)) holds. Then the following

inequality holds.

cost(T, (i, j)) ≥
∑

f /∈X

increase(charge(f, ℓ), (i, j)) (3.4)

Since any ℓ-superepoch ends after addition of kℓ files to ℓ-left during

the superepoch, the following holds.

∑

f

increase(charge(f, ℓ), (i, j)) ≥ kℓ · (encode + decode(ℓ + 1)) (3.5)

From Equations 3.2 and 3.5,

(n + 1) · k0 · decode(ℓ + 1) ≥ kℓ · (encode + decode(ℓ + 1)) (3.6)

Let X be a set of files f such that throughout(T, f, ℓ, (i, j)) holds. Since

space(T ) ≤ k and the capacity of any block is bk, the following equation holds.

|X| ≤
kℓ

b
(3.7)
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From the above,

cost(T, (i, j)) ≥
∑

f /∈X

increase(charge(f, ℓ), (i, j))

≥
∑

∀f

increase(charge(f, ℓ), (i, j))

−
∑

f∈X

increase(charge(f, ℓ), (i, j))

≥ n · k0 · decode(ℓ + 1) −

−
∑

f∈X

increase(charge(f, ℓ), (i, j))

≥ n · k0 · decode(ℓ + 1) −
kℓ

b
(encode + decode(ℓ + 1))

≥ n · k0 · decode(ℓ + 1) −
1

b
(n + 1) · k0 · decode(ℓ + 1)

≥ Ω(n · k0 · decode(ℓ + 1))

(In the above equation, the first inequality follows from Equation 3.4.

The second inequality is straightforward. The third inequality follows from

Equation 3.1. The fourth inequality follows from Equation 3.3 and Equa-

tion 3.7. The fifth inequality follows from Equation 3.5. The sixth inequality

follows from the fact that b > 1 + ǫ, and by setting ǫ appropriately.)

Summing over all ℓ-superepochs (i, j), the claim follows. The lemma is

immediate from the claim. �

Lemma 3.5.8. Consider any uniform-encode instance I = (σ,m, k). Let T be

any trace such that reqseq(T ) = σ and space(T ) ≤ k. Let T ′ = ON(σ,m, 2bmk),

where b > (1 + ǫ) for some constant ǫ greater than 0. Then cost(T ′) =

O(m) · cost(T ).
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Proof. Follows from Lemmas 3.5.6 and 3.5.7. �

The following theorem is immediate from Lemma 3.5.8.

Theorem 7. For any uniform-encode instance I of the compression caching

problem, there exists an online algorithm that is is O(m)-competitive with

O(m) factor capacity blowup, where m = numindex (I).
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ON(σ,m, k)
1 begin

2 T := ∅
3 {Initially, for any file f ′ and index i, charge(f ′, i) := 0}
4 On an access for a file f
5 if for any index i, f is present in i-right then

6 serve f
7 else

8 if f is not present in the cache then

9 charge(f,m − 1) := charge(f,m − 1) + p(f)
10 i := m
11 else

12 let i be the smallest index such that f is in i-left
13 fi

14 foreach index j < i do

15 if j < m − 1 then

16 charge(f, j) := charge(f, j) + decode(j + 1) fi

17 if j-right is full then flush j-right
18 bring f to j-right
19 if charge(f, j) ≥ encode then

20 add(f, j) fi

21 od

22 fi

23 Let S be the set of encodings present in the cache
24 T := T ◦ S
25 return T
26 end

27 add(file f ′, int j)
28 begin

29 if j-left is full then

30 flush j-left and j-right
31 for any file f , charge(f, j) := 0
32 fi

33 add hj(f
′) to j-left

34 charge(f ′, j) := 0
35 end

Figure 3.6: An online algorithm for the uniform-encode compression caching
problem.
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Chapter 4

Online Aggregation over Trees

4.1 Introduction

Information aggregation is a basic building block in many large-scale

distributed applications such as system management [25, 41], service place-

ment [24, 44], file location [12], grid resource monitoring [18], network moni-

toring [29], and collecting readings from sensors [32]. Certain generic aggre-

gation frameworks [18, 37, 45] proposed for building such distributed appli-

cations allow scalable information aggregation by forming tree-like structures

with machines as nodes, and by using an aggregation function at each node to

summarize the information from the nodes in the associated subtree.

Some of the existing aggregation frameworks use strategies optimized

for certain workloads. For example, in MDS-2 [18], the information is aggre-

gated only on reads, and no aggregation is performed on writes. This kind

of strategy performs well for write-dominated workloads, but suffers from un-

necessary latency or imprecision on read-dominated workloads. On the other

hand, Astrolabe [37] employs the other extreme form of strategy in which, on

a write at a node u in the tree, each node v on the path from u to the root

node recomputes the aggregate value for the subtree rooted at node v, and the
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new aggregate values are propagated to all the nodes. This kind of strategy

performs well for read-dominated workloads, but consumes high bandwidth

when applied to write-dominated workloads. Furthermore, instead of these

two extreme forms of workloads, the workload may fluctuate and different

nodes may exhibit activity at different times. Therefore, a natural question

to ask is whether one can design an adaptive aggregation strategy that works

well for varying workloads.

SDIMS [45] proposes a hierarchical aggregation framework with a flexi-

ble API that allows applications to control the update propagation, and hence,

the aggregation aggressiveness of the system. Though SDIMS exposes such

flexibility to applications, it requires applications to know the read and write

access patterns a priori to choose an appropriate strategy (see our discussion

on related work for further details). Thus, SDIMS leaves an open question of

how to adapt the aggregation strategy in an online manner as the workload

fluctuates.

In this work, we design an online aggregation algorithm, and show that

the total number of messages required to execute a given set of requests is

within a constant factor of the minimum number of messages required to exe-

cute the requests. We give the complete algorithm description in the abstract

protocol notation [26], and also believe that our algorithm is practical.

Broader Perspective. The ever increasing complexity of developing

large-scale distributed applications motivates a research agenda based on the

identification of key distributed primitives, and the design of reusable modules
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for such primitives. To promote reuse, these modules should be “self-tuning”,

that is, should provide near optimal performance under a wide range of operat-

ing conditions. As indicated earlier, aggregation is useful in many applications.

In the present we design a distributed protocol for aggregation that provides

good performance guarantees under any operating conditions. Our focus on

tree networks is not limiting since many large-scale distributed applications

tend to be hierarchical (tree-like) in nature for scalability. If the network is

not a tree, one can use standard techniques to build a spanning tree. For ex-

ample, in SDIMS [45], nodes are arranged in a distributed hash table (DHT),

and trees embedded in the DHT are used for the aggregation; these trees are

automatically repaired in the face of failures. The present work can be viewed

as a case study within the broader research agenda alluded to above. The

techniques developed here may find application in the design of self-tuning

modules for other primitives.

Problem Formulation. In order to describe our results we next

present a brief description of the problem formulation; see Section 4.2 for a

detailed description. We consider a distributed network with nodes arranged

in an unrooted tree and each node having a local value. We formulate the

aggregation problem as the problem of aggregating values (e.g., computing

min, max, sum, or average) from all the nodes to the requesting nodes in

the presence of writes. The goal is to minimize the total number of messages

exchanged.

The main challenges are to define acceptable aggregate values in the
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presence of concurrent requests, and to design algorithms with good perfor-

mance that produce acceptable aggregate values. We define the acceptability

of aggregate values in terms of certain consistency guarantees. There is a

spectrum of solutions that trade off between consistency and performance.

We introduce a mechanism that uses the concept of leases for aggregation

algorithms. Any aggregation algorithm that uses this mechanism is called a

lease-based aggregation algorithm. The notion of a lease used in our mecha-

nism is a generalization of that used in SDIMS [45].

Results. We evaluate lease-based aggregation algorithms in terms

of consistency and performance. In terms of consistency, we generalize the

notions of strict and causal consistency, traditionally defined for distributed

shared memory [40, Chapter 6], for the aggregation problem. We show that

any lease-based aggregation algorithm provides strict consistency for sequen-

tial executions, and causal consistency for concurrent executions.

In terms of performance, we analyze lease-based algorithms in the

framework of competitive analysis [39]. As is typical in the competitive anal-

ysis of distributed algorithms [6, 7], we focus on sequential executions. In

this chapter we present an online lease-based aggregation algorithm RWW

which, for sequential executions, is 5
2
-competitive against an optimal offline

lease-based aggregation algorithm. We use a potential function argument to

show this result. We also show that the result is tight by providing a match-

ing lower bound. Further, we show that, for sequential executions, RWW is

5-competitive against an optimal offline algorithm that provides strict consis-
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tency.

The three main contributions of the work are as follows. First, we

design an online aggregation algorithm and show that our algorithm achieves

a good competitive ratio for sequential executions. Second, we define the

notion of causal consistency for the aggregation problem. Third, we show

that our algorithm satisfies the definition of causal consistency for concurrent

executions.

An interesting highlight of the techniques is the reduction of the analysis

to reasoning about a pair of neighboring nodes. This reduction allows us to

formulate a linear program of small size, independent of tree size, for the

analysis.

Related Work. Various aggregation frameworks have been proposed

in the literature such as SDIMS [45], Astrolabe [37], and MDS [18]. SDIMS

is a hierarchical aggregation framework that utilizes DHT trees to aggregate

values. SDIMS provides a flexible API that allows applications to decide how

far to propagate updates to the aggregate value due to writes. In particular,

SDIMS supports Update-local, Update-all, and Update-up strategies. In the

Update-local strategy, a write affects only the local value. In the Update-all

strategy, on a write, the new aggregate value is propagated to all the nodes.

In the Update-up strategy, on a write, the new aggregate value is propagated

to the root node of the hierarchy. Astrolabe is an information management

system that builds a single logical aggregation tree over a given set of nodes.

Astrolabe propagates all updates to the aggregate value due to writes to all
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the nodes, and hence, allows all reads to be satisfied locally. MDS-2 also forms

a spanning tree over all nodes. MDS-2 does not propagate updates on writes,

and each request for an aggregate value requires all nodes to be contacted.

There are some similarities between our lease-based aggregation algo-

rithm and prior caching work. Here we describe some of the most relevant

work. In CUP [38], Roussopoulos and Baker propose a second-chance algo-

rithm for caching objects along the routing path. The algorithm removes a

cached object after two consecutive updates are propagated to remote loca-

tions due to writes on that object at the source. The second-chance algorithm

has been shown to provide good performance in an experimental evaluation.

In a work related to distributed file allocation [7], Awerbuch et al. present a

replication algorithm for a general network. In their algorithm, on a read,

the requested object is replicated along a path from the destination to the

requesting node. On a write, all copies are deleted except the one at the writ-

ing node. Awerbuch et al. show that their distributed algorithm achieves a

poly-logarithmic competitive ratio for the distributed caching problem against

an optimal centralized offline algorithm.

The concept of time-based leases has been proposed in the literature

as a way to maintain consistency between a cached copy and the source. Such

leases have been applied in many distributed applications such as replicated

file systems [27] and web caching [20].

Ahamad et al. [3] gave the formal definition of causal consistency for

a distributed message passing system. The key difference between their setup
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and ours is in reading one value compared to aggregating values from all the

nodes.

There are several efforts to deal with numerical error in the aggregate

value such as [11, 34]. However, to the best of our knowledge, no prior work

yields a competitive online algorithm for the aggregation problem, and no prior

work addresses the issue of ordering semantics in concurrent executions. In

[11], Bawa et al. define a semantic for various scenarios such as approximate

aggregation in a faulty environment, and called this semantic approximate

single-site validity. They design algorithms that provide such a semantic,

and evaluate their algorithms experimentally. In [34], Olston and Widom

consider a single level hierarchy and propose a new class of replication systems,

called TRAPP, that allows the user to control the tradeoff between precision

(numerical error) and communication overhead.

Organization. In Section 4.2 we introduce various definitions. In

Section 4.3 we give an informal description of our algorithm and analysis.

In Section 4.4 we define the class of lease-based aggregation algorithms, and

establish certain properties of such algorithms. In Section 4.5 we present our

online lease-based aggregation algorithm RWW, and establish bounds on the

competitive ratio of RWW for sequential executions. In Section 4.6 we define

the notion of a causally consistent aggregation algorithm, and establish that

any lease-based algorithm, including RWW, is causally consistent.
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4.2 Preliminaries

Assume that we are given a finite set of nodes (i.e., machines) arranged

in a tree network T with reliable FIFO communication channels between neigh-

boring nodes. We are also given an aggregation operator ⊕ that is commuta-

tive, associative, and has an identity element 0. We find it convenient to write

an expression of the form x⊕y⊕z as ⊕(x, y, z). For the sake of concreteness,

throughout this chapter, we assume that the local value associated with each

node is a real value, and the domain of ⊕ is also real.

The aggregate value over a set of nodes is defined as ⊕ computed over

the local values of all nodes in the set. That is, the aggregate value over a set

of nodes {v1, . . . , vk} is ⊕(v1.val , . . . , vk.val), where vi.val is the local value of

the node vi. The global aggregate value is defined as the aggregate value over

all nodes in the tree T .

A request is a tuple (node, op, arg , retval), where node is the node where

the request is initiated, op is the type of the request, either combine or write,

arg is the argument of the request (if any), and retval is the return value of the

request (if any). To execute a write request, an aggregation algorithm takes

the argument of the request and updates the local value at the requesting node.

To execute a combine request, an aggregation algorithm returns a value. Note

that this definition admits the trivial algorithm that returns 0 on any combine

request. We define certain correctness criteria for aggregation algorithms later

in the chapter. Roughly speaking, the returned value on a combine request

corresponds to the global aggregate value.
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The aggregation problem is to execute a given sequence of requests

with the goal of minimizing the total number of messages exchanged among

nodes. For any aggregation algorithm A, and any request sequence τ , we

define CA(τ) as the total number of messages exchanged among nodes during

the execution of τ by A. An online aggregation algorithm A is c-competitive

if for all request sequences τ and an optimal offline aggregation algorithm B,

CA(τ) ≤ c · CB(τ) [13, Chapter 1].

We say that T is in a quiescent state if (1) there is no pending request

at any node; (2) there is no message in transit across any edge; and (3) no

message is sent until the next request is initiated. In short, T is in a quiescent

state if there is no activity in T until the next request is initiated.

In a sequential execution of a request, the request is initiated in a

quiescent state and is completed when T reaches another quiescent state. In a

sequential execution of a request sequence σ, every request q in σ is executed

sequentially. In a concurrent execution of a request sequence, a new request

can be initiated and executed while another request is being executed. We refer

to the aggregation problem in which the given request sequence is executed

sequentially as the sequential aggregation problem.

The aggregation function, denoted f , is defined over a set of real values

or over a set of write requests. For a set A of real values x1, . . . , xm, f (A)

is defined as ⊕(x1, . . . , xm). For a set A of write requests q1, . . . , qm, f (A) is

defined as ⊕(q1.arg , . . . , qm.arg).
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For any request q in a request sequence σ, let A(σ, q) be the set of

the most recent writes preceding q in σ corresponding to each of the nodes

in T . We say that an aggregation algorithm provides strict consistency in

executing σ if any combine request q in σ returns f (A(σ, q)) as the global

aggregate value at q.node. Note that this definition of strict consistency for an

aggregation algorithm is a generalization of the traditional definition of strict

consistency for distributed shared memory systems (for further details, see [40,

Chapter 6]). We define an aggregation algorithm to be nice if the algorithm

provides strict consistency for sequential executions.

The set of all nodes in tree T is denoted by nodes(T ). For any edge

(u, v) in T , removal of (u, v) yields two trees, subtree(u, v) is defined to be one

of the trees that contains u.

For any request sequence σ and any ordered pair of neighboring nodes

(u, v), we define σ(u, v) as follows: (1) σ(u, v) is a subsequence of σ; (2) for

any write request q in σ such that q.node is in subtree(u, v), q is in σ(u, v);

and (3) for any combine request q in σ such that q.node is in subtree(v, u), q

is in σ(u, v).

4.3 Informal Overview

In this section we present an informal overview of our algorithm and

analysis.

Recall that on a combine request at a node u, u returns a value.
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Roughly speaking, the value corresponds to the global aggregate value. In

order to do that, u contacts other nodes and collects the local values from all

other nodes. Note that we can minimize the number of messages by performing

aggregation at intermediate nodes, also referred as in-network aggregation.

However, for a combine-dominated workload, one may wish to prop-

agate an updated local value on a write request to minimize the number of

messages exchanged on a combine. On the other hand, for a write-dominated

workload, such propagation tends to be wasteful. In order to facilitate adap-

tation of how many messages to send on a combine request versus a write

request, we propose a lease mechanism. Here, we illustrate our lease mecha-

nism for just two nodes u and v connected by an edge, and a scenario in which

combine requests are initiated at v and write requests are initiated at u. (See

Section 4.4 for a complete description of the mechanism.)

If the lease from u to v is present, then on a write request at u, u

propagates the new local value to v by sending an update message. Hence, in

the presence of this lease, a combine request at v is executed locally. On the

other hand, if the lease from u to v is not present, then on a combine request

at v, a probe message is sent from v to u. As a result, a response message

containing the local value at u is sent from u to v. Further, in this case, a write

request at u is executed locally. Note that in a combine-dominated scenario,

presence of the lease is beneficial. However, in a write-dominated scenario, v

may receive many updates while v is not initiating any request. In that case,

v can break the lease by sending a release message to u.
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Figure 4.1: An example tree network.

In order to make the lease mechanism work for a tree network in a

desirable way, we enforce two lease invariants. Consider the tree network in

Figure 4.1 as an example. The presence of a lease on an edge is denoted by a

dotted line. To motivate the first invariant, consider a combine request q at

node w with leases as in Figure 4.1(a). During the execution of q, w sends

messages and collects the local values from all the other nodes. If the lease

from t to u is present, then u need not send any message to t. However, this

works only if t has leases from r and s. Our first invariant requires that the

lease from t to u is not set unless t has leases from all the other neighboring

nodes. Our second invariant requires that the lease from t to u cannot be

broken if u has given a lease to any other neighboring node, say node w in

Figure 4.1(b).

Given this lease mechanism, an aggregation algorithm can adapt how

far an updated value should be propagated on a write request by setting and

breaking leases appropriately. The next question is how to set and break the

leases dynamically in an optimal manner. We answer this question by pro-

viding an online lease-based aggregation algorithm RWW (see Section 4.5).

Roughly, RWW works as follows. For an edge (u, v), RWW sets the lease from

u to v during the execution of a combine request at any node in subtree(v, u),

115



and breaks the lease after two consecutive write requests at any node in

subtree(u, v). Using a potential function argument, we show that RWW is

5
2
-competitive against any offline lease-based algorithm for sequential execu-

tions. We also show that this bound is tight by providing a lower bound

argument. Further, we show that RWW is 5-competitive against any offline

algorithm that provides strict consistency for sequential executions.

With respect to consistency guarantees, we show that any lease-based

aggregation algorithm provides strict consistency for sequential executions.

For concurrent executions, it is difficult to provide strict or sequential con-

sistency. Causal consistency is considered to be the next weaker consistency

model for the distributed shared memory environment [40, Chapter 6]. At

first, it is not clear how to generalize the causal consistency definitions for the

aggregation problem.

We define causal consistency for the aggregation problem and show

that any lease-based algorithm provides causal consistency for concurrent ex-

ecutions (see Section 4.6). First, we introduce a new type of ghost request

gather to associate a combine request with a set of write requests. The con-

cept of a gather request is similar to the way of associating a read request

with a unique write request in analyzing distributed shared memory [3, 33].

Second, we define causal ordering among gather and write requests. Third,

we extend the lease-based mechanism by adding ghost variables and ghost

actions. Finally, we use an invariant style proof technique to show that any

lease-based algorithm provides causal consistency. First, we show that a ghost
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log maintained at each node, containing gather and write requests, respects

causal ordering among requests. Second, we show that there is one-to-one cor-

respondence between gather and combine requests, such that the return value

of a combine request is same as aggregation function computed over the set of

write requests returned by the corresponding gather request.

4.4 Lease-Based Algorithms

In Section 4.3 we gave a high level description of an aggregation mech-

anism based on the concept of leases. See Figure 4.2 for the formal description

of this mechanism. The underlined function calls represent stubs for policy

decisions related to lease setting and breaking. Any policy function has read-

only access to the mechanism variables. Throughout the remainder of this

chapter, any aggregation algorithm that uses this mechanism and defines the

policy functions is said to be lease-based.

The status of the leases for an edge (u, v) is given by two boolean

variables u.taken[v] and u.granted [v]. Informally, Node u believes that the

lease from v to u is set if and only if u.taken[v] holds. Also, u believes that the

lease from u to v is set if and only if u.granted [v] holds. The local value at u is

stored in u.val . For each neighbor vi of u, u.aval [vi] represents the aggregate

value computed over the set of nodes in subtree(vi, u). The following kinds

of messages are sent by a lease-based algorithm: probe, response, update, and

release.

The variable sntupdates is a set of tuples, where each tuple represents
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node u
var taken[] : array[v1, . . . , vk] of boolean;

granted [] : array[v1, . . . , vk] of boolean;
aval [] : array[v1, . . . , vk] of real; val : real;
uaw [] : array[v1, . . . , vk] of set {int};
pndg : set {node};
snt [] : array[v1, . . . , vk] of set {node};
upcntr : int; sntupdates : set {{node, int, int}};

init val := 0; uaw := ∅; pndg := ∅; upcntr := 0;
sntupdates := ∅; ∀v ∈ nbrs(), taken[v] := false;
granted [v] := false; aval [v] := 0; snt [v] := ∅;

begin

T1 true → {combine}
1 oncombine(u);
2 foreach v ∈ tkn() do

3 uaw [v] := ∅; od

4 if u /∈ pndg →
5 if nbrs() \ tkn() = ∅ →
6 return gval();
7 � nbrs() \ tkn() 6= ∅ →
8 sendprobes(u);
9 snt [u] := nbrs() \ tkn(); fi fi

T2 true → {write q}
1 val := q.arg;
2 if grntd() 6= ∅ →
3 id := newid();
4 forwardupdates(u, id); fi

T3 � rcv probe() from w →
1 probercvd(w);
2 foreach v ∈ tkn() \ {w} do

3 uaw [v] := ∅; od

4 if w /∈ pndg →
5 if nbrs() \ {tkn() ∪ {w}} = ∅ →
6 sendresponse(w);
7 � nbrs() \ {tkn() ∪ {w}} 6= ∅ →
8 sendprobes(w);
9 snt [w] := nbrs() \ {tkn() ∪ {w}}; fi fi

T4 � rcv response(x,flag) from w →
1 responsercvd(flag, w);

2 aval [w] := x;
3 taken[w] := flag;
4 foreach v ∈ pndg do

5 snt [v] := snt [v] \ {w};
6 if snt [v] = ∅ →
7 pndg := pndg \ {v};
8 if v = u →
9 return gval();

10 � v 6= u →
11 sendresponse(v); fi fi od

T5 � rcv update(x, id) from w →
1 updatercvd(w);
2 aval [w] := x;
3 uaw [w] := uaw [w] ∪ id ;
4 if grntd() \ {w} 6= ∅ →
5 nid = newid();
6 sntupdates := sntupdates ∪ {(w, id ,nid)};
7 forwardupdates(w,nid);
8 � grntd() \ {w} = ∅ →
9 forwardrelease(); fi

T6 � rcv release(S) from w →
1 releasercvd(w);
2 granted [w] := false;
3 onrelease(w, S);

end

Figure 4.2: The mechanism for any lease-based aggregation algorithm. Nodes
{v1, . . . , vk} refer to the neighbors of node u.
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procedure sendprobes(node w)
pndg := pndg ∪ {w};
foreach v ∈ nbrs() \ {tkn() ∪ sntprobes() ∪ {w}} do

send probe() to v;od

procedure forwardupdates(node w, int id)
foreach v ∈ grntd() \ {w} do

send update(subval(v), id) to v;od

procedure sendresponse(node w)
if (nbrs() \ {tkn() ∪ {w}} = ∅) →

granted [w] := setlease(w);fi
send response(subval(w), granted [w]) to w;

boolean isgoodforrelease(node w)
return (grntd() \ {w} = ∅);

procedure onrelease(node w, set S)
Let id be the smallest id in S;
foreach v ∈ tkn() \ {w} do

Let A be the set of tuples α in sntupdates

such that α.node = v and α.sntid ≥ id ;
Let β be a tuple in A

such that β.rcvid ≤ α.rcvid , for all α in A;
Let S′ be the set of ids in uaw [v] with ids ≥ β.rcvid ;
uaw [v] := S′;
if isgoodforrelease(v) →

releasepolicy(v);
fi

od

forwardrelease();

procedure forwardrelease()
foreach v ∈ tkn() do

if isgoodforrelease(v) →
if taken[v] ∧ breaklease(v) →

taken[v] := false;
send release(uaw [v]) to v;
uaw [v] := ∅;fi fi od

int newid()
upcntr := upcntr + 1;
return upcntr ;

real gval()
x := val ;
foreach v ∈ nbrs() do

x := f (x, aval [v]);od

return x;

real subval(node w)
x := val ;
foreach v ∈ nbrs() \ {w} do

x := f (x, aval [v]);od

return x;

set nbrs()
return the set of neighboring nodes;

set tkn()
return {v | v ∈ nbrs() ∧ taken[v] = true};

set grntd()
return {v | v ∈ nbrs() ∧ granted [v] = true};

set sntprobes()
return {snt [v1] ∪ · · · ∪ snt [vk]};

Figure 4.3: Procedures used in the mechanism for any lease-based algorithm.
Nodes {v1, . . . , vk} refer to the neighbors of node u.
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forwarded update messages corresponding to a received update message. Each

tuple consists of three elements, node, rcvid , and sntid . The first element,

node, identifies the node from which the update message is received. The

second element, rcvid , is the identifier of the received update message, and the

last element, sntid , is the identifier of the corresponding sent update messages.

Informally, for any node u, a lease from a node u to its neighboring

node v works as follows. If u.granted [v] holds, then on a write request at any

node in subtree(u, v), u propagates the new aggregate value to v by sending an

update message. To break the lease (that is, to falsify u.granted [v]), a release()

message is sent from v to u. On the other hand, if u.granted [v] does not hold,

then on a combine request at any node in subtree(v, u), a probe() message is

sent from v to u. As a result, a response message is sent from u to v.

4.4.1 Properties of any Lease-Based Algorithm for Sequential Ex-

ecutions

For any quiescent state Q, we define a lease graph G(Q) as a directed

graph with nodes as the nodes in T , and for any edge (u, v) in T such that

u.granted [v] holds, there is a directed edge (u, v) in G(Q). For any two distinct

nodes u and v, we define the u-parent of v as the parent of v in T rooted at u.

Lemma 4.4.1. For a sequential execution of a request sequence, in any quies-

cent state, for any two neighboring nodes u and v, u.taken[v] = v.granted [u].

Proof. Consider any node v in u.nbrs(). Variable u.taken[v] can be set to true

from false only in Line 3 of T4 if the flag in the received response message is
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true. However, while sending the response message from v to u with flag set

to true, v.granted [u] is set to true in sendresponse().

While sending a release message from u to v, u.taken[v] is falsified in

forwardrelease(). However, on receiving the release message at v, v.granted [u]

is falsified in Line 2 of T6. �

Lemma 4.4.2. For a sequential execution of a request sequence, in any qui-

escent state, for any node u and any node v in u.nbrs(), if u.granted [v] then,

for all nodes w in u.nbrs() \ {v}, u.taken[w] holds.

Proof. By inspection of the code, u.granted [v] can be set to true only in

the procedure sendresponse(). By inspection of the code of sendresponse(),

u.granted [v] can be set to true only if u.nbrs() \ {u.tkn() ∪ {v}} = ∅. That

is, u.granted [v] can be set to true only if, for all nodes w in u.nbrs() \ {v},

u.taken[w] holds.

Further, by inspection of the code, u.taken[w] is set to false only in the

procedure forwardrelease(). By inspection of the code of forwardrelease(),

u.taken[w] can be set to false only if, for all nodes v in u.nbrs() \ {w},

u.granted [v] is false. That is, for any node v in u.nbrs(), if u.granted [v] holds

then, for any node w in u.nbrs() \ {v}, u.taken[w] is not falsified. �

Lemma 4.4.3. Consider a sequential execution of a request sequence σ by a

lease-based algorithm. For any combine request q in σ, initiated at node u in

a quiescent state Q, let A be the set of nodes v such that v.granted [w] does

121



not hold in Q, where w is the u-parent of v. In Q, for any node v in T , if

v.pndg = ∅ and for any node w in v.nbrs(), v.snt [w] = ∅, then, during the

execution of q, the following conditions hold: (1) |A| probe messages are sent,

and any node v in A receives a probe message from the u-parent of v; (2) |A|

response messages are sent, and any node v in A sends a response message to

the u-parent of v; (3) no update or release messages are sent.

Proof. We prove part (1) by induction on the length of the path from u to an

arbitrary node v in A.

Base case (path length 1). By inspection of the code of T1, probe

messages are sent to all nodes in u.nbrs() \ {u.tkn() ∪ u.sntprobes() ∪ {u}}.

Since in the quiescent state Q, for any node v in T and any node w in v.nbrs(),

v.snt [w] = ∅, u.sntprobes() = ∅. Hence, a probe message is sent to any node

v in u.nbrs() such that u.taken[v] does not hold. By Lemma 4.4.1, in Q,

u.taken[v] = v.granted [u]. Hence, any node v in A such that v is in u.nbrs()

and v.granted [u] does not hold, receives a probe message from u.

Induction hypothesis. Any node v in A such that the length of the path

from u to v is i receives a probe message from the u-parent of v.

Induction step. Consider a node v in A such that the length of the

path from u to v is (i + 1). Let the u-parent of v be w. By the definition

of A, v.granted [w] does not hold in Q. Hence, by Lemmas 4.4.1 and 4.4.2,

w.granted [u-parent of w] does not hold in Q. Thus, w is in A, and by induction

hypothesis w receives a probe message from w′. By inspection of the code of
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T3, w sends a probe message to any node w′ in w.nbrs() such that w.taken[w′]

does not hold. Since w.taken[v] does not hold and the communication channels

are reliable, v receives a probe message from w, the u-parent of v.

From the above arguments, during the execution of q, at least |A| probe

messages are sent. By inspection of the code, no node v in A∪{u} sends a probe

message to a node in v.tkn() \ {u-parent of v}. Hence, it is straightforward to

see that no node in nodes(T ) \A receives a probe message. Hence, during the

execution of q, only |A| probe messages are sent.

We prove part (2) by reverse induction on the length of the path from

u to any node v in A. Let the maximum length of the path from u to any

node v in A be l .

Base case. Consider a node v in A such that the length of the path

from u to v is l . By part (1), v receives a probe message from w, the u-parent

of v. In the quiescent state Q, let B be v.nbrs() \ {v.tkn()∪ {u-parent of v}}.

By Lemma 4.4.1, B must be ∅; otherwise, there would be a node in A for

which the length of the path from u is equal to l + 1. By inspection of the

code of T3, if B is empty, then v sends back a response message to w.

Induction hypothesis. Let v be a node in A for which the length of

path from u is equal to i, and assume that v sends a response message to its

u-parent.

Induction step. Consider a node v in A such that the length of the

path from u to v is i − 1. Since v is in A, i − 1 is greater than 0. In Q, let B
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be v.nbrs() \ {v.tkn() ∪ {u-parent of v}}.

By part (1), v receives a probe message from the u-parent of v. In order

to prove part (2), we can assume that, in Q, v.pndg = ∅ and for any node w

in v.nbrs(), v.snt [w] = ∅. Hence, in Q, v.sntprobes() is empty.

By inspection of the code of T3, if B is empty, then v sends a response

message back to the u-parent of v. Hence, the induction step succeeds.

Otherwise, v sends probe messages to each of the nodes in B, and sets

v.pndg = {u-parent of v} and v.snt [u-parent of v] = B. Since we are dealing

with sequential execution, no node initiates any request during the execution

of q. Hence, v does not initiate any request or receive a probe message during

the execution of q. Hence, v.pndg ≤ 1.

By Lemma 4.4.1 and the definition of A, any node in B is also present

in A. Further, the length of the path from u to any node in B is i. Hence, by

the induction hypothesis, any node w in B sends a response message to v. By

inspection of the code of T4, on receiving the response message, v removes w

from v.snt [u-parent of v]. If v.snt [u-parent of v] becomes empty, then v sets

v.pndg = ∅, and sends a response message to the u-parent of v. Hence, the

induction step succeeds.

(3) Follows from inspection of the code. �

Lemma 4.4.4. For any sequential execution of a request sequence σ, in any

quiescent state, for any node u, the following conditions hold: (1) u.pndg = ∅;

(2) for any node v in u.nbrs(), u.snt [v] = ∅.
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Proof. We prove the claim by induction on the number of requests executed.

Base case: Initially, for any node v, v.pndg = ∅ and for any node w in

v.nbrs(), v.snt [w] = ∅.

Induction hypothesis: In the quiescent state Q just after execution

of i requests, for any node v, v.pndg = ∅ and for any node w in v.nbrs(),

v.snt [w] = ∅.

Induction step: Consider the execution of the (i+1)st request q initiated

in Q. If q is a write request, then by inspection of the code, no probe or

response message is generated. Hence, for any node v, v.pndg and any node

w in v.nbrs(), v.snt [w] is not modified. Therefore, the execution of (i + 1)st

request preserves the claim of the lemma.

Otherwise, q is a combine request, say at u. Consider execution of q.

Let A be the set of nodes v such that v.granted [w] does not hold at Q, where

w denotes the u-parent of v.

By the induction hypothesis, in Q, for any node v, v.pndg = ∅ and for

any node w in v.nbrs(), v.snt [w] = ∅.

First, consider any node v in nodes(T ) \ {A ∪ {u}}. By inspection of

the code, for any node v, v.pndg and for any node w in v.nbrs(), v.snt [w] can

be modified only in T1 (on a combine request at v), in T3 (on receiving a probe

message), or in T4 (on receiving a response message). In a sequential execution

of σ, v does not initiate any request during the execution of q. By Lemma

4.4.3, during the execution of q, any node in A receives a probe message, and
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only |A| probe messages are sent. Hence, v does not receive any probe message

during the execution of q. By the definition of A, the u-parent of any node

in A is in A ∪ {u}. By Lemma 4.4.3, during the execution of q, |A| response

messages are generated and any node in A sends a response message to the

u-parent of the node. Hence, v does not receive any response message during

the execution of q. Hence, during the execution of q, v.pndg remains ∅, and

for any node w in v.nbrs(), v.snt [w] remains ∅.

Second, consider v = u. By inspection of the code of T1, if u.nbrs() \

u.tkn() = ∅, then u returns gval(), and so, u.pndg remains ∅, and for any node

w in u.nbrs(), u.snt [w] remains ∅. Further, by Lemma 4.4.1 and Lemma 4.4.2,

|A| = ∅. Hence, from the arguments in the previous paragraph, the induction

step succeeds, and the lemma follows.

Otherwise, u.nbrs()\u.tkn() 6= ∅. Then, since u.sntprobes() = ∅ by the

induction hypothesis, u sends a probe message to each node in the set u.nbrs()\

u.tkn(), and node u adds u to u.pndg and sets u.snt [u] = nodes .nbrs()\u.tkn().

Since, in a sequential execution, a new request can be generated only in a

quiescent state, no node generates a request until q is completed. Hence, u

does not generate a request until q is completed, and by Lemma 4.4.3, u does

not receive a probe message from any node. Therefore, |u.pndg | ≤ 1. By the

definition of A, any node w in u.nbrs()\u.tkn() is also in A. By Lemma 4.4.3,

w sends back a response message to u. By inspection of the code of T4, on

receiving the response message, u removes w from u.snt [u]. When u.snt [u] = ∅,

that is, u has received response messages from all the nodes to which u has
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sent a probe message, then u sets u.pndg = ∅ and returns gval().

Finally, consider any node v in A. By Lemma 4.4.3, v receives a probe

message from the u-parent of v, say w. Let C be v.nbrs() \ {v.tkn() ∪ {w}}.

By inspection of the code of T3, if C = ∅, then v sends a response message to

w, and v.pndg remains ∅, and for any node w′ in v.nbrs(), v.snt [w′] remains

remains ∅.

Otherwise, C 6= ∅. Then, since v.sntprobes() = ∅, v sends a probe

message to each node in C. By inspection of the code of T3, while sending a

probe messages, v adds w to v.pndg and sets v.snt [w] = C. As argued in the

preceding paragraph, in a sequential execution, |v.pndg | ≤ 1. By Lemma 4.4.3,

any node w′ in C sends back a response message to v. By inspection of the

code of T4, on receiving the response message, v removes w′ from v.snt [v].

When v.snt [w] = ∅, that is, v has received response messages from all nodes

in C, then w sets v.pndg = ∅ and sends a response message back to w.

Hence, after execution of q, for any node v in A, v.pndg = ∅ and for

any node w in v.nbrs(), v.snt [w] = ∅. �

Lemma 4.4.5. Consider a sequential execution of a request sequence σ by a

lease-based algorithm. For any write request q in σ initiated at node u in a

quiescent state Q, let A be the set of nodes in T reachable from u in G(Q).

Then, during the execution of q, the following conditions hold: (1) any node

v in A receives an update message from the u-parent of v; (2) |A| update

messages are sent; (3) no probe or response messages are sent.
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Proof. We prove (1) by induction on the length of the path from u to any node

v in A.

Base case (path length 1). By inspection of the code of T2, update

messages are sent to all nodes in u.grntd(). That is, an update is sent to each

node v in A such that the length of the path from u to v is 1.

Induction hypothesis. Any node v in A such that the length of the path

from u to v is i receives an update message from the u-parent of v.

Induction step. Consider a node v in A such that the length of the

path from u to v is (i + 1). By the induction hypothesis, the u-parent of v,

say w, receives an update message. By the definition of A, w.granted [v] holds.

By inspection of the code of T5, w sends an update message to v. Since the

communication channels are reliable, v receives an update message from w, the

u-parent of v.

Proof of (2) is as follows. From the above arguments, at least |A| update

messages are sent. By inspection of the code, no node v in A ∪ {u} sends an

update message to a node in v.nbrs() \ {v.grntd() ∪ {u-parent of v}}. Hence,

it is straightforward to see that no node v in nodes(T ) \ A receives an update

message. Hence, during the execution of q, only |A| update messages are sent.

From inspection of the code, (3) follows. �

Lemma 4.4.6. For any node u, u.granted [v] is set to true only while sending

a response message to v with flag set to true.
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Proof. For any node u, u.granted [v] can be set to true only in the sendresponse

procedure. By inspection of the code, the lemma follows. �

Lemma 4.4.7. For any node u, u.granted [v] is set to false only on receiving

a release message from v.

Proof. Follows from inspection of the code. �

Lemma 4.4.8. Consider a sequential execution of a request sequence σ by a

lease-based algorithm, and any two neighboring nodes u and v.

1. Let a combine request q in σ(u, v) be initiated in a quiescent state Q. If

u.granted [v] does not hold in Q, then in the execution of q, the following

conditions hold: (i) a probe message is sent from v to u; (ii) a response

message is sent from u to v; (iii) u.granted [v] can be set to true while

sending the response message from v to u; and (iv) no update or release

messages are sent. Otherwise, if u.granted [v] holds, then in the execution

of q, no messages are exchanged between u and v.

2. Let a write request q in σ(u, v) be initiated in a quiescent state Q. If

u.granted [v] does not hold in Q, then in the execution of q, no messages

are exchanged between u and v. Otherwise, if u.granted [v] holds in Q,

then in the execution of q, the following conditions hold: (i) an update

message is sent from u to v; (ii) a release message from v to u can be

sent; (iii) on receiving the release message at u, u.granted [v] is set to

false; (iv) no probe or response messages are sent.
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3. Let a write request q in σ(v, u) be initiated in a quiescent state Q. If

u.granted [v] holds in Q, then in the execution of q, a release message

can be sent from v to u, and on receiving the release message at u,

u.granted [v] is set to false.

4. In the execution of a combine request in σ(v, u), u.granted [v] is not af-

fected.

Proof. Part (1) follows from Lemmas 4.4.3, 4.4.4, and 4.4.6. Part (2) follows

from Lemmas 4.4.5, 4.4.7, and inspection of the code. Part (3) follows from

Lemma 4.4.7 and inspection of the code. Part (4) follows from Lemmas 4.4.3,

4.4.4, and 4.4.6. �

u.granted [v] in Q Request q in σ(u, v) u.granted [v] in Q′ Cost

false R false 2

false R true 2

false W false 0

false N false 0

true R true 0

true W false 2

true W true 1

true N false 1

true N true 0

Figure 4.4: For any lease-based aggregation algorithm in executing any request
q in σ(u, v), and for any two neighboring nodes u and v, possible changes in
the value of u.granted [v] and costs incurred are shown in this figure. Here, q
is initiated in the quiescent state Q and completed in the quiescent state Q′.
A release message sent during the execution of a write request in σ(v, u) is
associated with a noop (N) request.

Lemma 4.4.8 is summarized in Figure 4.4. A release message sent
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during the execution of a write request in σ(v, u) is associated with a noop

(N) request in this figure.

For any node u, we define predicates I1(u), I2(u), and I3(u) as follows:

(1) predicate I1(u) holds if, for the most recent write request q at u, u.val is

equal to q.arg ; (2) predicate I2(u) holds if, for any update or response message

m from any neighboring node v to u, m.x is equal to f (A), where A is the

set of most recent write requests at each of the nodes in subtree(v, u); and (3)

predicate I3(u) holds if, for any quiescent state Q and any node v in u.tkn(),

u.aval [v] is equal to f (A(v)), where A(v) is the set of the most recent write

request at each of the nodes in subtree(v, u). Let I(u) be I1(u)∧ I2(u)∧ I3(u).

Lemma 4.4.9. Consider a sequential execution of a request sequence σ by a

lease-based algorithm. For any node u, if I1(u) and I3(u) hold just before an

update message m is sent from u to some node v in u.nbrs(), then m.x = f (A),

where A is the set of the most recent write requests at each of the nodes in

subtree(u, v).

Proof. By Lemma 4.4.2, for any node v in u.nbrs(), if u.granted [v] holds, then

for all nodes w in u.nbrs() \ {v}, u.taken[w] holds.

For any node w in u.nbrs(), let A(w) be the set of the most recent write

requests preceding q in σ at each of the nodes in subtree(w, u). By I3(u), if

u.taken[w] holds, then u.aval [w] = f (A(w)).

By inspection of the code, for any node v in u.grntd(), an update mes-

sage m is sent to v with m.x = u.subval(v). Let {w1, . . . , wk} be u.nbrs()\{v},
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and let B be the set of the most recent write requests at each of the nodes in

subtree(u, v). We have

m.x = subval(v)

= f (u.val , aval [w1], . . . , aval [wk]

= f (q.arg , f (A(w1)), . . . , f (A(wk)))

= f (B) (4.1)

In the above equation, the second equality follows from the definition

of function subval(). The third equality follows from I1(u) and I3(u). The last

equality follows from the fact that subtree(u, v) = {u} ∪ subtree(w1, u) ∪ · · · ∪

subtree(wk, u). �

Lemma 4.4.10. Consider a sequential execution of a request sequence σ by a

lease-based algorithm. For any node u, I(u) is an invariant.

Proof. Initially, there are no write requests at u, no messages in transit, and

u.tkn() is empty. Hence, I(u) holds. Thus it is sufficient to check that every

action preserves I(u). In the following we present the reasons why every action

preserves I(u).

{I(u)}T1{I(u)}. All the conjuncts, I1(u), I2(u), and I3(u) are not

affected.

{I(u)}T2{I(u)}. Let a write request q be initiated in some quiescent

state Q. In the execution of T2, I1(u) is only affected in Line 1. By inspection
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of the code, Line 1 preserves I1(u). During the execution of T2, I3(u) is not

affected. If u.grntd() 6= ∅ in the quiescent state Q, then I2(u) is affected in

the procedure forwardupdates(), invoked in Line 4. By Lemma 4.4.9, I2(u) is

preserved in Line 4.

Therefore, I1(u) ∧ I2(u) ∧ I3(u) is preserved in the execution of T2.

{I(u)}T3{I(u)}. By inspection of the code, I1(u) and I3(u) are not

affected. Predicate I2(u) is affected only in the procedure sendresponse(),

invoked in Line 6 to send a response message m to w. However, Line 6 is

executed only if u.nbrs() \ {u.tkn()∪ {w}} is empty. By I3(u), for any node v

in u.nbrs(), if u.taken[v], then u.aval [v] = f (A), where A is the set of the most

recent write requests at each of the nodes in subtree(v, u). As in the proof of

Lemma 4.4.9, m.x = f (B), where B is the set of the most recent write requests

at each of the nodes in subtree(u,w).

{I(u)}T4{I(u)}. Predicate I1(u) is not affected in T4. In T4, I3(u) is

affected in Line 2 and I2(u) is affected in the sendresponse() procedure, which

is invoked in Line 11.

In the following, for any node w′ in u.nbrs(), let B(w′) be the set of

the most recent write requests at each of the nodes in subtree(w, u).

Since I2(u) holds for the received response message, after execution of

Line 2, u.aval [w] = f (B), where B(w). Hence, I3(u) holds in the execution of

Line 2.

To argue that I2(u) holds in Line 11, we show that just before the
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execution of Line 11, for each node w′ in u.nbrs()\{v}, u.aval [w′] = f (B(w′)).

By Lemmas 4.4.3 and 4.4.5, a response message from w is received

during the execution of a combine request, say q. We can assume that q.node 6=

u, since Line 11 is executed only if q.node 6= u.

From Lemma 4.4.3, u is the q.node-parent of w and v is the q.node-

parent of u. Let q be initiated in the quiescent state Q. In quiescent state Q,

let A be the set of nodes u.nbrs() \ {u.tkn() ∪ {v}}.

Again by Lemma 4.4.3, during the execution of q, u sends a probe

message to each of the nodes in A and receives a response message from each

of them. For each of the received response message from w, as argued above,

after execution of Line 2, u.aval [w] = f (B(w)). By inspection of the code

of T3, while sending probe messages, u sets u.snt [v] = A. By inspection of

the code of T4, on receiving a response message from a node w, w is removed

from u.snt [v]. Hence, Line 11 is executed only when u has received response

messages from all nodes in A. Hence, just before execution of Line 11, for each

of the node w′ in A, u.aval [w′] = B(w′). By I2, for each node w′ in u.tkn(),

u.aval [w′] = B(w′). Hence, just before the execution of Line 11, for each node

w′ in u.nbrs \ {v}, u.aval [w′] = B(w′). Hence, as in the proof of Lemma 4.4.9,

for the response message m sent to v, m.x = f (C), where C is the set of the

most recent write requests at each of the nodes in subtree(u, v).

{I(u)}T5{I(u)}. Predicate I1(u) is not affected in the execution of T5.

Predicate I3(u) is affected only in Line 2. Let A be the set of the
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most recent write requests at each of the nodes in subtree(w, u). By I2(u),

m.x = f (A). After Line 2, u.aval [w] = f (A). Hence, I3(u) is preserved in Line

2.

If u.grntd() 6= ∅ in quiescent state Q, then I2(u) is affected in the

procedure forwardupdates(), invoked in Line 7. By Lemma 4.4.9, I2(u) is

preserved in Line 7.

Therefore, I1(u) ∧ I2(u) ∧ I3(u) is preserved in the execution of T5.

{I(u)}T6{I(u)}. Predicates I1(u), I2(u), and I3(u) are not affected.

Hence, I(u) is preserved. �

Lemma 4.4.11. Any lease-based aggregation algorithm is nice.

Proof. Consider a combine request q at a node u. Let q be initiated in a

quiescent state Q. From Lemmas 4.4.1 and 4.4.3, during the execution of q, u

receives response messages from all neighboring nodes v such that u.taken[v]

does not hold in Q. From Lemma 4.4.10, I1(node)∧I2(u)∧I3(u) is an invariant.

Hence, the return value of the combine request, which is u.gval(), is f (A),

where A is the set of the most recent write requests at each of the nodes in

nodes(T ). Hence, the lemma follows. �

From Lemma 4.4.11, any lease-based aggregation algorithm provides

strict consistency in a sequential execution.
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4.5 Competitive Analysis Results for Sequential Execu-

tions

var lt : array[v1 . . . vk] of int;
granted : array[v1 . . . vk] of boolean;

procedure oncombine()
foreach v ∈ tkn() do

lt [v] := 2; od

procedure probercvd(node w)

foreach v ∈ tkn() \ {w} do

lt [v] := 2; od

boolean setlease(node w)
lg[w] := true;
return true;

procedure responsercvd(boolean flag,node w)

if flag ∧ (taken[w] = false) →
lt [w] := 2; fi

procedure updatercvd(node w)

if (grntd() \ {w} = ∅) ∧ lt [w] > 0 →
lt [w] := lt [w] − 1; fi

procedure releasepolicy(node v)

lt [v] := max(0, lt [v] − |uaw [v]|);
procedure releasercvd(node w)

lg[w] := false;
boolean breaklease(node w)

return(lt [w] = 0);

Figure 4.5: Policies for RWW.

We define RWW as an online lease-based aggregation algorithm that

follows the policies shown in Figure 4.5 for setting or breaking a lease.

Informally, RWW works as follows. For any edge (u, v), RWW sets

the lease from u to v during the execution of a combine request at a node in

the subtree(v, u), and breaks the lease after two consecutive write requests at

nodes in subtree(u, v).

4.5.1 Properties of RWW

For positive integers a and b, an online lease-based algorithm A is in the

class of (a, b)-algorithms if, in a sequential execution of any request sequence σ

by A, for any edge (u, v), A satisfies the following conditions: (1) if u.granted [v]

is false, then it is set to true after a consecutive combine requests in σ(u, v);

(2) if u.granted [v] is true, then it is set to false after b consecutive write

requests in σ(u, v).

136



For any ordered pair of neighboring nodes u and v, we define type(u, v)

messages as the following kinds of messages exchanged between u and v: (1)

probe messages from v to u; (2) response messages from u to v; (3) update

messages from u to v; (4) release messages from v to u. For a lease-based

algorithm A and a request sequence σ, we define CA(σ, u, v) as the number of

type(u, v) messages sent during the execution of σ by A.

Lemma 4.5.1. Consider a sequential execution of a request sequence σ by

RWW and two neighboring nodes u and v. Then, during the execution of a

request from σ(v, u), u.granted [v] is not affected.

Proof. First, consider the execution of a combine request in σ(v, u). By Lem-

mas 4.4.3 and 4.4.4, no update or release messages are sent. Further, no

response messages from u to v are sent. Hence, u.granted [v] is not affected

during the execution of a combine request in σ(v, u).

Second, consider the execution of a write request in σ(v, u). By Lemma 4.4.5,

no probe or response messages are sent. Further, no update message from u

to v is sent. By inspection of the code of RWW, a release message from v to

u can only be sent during the execution of a write request in σ(u, v). Hence,

u.granted [v] is not affected during the execution of a write request in σ(v, u). �

Let I4(u) be the following predicate. For any node v in u.nbrs(), (1)

if u.taken[v] does not hold, then u.uaw [v] = ∅; (2) if u.taken[v] holds and

u.grntd()\{v} = ∅, then (u.lt [v]+|u.uaw [v]| = 2)∧u.lt [v] > 0; (3) if u.taken[v]

holds and u.grntd() \ {v} 6= ∅, then u.lt [v] = 2.
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Lemma 4.5.2. Consider a sequential execution of a request sequence by RWW.

For any node u, I4(u) is an invariant.

Proof. Initially, for any node v in u.nbrs(), u.taken[v] does not hold and

u.uaw [v] = ∅. Hence, I4(u) holds initially. Thus it is sufficient to check

that every action preserves I4(u). In the following we present the reasons why

every action preserves I4(u).

{I4(u)}T1{I4(u)}. For any node v in u.tkn(), u.lt [v] is set to 2 in the

oncombine() procedure and u.uaw [v] is set to ∅ in Line 3. Hence, I4(u) is

preserved.

{I4(u)}T2{I4(u)}. Predicate I4(u) is not affected.

{I4(u)}T3{I4(u)}. For any node v in u.tkn() \ {w}, u.lt [v] is set to 2

in probercvd() procedure, and u.uaw [v] is set to ∅ in Line 3. Hence, I4(u) is

preserved.

{I4(u)}T4{I4(u)}. By Lemma 4.4.3, a response message is received

from w as a result of an earlier probe message sent to w during execution of

a combine request, say q. By Lemma 4.4.3 again, in the quiescent state Q

in which q is initiated, u.taken[w] does not hold. Hence, if I4(u) holds before

execution of T4, then u.uaw [w] is empty.

If flag is true, then u.lt [w] is set to 2 in responsercvd() procedure, and

u.taken[w] is set to true in Line 3. Since u.uaw [w] remains empty, I4(u) holds

after execution of T4.
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{I4(u)}T5{I4(u)}. By Lemmas 4.4.1 and 4.4.5, u receives an update

message from w if and only if u.taken[w] holds.

If u.grntd() \ {w} = ∅, then u.lt [w] is decremented by one in the

updatercvd() procedure. Otherwise, u.lt [w] is not affected. In Line 3, |uaw [w]|

is incremented by 1. Hence, if u.lt [w] remains greater than 0, then I4(u) is

preserved.

If u.lt [w] is decremented to 0, then a release message is sent to w

in the forwardrelease() procedure invoked in Line 9. In the forwardrelease()

procedure, u.taken[w] is set to false, and u.uaw [w] is set to ∅. Hence, I4(u) is

preserved.

{I4(u)}T6{I4(u)}. Fix an arbitrary node v in u.nbrs() \ {w}.

By inspection of the code, if u.grntd() \ {v} 6= ∅, then u.lt [v] is not

affected. Hence, I4(u) is preserved in the execution of T6.

Now we argue that, if u.grntd() \ {v} = ∅, then I4(u) is also preserved.

First, we argue that |S| = 2. By inspection of the code, a release mes-

sage from node w to u, containing w.uaw [u], is sent only in the forwardrelease()

procedure. Since a release message is sent only if w.breaklease(u) returns true,

w.lt [u] is 0 while sending the release message. Since I4(u) holds before the ex-

ecution of T6, |S| = 2.

Second, we argue that in the onrelease() procedure, the number of

tuples α in sntupdates with α.sntid greater than or equal to the smallest id in

S is at most 2. From inspection of the code, the following conditions holds:
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(1) identifiers of all received update messages at node w from u are added to

w.uaw [u]; (2) identifiers of sent update messages from u are in increasing order;

(3) an identifier is not removed from the middle in w.uaw [u], that is, identifiers

in w.uaw [u] are contiguous; (4) on receiving an update message, the identifier

of the forwarded update message to node w is added to sntupdates . Hence,

S contains the identifiers of the last two update messages sent to w from u,

that is, S contains the two highest identifiers of the update messages sent to

w. Since S may contain the identifiers corresponding to the update messages

due to write requests at u, the number of tuples α in sntupdates with α.sntid

greater or equal to the smallest id in S is at most 2.

Third, because of above arguments, |A| is at most 2, where A is as

defined in onrelease() procedure.

Fourth, we argue that |S ′| is at most 2. Identifiers of the received

update messages are in increasing order. Before receiving the release message,

u.granted [w] holds. On receiving an update message from v, the identifier of

the received update message is added to u.uaw [v]. Since u.granted [w] holds,

on receiving an update with id , an update message is sent to w with nid , and a

tuple {v, id , nid} is added sntupdates . Hence, the size of the set of identifiers

in u.uaw [v] (i.e., |S ′|) with identifiers ≥ β.rcvid , where β is as defined in the

onrelease() procedure, is at most 2.

Finally, we argue that |u.uaw [v]| + u.lt [v] = 2. Since, before receiving

the release message, u.granted [w] and I4(u) hold, u.lt [v] is equal to 2 just

before the invocation of the releasepolicy() procedure. In the releasepolicy()

140



procedure, u.lt [v] is set to u.lt [v] − |u.uaw [v]|. Hence, after the execution of

the releasepolicy() procedure, |u.uaw [v]| + u.lt [v] = 2.

If u.lt [v] becomes 0, then in the forwardrelease() procedure, u.tkn[v] is

set false, u.uaw [v] is set to ∅, and a release message is sent to v.

Hence, I4(u) is preserved in the execution of T6. �

Lemma 4.5.3. Consider a sequential execution of a request sequence σ by

RWW and any two neighboring nodes u and v. The following conditions

hold: (1) in the quiescent state after execution of a combine request in σ(u, v),

u.granted [v] holds; (2) in the quiescent state after execution of two consecutive

write requests in σ(u, v), u.granted [v] does not hold.

Proof. The proof of (1) is as follows. Let the the combine request q be initiated

in the quiescent state Q and completed in the quiescent state Q′.

If u.granted [v] holds in Q, then no type(u, v) messages are sent during

the execution of q, and so u.granted [v] holds in Q′.

If u.granted [v] does not hold in Q, then by Lemma 4.4.3, during the

execution of q, a probe message is sent from v to u and a response message

is sent from u to v. By inspection of the code of sendresponse() procedure,

RWW’s setlease() procedure is invoked. By inspection of the code of RWW,

setlease() procedure always returns true, and so u.granted [v] is set to true.

Hence, after execution of q, u.granted [v] holds.

The proof of (2) is as follows. Let the two consecutive write requests
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be q1 and q2, initiated in quiescent states Q and Q′, respectively. Let q2 be

completed in quiescent state Q′′.

By Lemma 4.4.5, if u.granted [v] does not hold in Q, then during the

execution of q1, no type(u, v) messages are exchanged between u and v. Hence,

u.granted [v] is not affected, and remains false in Q′ and Q′′.

Otherwise, if u.granted [v] holds in Q, then without loss of generality

we can assume that the request preceding q1 in σ(u, v) is a combine request q.

Since, by Lemma 4.5.1, any request in σ(v, u) does not affect u.granted [v],

without loss of generality we can also assume that there are no requests in

σ(v, u) that lie between q1 and q2 in σ.

By part (1), in quiescent state Q, there is a path from u to q.node (say

w) in the lease graph G(Q). Further, in Q, w.uaw [u-parent of w] is empty and

w.lt [u-parent of w] is 0. By Lemma 4.4.5, w receives an update message during

the execution of q1. By inspection of the code of T5, w.taken[u-parent of w]

holds in Q′. Hence, by Lemma 4.4.1 and 4.4.2, u.granted [v] holds in Q′.

It is sufficient to show that during the execution of q2, a release message

is sent from v to u, falsifying u.granted [v].

Let A be the set of reachable nodes in the lease graph G(Q′) from u

following the edge (u, v). Let id(q1, w) be the id of the update message received

at w during the execution of q1.

First, we show that the following properties hold. Fix an arbitrary node

w in A. Property (1): Node w receives an update message during the execution
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of q1. Property (2): In quiescent state Q′, w.uaw [u-parent of w] contains

id(q1, w). Property (3): In quiescent state Q′, if w.grntd() \ {u-parent of w}

is empty, |w.uaw [u-parent of w]| = 1 and w.lt [u-parent of w] = 1.

The proof of Property (1) is as follows. By Lemma 4.4.5, no probe or

response messages are sent during the execution of q1. By inspection of the

code, an edge is added in the lease graph only while sending and receiving a

response message. Hence, if an edge is present in the lease graph G(Q′), then

the edge is also present in the lease graph G(Q). Hence, by Lemma 4.4.5, each

node in A receives an update message during the execution of q1.

The proof of Property (2) is as follows. From Property (1) and Lemma

4.4.5, w receives an update message from the u-parent of w. From inspection

of the code of T5, id(q1, w) is added to w.uaw [u-parent of w]. In quiescent

state Q′, since the identifiers of update messages sent from the u-parent of w

to w are in increasing order, and since q1 is the latest write request, id(q1, w)

is the highest identifier in w.uaw [u-parent of w]. Hence, w.uaw [u-parent of w]

contains id(q1, w).

The proof of Property (3) is as follows. Without loss of generality

assume that w.grntd()\{u-parent of w} is empty. By Property (2), in quiescent

state Q′, |w.uaw [u-parent of w]| > 0.

By inspection of the code, w.lt [u-parent of w] > 0. Hence, by Lemma

4.5.2, |w.uaw [u-parent of w]| ≤ 2.

We use proof by contradiction to show that |w.uaw [u-parent of w]| 6= 2.
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Assume that |w.uaw [u-parent of w]| = 2 in Q′. By Lemma 4.5.2 and inspection

of the code of T5 and T6, if the set w.grntd() \ {u-parent of w} is empty and

|w.uaw [u-parent of w]| = 2, then w.lt [u-parent of w] is 0 in Q′. Hence, w must

send a release message to the u-parent of w and set w.taken[u-parent of w] to

false during the execution of q1. But w is in A, yielding a contradiction.

Therefore, |w.uaw [u-parent of w]| = 1, and by Lemma 4.5.2, Property

(3) follows.

Second, we show the desired result by establishing that every node w in

A, including v, sends a release message to the u-parent of w containing the set

{id(q1, w), id(q2, w)}. We prove this claim by reverse induction on the length

of the path from u to some node in A. Let the maximum length of the path

from u to any node in A be l .

Base case. Consider a node w in A such that the length of the path from

u to w is l . By definition of A, w.grntd()\{u-parent of w} is empty. By Prop-

erties 2 and 3, w.uaw [u-parent of w] = {id(q1, w)} and w.lt [u-parent of w] = 1.

By Lemmas 4.4.1 and 4.4.2, w is reachable from q2.node in the lease

graph G(Q′). Hence, by Lemma 4.4.5, during the execution of q2, w receives

an update message from the u-parent of w.

By inspection of the code of T5, the updatercvd() procedure of RWW is

invoked. In the updatercvd() procedure, w.lt [u-parent of w] is set to 0. By in-

spection of the code of T5, forwardrelease() procedure is invoked. By inspection

of the code of RWW, breaklease() returns true. Hence, w.granted [u-parent of w]
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is set to false and a release message is sent to the u-parent of w containing

{id(q1, w), id(q2, w)}.

Induction hypothesis. Let w be a node in A such that the length of the

path from u to w is i, where i > 1. Then, w sends a release message to the

u-parent of w containing {id(q1, w), id(q2, w)}.

Induction step. Consider a node w in A such that the length of the

path from u to w is i− 1. As argued in the base case, during the execution of

q2, w receives an update message from the u-parent of w.

By Property (2) and the above arguments, w.uaw [u-parent of w] con-

tains id(q1, w) and id(q2, w). By the induction hypothesis, for each node w′ in

w.nbrs() such that w is u-parent of w′, w receives a release message from w′.

By inspection of the code of T6, after receiving a release message from

all nodes w′ such that w.granted [w′] in Q′, w sets w.lt [u-parent of w] to 0, and

sends a release message to the u-parent of w containing {id(q1, w), id(q2, w)}.

Therefore, during the execution of q2, a release message is sent from v

to u, falsifying u.granted [v]. �

Lemma 4.5.4. The algorithm RWW is a (1, 2)-algorithm.

Proof. Follows from Lemma 4.5.3. �
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4.5.2 Competitive Ratio of RWW

In this section we show that RWW is 5
2
-competitive against an optimal

offline lease-based algorithm OFF for the sequential aggregation problem (see

Theorem 8). We also show that RWW is 5-competitive against an optimal

nice offline algorithm for the sequential aggregation problem (see Theorem 9).

Further, we show that, for any lease-based aggregation algorithm A, there

exist a request sequence σ and an offline algorithm such that, in a sequential

execution of σ, the cost of A is at least 5
2

times that of the offline algorithm

(see Theorem 10).

Lemma 4.5.5. In a sequential execution of a request sequence σ, for any two

neighboring nodes u and v, CRWW(σ, u, v) = CRWW(σ(u, v), u, v).

Proof. Follows from Lemmas 4.4.8 and 4.5.1. �

Lemma 4.5.6. Consider a sequential execution of a request sequence σ by a

lease-based algorithm A. For any two neighboring nodes u and v, the total

number of messages exchanged between u and v in executing σ is the sum of

CA(σ, u, v) and CA(σ, v, u).

Proof. Follows from the definitions of CA(σ, u, v) and CA(σ, v, u). �

Consider a sequential execution of an arbitrary request sequence σ by

RWW. For any quiescent state Q, and for any ordered pair of neighboring

nodes (u, v), we define the configuration of RWW, denoted FRWW(u, v), as

follows: (1) if Q is the initial quiescent state, then FRWW(u, v) is 0; (2) if the
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Figure 4.6: States and state transitions for any pair of nodes (u, v) in executing
requests from σ′(u, v) (defined in Lemma 4.5.8).

last completed request in σ(u, v) is a combine request, then FRWW(u, v) is 2;

(3) if the last two completed requests in σ(u, v) are a combine request followed

by a write request, then FRWW(u, v) is 1; (4) if the last two completed requests

in σ(u, v) are write requests, then FRWW(u, v) is 0.

For any quiescent state Q and ordered pair of neighboring nodes (u, v),

we define the configuration of OFF FOFF(u, v) to be 1 if u.granted [v] holds,

and 0 otherwise.

Lemma 4.5.7. Consider a sequential execution of a request sequence σ by

RWW. For any quiescent state Q, and for any ordered pair of neighboring

nodes (u, v), FRWW(u, v) is greater than 0 if and only if u.granted [v] holds.

Proof. Follows from Lemmas 4.5.1 and 4.5.3. �

Lemma 4.5.8. Consider a sequential execution of a request sequence σ by

RWW and OFF. For any two neighboring nodes u and v, CRWW(σ, u, v) is at
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minimize : c
Φ(0, 2) − Φ(0, 0) + 2 ≤ 2 · c
Φ(1, 2) − Φ(0, 0) + 2 ≤ 2 · c
Φ(0, 0) − Φ(0, 0) ≤ 0
Φ(1, 2) − Φ(1, 0) + 2 ≤ 0
Φ(0, 0) − Φ(1, 0) ≤ 2 · c
Φ(1, 0) − Φ(1, 0) ≤ c
Φ(0, 0) − Φ(1, 0) ≤ c
Φ(0, 2) − Φ(0, 2) ≤ 2 · c
Φ(1, 2) − Φ(0, 2) ≤ 2 · c
Φ(0, 1) − Φ(0, 2) + 1 ≤ 0
Φ(1, 2) − Φ(1, 2) ≤ 0
Φ(0, 1) − Φ(1, 2) + 1 ≤ 2 · c
Φ(1, 1) − Φ(1, 2) + 1 ≤ c
Φ(0, 2) − Φ(1, 2) ≤ c
Φ(0, 2) − Φ(0, 1) ≤ 2 · c
Φ(1, 2) − Φ(0, 1) ≤ 2 · c
Φ(0, 0) − Φ(0, 1) + 2 ≤ 0
Φ(1, 2) − Φ(1, 1) ≤ 0
Φ(0, 0) − Φ(1, 1) + 2 ≤ 2 · c
Φ(1, 0) − Φ(1, 1) + 2 ≤ c
Φ(0, 1) − Φ(1, 1) ≤ c

Figure 4.7: LP formulation of the costs associated with the state transitions.

148



most 5
2

times COFF(σ, u, v).

Proof. Once a request q in σ is initiated in a quiescent state, without loss of

generality, we assume that RWW executes q, and then OFF executes q.

We construct a new request sequence σ′(u, v) from σ(u, v) as follows:

(1) insert a noop request in the beginning and at the end of σ(u, v); (2) insert

a noop request between every pair of successive requests in σ(u, v).

In the rest of the proof, first, for both RWW and OFF, we argue

that we can charge each of the type(u, v) messages to a request in σ′(u, v).

Then, to prove the lemma, we use potential function arguments to show that

CRWW(σ′(u, v), u, v) is at most 5
2

times COFF(σ′(u, v), u, v).

For RWW, from Lemma 4.5.5, the following equality holds.

CRWW(σ, u, v) = CRWW(σ(u, v), u, v)

For RWW, we do not charge any message to a noop request in σ′(u, v). Hence,

we have, CRWW(σ, u, v) = CRWW(σ′(u, v), u, v).

For OFF, from Lemma 4.4.3, during the execution of a combine request

in σ(v, u), no type(u, v) messages are sent. Also from Lemma 4.4.5 and part

3 of Lemma 4.4.8, during the execution of a write request in σ(v, u) by OFF,

only a release message from v to u can be sent. Consider a type(u, v) release

message m sent during the execution of a write request q in σ(v, u) by OFF.

On receiving m, u.granted [v] is falsified. From Lemmas 4.4.3, 4.4.5, 4.4.6, and

parts 3 and 4 of Lemma 4.4.8, u.granted [v] is not set to true before executing
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another combine request in σ(u, v). Hence, at most one type(u, v) release

message can be associated with a noop request. Thus, we can associate all

type(u, v) messages with a request in σ′(u, v).

Therefore, in comparing CRWW(σ, u, v) and COFF(σ, u, v), we can re-

strict our attention to messages sent in executing requests in σ′(u, v) .

For the ordered pair (u, v), in Figure 4.6, we show a state diagram

depicting possible changes in FRWW(u, v) and FOFF(u, v) in executing a request

from σ′(u, v). In the state diagram, a state labeled S(x, y) represent a state of

the algorithms in which FOFF(u, v) is x and FRWW(u, v) is y. Observe that the

change in FRWW(u, v) in executing a request is deterministic as specified by

the algorithm in Figure 4.5. On the other hand, the change in FOFF(u, v) in

executing a request is not known in advance. Hence, more than one possible

changes in FOFF(u, v) in executing a request are depicted by non-deterministic

state transitions. Recall that the cost of processing a request in a particular

configuration for any lease-based algorithm is given in Figure 4.4.

We define a potential function Φ(x, y) as a mapping from a state S(x, y)

to a positive real number. The amortized cost of any transition is defined as the

sum of the change in potential ∆(Φ) and the cost of RWW in the transition.

For any transition, we write that the amortized cost is at most c times the

cost of OFF in the transition, where c is a constant factor to be determined.

We solve these inequalities by formulating a linear program with an objective

function to minimize c (see Figure 4.7). By solving the linear program, we get

c = 5
2
, Φ(0, 0) = 0, Φ(0, 1) = 2, Φ(0, 2) = 3, Φ(1, 0) = 5

2
, Φ(1, 1) = 2, and
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Φ(1, 2) = 1
2
.

Hence, for any state transition due to the execution of a request q from

σ′(u, v), the amortized cost is at most 5
2

times the cost of OFF in the execution

of q. Recall that, in the initial quiescent state, FRWW(u, v) and FOFF(u, v) are

0, and the potential for any state is non negative. Therefore, in execution

of σ′(u, v), the total cost of RWW is at most 5
2

times that of OFF. That is,

CRWW(σ, u, v) is at most 5
2

times COFF(σ, u, v). �

Theorem 8. Algorithm RWW is 5
2
-competitive with respect to any lease-based

algorithm for the sequential aggregation problem.

Proof. From Lemma 4.5.8, in a sequential execution of a request sequence

σ, for any two neighboring nodes u and v, CRWW(σ, u, v) is at most 5
2

times

COFF(σ, u, v). By symmetry, CRWW(σ, v, u) is at most 5
2

times COFF(σ, v, u).

Hence, the total number of messages exchanged between u and v in the exe-

cution of σ by RWW is at most 5
2

times that of OFF. Summing over all the

pairs of neighboring nodes, we find that CRWW(σ) is at most 5
2

times COFF(σ).

Hence, the theorem follows. �

Theorem 9. Algorithm RWW is 5-competitive with respect to any nice algo-

rithm for the sequential aggregation problem.

Proof sketch: Let OPTN be an optimal nice algorithm for the sequential aggre-

gation problem. Consider any pair of neighboring nodes (u, v). We compare
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the cost of RWW and OPTN in executing request sequences σ(u, v) and σ(v, u)

separately.

First, consider the execution of requests in σ(u, v). We define an

epoch as follows. The first epoch starts at the beginning of the request se-

quence. An epoch ends with a write to combine transition in σ(u, v), and

a new epoch starts at the same instant. By the definition of a nice algo-

rithm, OPTN provides strict consistency for the sequential execution problem.

Hence, OPTN sends at least one message in any epoch. We are able to show

that the algorithm RWW sends at most 5 messages in any epoch (follows from

Lemma 4.5.3). Summing over all the epochs, we get that the cost of RWW

in executing σ(u, v) is at most 5 times that of OPTN. By symmetry, the cost

of RWW in executing σ(v, u) is at most 5 times that of OPTN. By summing

over all pair of neighboring nodes, the desired result follows. �

Theorem 10. For any lease-based algorithm A, there exists a request sequence

σ and an offline algorithm such that the cost A in executing σ is at least 5
2

times that of the offline algorithm.

Proof sketch: We give an adversarial request generating argument to sketch

the desired result. Consider an example of a tree consisting of just two nodes

u and v such that there is an edge between u and v. The adversarial request

generating algorithm ADV is as follows. The algorithm ADV generates a

combine requests at v such that there is a lease from u to v after execution

of the ath request. And then, ADV generates b write requests at u such that
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there is no lease from u to v after execution of the bth request. Using potential

function arguments, we can show that, for a sufficient long request sequence

σ generated by ADV, the cost of A in executing σ is at least 5
2

times that of

an optimal offline algorithm. �

4.6 Consistency Results for Concurrent Executions

In this section we generalize the traditional definition of causal consis-

tency [3] for the aggregation problem, and show that any lease-based aggrega-

tion algorithm is causally consistent. As mentioned earlier, the key difference

between the consistency problem formulation in [3] and our consistency prob-

lem formulation is in reading one value compared to aggregating values from

all nodes.

4.6.1 Definitions

Request. In this section we find it convenient to extend the definition

of a request from Section 4.2 as follows. In the extended definition, a request

q is a tuple (node, op, arg , retval , index ), where (1) node is the node where

the request is initiated; (2) op is the type of the request, combine, gather , or

write; (3) arg is the argument of the request (if any); (4) retval is the return

value of the request (if any); and (5) index is the number of requests that are

generated at q.node and completed before q is completed.

An aggregation algorithm executes write and combine requests as de-

scribed in Section 4.2. To execute a gather request, an aggregation algorithm
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returns a set A of pairs of the form (node, index ) such that (1) for each node

u in T , there is a tuple (u, i) in A, where i ≥ −1; (2) for any tuple (u, i) in A,

if i ≥ 0, then there is a write request q such that q.node = u and q.index = i;

and (3) |A| is equal to the number of nodes in T .

Miscellaneous. In this section, we extend the definition of function f

from Section 4.2 as follows. In the extended definition, f can also take a set of

pairs A of the form (node, index ) as an argument. For a set of pairs A of the

form (u, index ), f (A) is defined to be f (B), where B is a set of write requests

constructed as follows: for any tuple (u, i) in A with i ≥ 0, include the write

request q in B such that q.node = u and q.index = i.

A combine-write sequence (set) is a sequence (set) of requests containing

only combine and write requests. A gather-write sequence (set) is a sequence

(set) of requests containing only gather and write requests. Let A be a set of

requests. Then, pruned(A, u) is a subset of A such that, for any request q in

A, q is in pruned(A, u) if and only if q.op = write or q.node = u.

For any sequence of requests S and any request q in S, we define

recentwrites(S, q) as a set of pairs such that the size of recentwrites(S, q) is

equal to the number of nodes in T , and for any node u in T , the following

conditions hold: (1) if q′ is the most recent write request at u preceding q in

S, then (u, q′.index ) is in recentwrites(S, q); (2) if there is no write request at

u preceding q in S, in which case, (u,−1) is in recentwrites(S, q).

Let A be a gather-write set, and S be a linear sequence of all the
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requests in A. Then, S is called a serialization of A if for any gather request

q in S, q.retval = recentwrites(S, q).

For any two request sequences τ and τ ′, τ − τ ′ is defined to be the

subsequence of τ containing all requests q in τ such that q is not present in τ ′.

For any two request sequences τ and τ ′, τ.τ ′ is defined to be τ appended by

τ ′.

Compatibility. Let q1 be a combine or write request and q2 be a

gather or write request. Then, q1 and q2 are compatible if the following

conditions hold: (1) q1.op = write and q1 = q2; or (2) q1.op = combine,

q2.op = gather , q1.retval = f (q2.retval), and the node, arg , and index fields

are equal for q1 and q2. A combine-write sequence τ and a gather-write se-

quence τ ′ are compatible if the following conditions hold: (1) τ and τ ′ are of

equal length; (2) for all indices i, τ(i) and τ ′(i) are compatible. Let A be a

combine-write set and B be a gather-write set. Then, A and B are compat-

ible if for any node u in T there exists a linear sequence S of all requests in

pruned(A, u), and a linear sequence S ′ of all requests in pruned(B, u), such

that S and S ′ are compatible.

Causal Consistency. We define a notion of causal ordering ( )

between any two requests q1 and q2 in a gather-write execution-history A as

follows. First, q1
1
 q2 if at least one of the following two conditions hold: (1)

q1.node = q2.node and q1.index < q2.index ; (2) q1 is a write request, q2 is a

gather request, and q2 returns (q1.node, q1.index ) in q2.retval . Second, q1
i+1
 q2

if there exists a request q′ such that q1
i
 q′

1
 q2. Finally, q1  q2 q1

i
 q2,
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for some i.

The execution-history of an aggregation algorithm is defined as the set

of all requests executed by the algorithm. A gather-write execution-history

A is causally consistent if, for any node u in T , there exists a serialization

S of pruned(A, u) such that S respects the causal ordering  among all the

requests in pruned(A, u). A combine-write execution-history A is causally

consistent if there exists a gather-write execution-history B such that A and

B are compatible and B is causally consistent.

4.6.2 Algorithm

In Figure 4.9, we present the mechanism for any lease-based aggregation

algorithm with ghost actions (in curly braces). The ghost actions are included

for the purpose of our analysis.

For any node u, u.log is a ghost variable. For any node u, u.wlog is a

subsequence of u.log containing all the write requests in u.log .

Initially, for any node u, u.val := 0, u.uaw := ∅, u.pndg := ∅, u.upcntr :=

0, u.sntupdates := ∅. For each node v in u.nbrs(), u.taken[v] := false,

u.granted [v] := false, u.aval [v] := 0, u.snt [v] := ∅, and u.log is empty.

Function request(combine) generates and returns a combine request q′

as follows: q′.node = u, q′.op = combine, q′.arg = ∅, q′.retval = gval(), and

q′.index is one greater than the number of completed requests at u. Function

request(write, q) generates and returns a write request q′ as follows: q′.node =
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node u
var taken : array[v1 . . . vk] of boolean;

granted : array[v1 . . . vk] of boolean;
aval : array[v1 . . . vk] of real; val : real;
uaw [] : array[v1, . . . , vk] of set {int};
pndg : set {node};
snt [] : array[v1, . . . , vk] of set {node};
upcntr : int; sntupdates : set {{node, int, int}};

begin

T1 true → {combine q}
1 oncombine(u);
2 foreach v ∈ tkn() do

3 uaw [v] := ∅; od

4 if u /∈ pndg →
5 if nbrs() \ tkn() = ∅ →
6 {append request(combine) to log};
7 return gval();
8 � nbrs() \ tkn() 6= ∅ →
9 sendprobes(u);

10 snt [u] := nbrs() \ tkn(); fi fi

T2 true → {write q}
1 val := q.arg; {append request(write, q) to log}
2 if grntd() 6= ∅ →
3 id := newid();
4 forwardupdates(u, id); fi

T3 � rcv probe() from w →
1 probercvd(w);

2 foreach v ∈ tkn() \ {w} do

3 uaw [v] := ∅; od

4 if w /∈ pndg →
5 if nbrs() \ {tkn() ∪ {w}} = ∅ →
6 sendresponse(w);
7 � nbrs() \ {tkn() ∪ {w}} 6= ∅ →
8 sendprobes(w);
9 snt [w] := nbrs() \ {tkn() ∪ {w}}; fi fi

T4 � rcv response(x,flag) from w →
{rcv response(wlogw ,flag) from w} →

1 responsercvd(flag, w);

2 aval [w] := x; {log := log.(wlogw − log)};
3 taken[w] := flag;
4 foreach v ∈ pndg do

5 snt [v] := snt [v] \ {w};
6 if snt [v] = ∅ →
7 pndg := pndg \ {v};
8 if v = u →
9 {append request(combine) to log};

10 return gval();
11 � v 6= u →
12 sendresponse(v); fi fi od

T5 � rcv update(x, id) from w →
{rcv update(wlogw , id) from w } →

1 updatercvd(w);

2 aval [w] := x; {log := log.(wlogw − log)};
3 uaw [w] := uaw [w] ∪ id ;
4 if grntd() \ {w} 6= ∅ →
5 nid = newid();
6 sntupdates := sntupdates ∪ {w, id ,nid};
7 forwardupdates(w,nid);
8 � grntd() \ {w} = ∅ →
9 forwardrelease(); fi

T6 � rcv release(S) from w →
1 releasercvd(w);
2 granted [w] := false;
3 onrelease(w, S);

end

Figure 4.8: The mechanism for any lease-based aggregation algorithm with
ghost actions. Nodes {v1, . . . , vk} refer to the neighbors of node u.
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procedure sendprobes(node w)
pndg := pndg ∪ {w};
foreach v ∈ nbrs() \ {tkn() ∪ snt ∪ {w}} do

send probe() to v;od

procedure forwardupdates(node w, int id)
foreach v ∈ grntd() \ {w} do

send update(subval(v), id) to v;
{send update(wlog, id) to v};od

procedure sendresponse(node w)
if (nbrs() \ {tkn() ∪ {w}} = ∅) →

granted [w] := setlease(w);fi
send response(subval(w), granted [w]) to w;
{send response(wlog, granted [w]) to w; }

boolean isgoodforrelease(node w)
return (grntd() \ {w} = ∅);

procedure onrelease(node w, set S)
Let id is the smallest id in S;
foreach v ∈ tkn() \ {w} do

Let A be the set of tuples α in sntupdates

such that α.node = v and α.sntid ≥ id ;
Let β be a tuple in A

such that β.rcvid ≤ α.rcvid , for all α in A;
Let S′ be the set of ids in uaw [v] with ids ≥ β.rcvid ;
uaw [v] := S′;
if isgoodforrelease(v) →

releasepolicy(v);

fi

od

forwardrelease();

procedure forwardrelease()
foreach v ∈ tkn() do

if isgoodforrelease(v) →
if taken[v] ∧ breaklease(v) →

taken[v] := false;
send release(uaw [v]) to v;
uaw [v] := ∅;fi fi od

int newid()
upcntr := upcntr + 1;
return upcntr ;

real gval()
x := val ;
foreach v ∈ nbrs() do

x := f (x, aval [v]);od

return x;

real subval(node w)
x := val ;
foreach v ∈ nbrs() \ {w} do

x := f (x, aval [v]);od

return x;

set nbrs()
return the set of neighboring nodes;

set tkn()
return {v | v ∈ nbrs() ∧ taken[v] = true};

set grntd()
return {v | v ∈ nbrs() ∧ granted [v] = true};

Figure 4.9: Procedures used in the mechanism for any lease-based algorithm
with ghost actions. Nodes {v1, . . . , vk} refer to the neighbors of node u.
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u, q′.op = write, q′.arg = q.arg , q′.retval = ∅, and q′.index is one greater than

the number of completed requests at u.

4.6.3 Analysis

For each node u in T , we construct a gather-write sequence u.gwlog

from u.log as follows: (1) if u.log(i) is a write request then u.gwlog(i) =

u.log(i); (2) if u.log(i) is a combine q1, then u.gwlog(i) is a gather q2 such

that q2.node = q1.node, q2.op = gather , q2.index = q1.index , and q2.retval =

recentwrites(u.log , q1).

For each node u in T , we construct u.log ′ and u.gwlog ′ from u.log and

u.gwlog as follows. First, initialize u.log ′ to u.log , and u.gwlog ′ to u.gwlog .

Then, for each node v in T except u, repeat the following steps: (1) u.log ′ =

u.log ′.(v.wlog − u.log ′); (2) u.gwlog ′ = u.gwlog ′.(v.wlog − u.gwlog ′).

For any set of nodes A and a request sequence τ , recent(A, τ) returns

a set of |A| pairs such that, for any node u in A, the following conditions

hold: (1) if q′ is the most recent write request at u in τ , then (u, q′.index )

is in recent(τ, q); (2) if there is no write request at u in τ , then (u,−1) is in

recent(S, q).

For a set of nodes A, a real value x, and a request sequence τ , we define

corresponds(A, x, τ) to be true if x = f (recent(A, τ)).

For a set of nodes A and a request sequence τ , projectwrites(A, τ)

returns the subsequence of τ containing all of the write requests at any node

in A.
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For request sequences τ and τ ′, prefix (τ, τ ′) is defined to be true if τ ′

is a prefix of τ .

Lemma 4.6.1. For any update or response message m from a node v to a

neighboring node u, let S be v.wlog after m has been sent. Then, prefix (S,m.wlog)

holds.

Proof. By inspection of the code (forwardupdates() and sendresponse() proce-

dures), m.wlog = v.wlog when m is sent. Since v.wlog grows only at the end,

the lemma follows. �

Lemma 4.6.2. For any two update or response messages m1 and m2 sent

from any node v to any neighboring node u such that m2 is sent after m1,

prefix (m2.wlog ,m1.wlog) holds.

Proof. By Lemma 4.6.1, m1.wlog is a prefix of v.wlog after m1 has been sent.

By inspection of the code (forwardupdates() and sendresponse()), m2.wlog =

v.wlog when m2 is sent. Hence, the lemma follows. �

Lemma 4.6.3. Just before the execution of T4 (resp., T5) at u, on receiving

a response message (resp., an update message) m sent from v, let sequence τ

be projectwrites(A,m.wlog) and sequence τ ′ be projectwrites(A, u.log), where

A = subtree(v, u). Then the following conditions hold: (1) prefix (τ, τ ′) holds;

(2) projectwrites(nodes(T ) \ A,m.wlog − u.log) is empty.
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Proof. We prove (1) by induction on the number of update or response mes-

sages from v to u.

Base case. Since v.granted [u] does not hold initially, the first message

of interest is a response message m. Since u receives any write requests in A

only from v, τ ′ is empty. Hence, prefix (τ, τ ′) holds.

Induction hypothesis. Just before receiving the nth message m at node

u, projectwrites(A, u.log) is prefix of projectwrites(A,m.wlog).

Induction step. Since the communication channels are FIFO, the (n +

1)st update or response message m reaches u after the nth message m ′. By the

induction hypothesis, just before receiving m ′, projectwrites(A, u.log) is prefix

of projectwrites(A,m ′.wlog). In line 2 of T4 (resp., T5), u.log = u.log .(m ′.wlog−

u.log), that is, all write requests in m ′.wlog not present in u.log are appended

to u.log . Hence, projectwrites(A, u.log) = projectwrites(A,m ′.wlog) after exe-

cution of Line 2 of T4 (resp., T5).

By Lemma 4.6.2, m ′.wlog is a prefix of m.wlog . Hence, just before

receiving m, projectwrites(A, u.log) is a prefix of projectwrites(A,m.wlog).

We prove (2) as follows. Let B be nodes(T ) \ A. By Lemmas 4.6.1,

4.6.2, and condition (1), at any instant projectwrites(B, v.log) is a prefix of

projectwrites(B, u.log). By Lemma 4.6.1, m.wlog is a prefix of v.wlog after m

has been sent. Hence, just before receiving m, projectwrites(B,m.wlog) is a

prefix of projectwrites(B, u.log). Therefore, projectwrites(B,m.wlog − u.log)
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is empty. �

For any node u, we define predicates I1(u), I2(u), and I3(u) as follows:

(1) predicate I1(u) holds if corresponds(A, u.gval(), u.log) holds, where A is the

set of all nodes in T ; (2) predicate I2(u) holds if, for any update or response

message m from u to any node v in u.nbrs(), corresponds(A,m.x,m.wlog)

holds, where A is the set of all nodes in subtree(u, v); and (3) predicate I3(u)

holds if, for any node v in u.nbrs(), corresponds(A, u.aval [v], u.log) holds,

where A is the set of all nodes in subtree(v, u). Let I(u) be I1(u)∧I2(u)∧I3(u).

Lemma 4.6.4. For any node u, if I1(u) and I3(u) hold just before an update

or a response message m is sent from u to any node v in u.nbrs(), then

corresponds(A,m.x,m.wlog), where A = subtree(u, v).

Proof. Initially, u.val is 0 and u.log is empty. Hence, initially,

u.val = f (recent({u}, u.log)) (4.2)

The only line of code that modifies u.val is Line 1 of T2. This line

preserves Equation (4.2). Hence, Equation (4.2) holds just before sending any

update or response message.

In the following equation, let {v1, . . . , vk} = u.nbrs() \ {v} and Si =

162



subtree(vi, u).

m.x = u.subval(v)

= f (u.val , u.aval [v1], . . . , u.aval [vk])

= f (f (recent({u}, u.log)), f (recent(S1, u.log)), . . . , f (recent(Sk, u.log)))

= f (recent({u} ∪ S1 ∪ · · · ∪ Sk), u.log)

= f (recent(A, u.log))

= f (recent(A,m.wlog)) (4.3)

The first equality above follows from the algorithm. The second equal-

ity follows from the definition of subval(v). The third equality follows from

I3(u) and Equation (4.2). The fourth and fifth equalities follows from the fact

that {u}, S1, . . . , Sk are disjoint sets of nodes and their union is subtree(T, u, v).

The last equality follows from the fact that m.wlog = wlog and recent(A, log) =

recent(A,wlog).

Hence, the lemma follows. �

Lemma 4.6.5. For any node u, I(u) is an invariant.

Proof. Initially, for any node u, u.gval() is 0 and u.log is empty. Hence, I1(u)

holds. There are no update or response messages. Hence, I2(u) holds. For

any node v in u.nbrs(), u.aval [v] is 0 and u.log is empty. Hence, I3(u) holds.

Therefore, I(u) holds initially. Thus it is sufficient to check that every action

preserves I(u). In the following we present the reasons why every action

preserves I(u).
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{I(u)}T1{I(u)}. In the execution of T1, for any node v in u.nbrs(),

u.aval [v] and u.val remain unchanged. No update or response messages are

generated in execution of T1. No write request is added to u.log . Hence, I1(u),

I2(u), and I3(u) are not affected in execution of T1.

{I(u)}T2{I(u)}. In the execution of T2, only part of the code affecting

I1(u) is Line 1. Note that Line 1 does not affect I2(u) and I3(u). In the

following equation, let {v1, . . . , vk} = u.nbrs() and Si = subtree(T, vi, u).

f (u.aval [v1], . . . , u.aval [vk]) = f (f (recent(S1, u.log)), . . . , f (recent(Sk, u.log)))

= f (recent(S1, u.log) ∪ · · · ∪ recent(Sk, u.log))

= f (recent(S1 ∪ · · · ∪ Sk, u.log)

= f (recent(nodes(T ) \ {u}, u.log)) (4.4)

The first equality above follows from I3(u). The second equality follows

from the fact that S1, . . . , Sk are disjoint sets of nodes.

Let q be the write request appended to u.log in Line 1. After Line 1,

val is q.arg , and {q} is recent({u}, log). Hence, after Line 1,

u.val = f (recent({u}, u.log)) (4.5)

Therefore, after Line 1,
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u.gval() = f (u.val , u.aval [v1], . . . , u.aval [vk])

= f (u.val , f (u.aval [v1], . . . , u.aval [vk]))

= f (f (recent({u}, u.log)), f (recent(nodes(T ) \ {u}, u.log))

= f (recent({u}, u.log) ∪ recent(nodes(T ) \ {u}, u.log))

= f (recent(nodes(T ), u.log)) (4.6)

The first equality above follows from the definition of u.gval(). The

second equality follows from the associativity property of f . The third equality

follows from Equations (4.4) and (4.5).

Hence, corresponds(nodes(T ), u.gval(), u.log) holds after Line 1. That

is, I1(u) holds after Line 1. Therefore, for each line of the code in T2, if

I1(u) ∧ I2(u) ∧ I3(u) holds before the execution of the line, then I1(u) holds

after execution of the line.

In the execution of T2, the only part of the code affecting I2(u) is the

invocation of procedure forwardupdates() in Line 4. By Lemma 4.6.4, I2(u)

holds after Line 4. Therefore, for each line of code in T2, if I1(u)∧I2(u)∧I3(u)

holds before the execution of the line, then I2(u) holds after execution of the

line.

In T2, I3(u) is not affected.

{I(u)}T3{I(u)}. Predicates I1(u) and I3(u) are not affected in the

execution of T3. The only part of the code that affects I2(u) is the invocation
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of procedure sendresponse() in Line 6. By Lemma 4.6.4, I2(node) holds after

Line 6.

{I(u)}T4{I(u)}. The only lines that affect I(u) are Lines 2 and 12.

Line 2 does not affect I2(u), but affects I1(u) and I3(u) since the line modifies

u.aval [w] and u.log . First we show that I3(u) is preserved in Line 2, and so

I1(u) is also preserved.

Let m be the response message received and A be the set of nodes

in subtree(w, u). By part (1) of Lemma 4.6.3, after the execution of Line 2,

u.aval [w] = m.x and recent(A, u.log) = recent(A,m.wlog). Hence, by I2(u),

u.aval [w] = f (recent(A, u.log)).

By part (2) of Lemma 4.6.3, for all v in u.nbrs()\{w}, recent(B, u.log) is

not affected, where B = subtree(v, u), and so, corresponds(B, u.aval [v], u.log)

remains unchanged. By the preceding paragraph, after the execution of Line 2,

u.aval [w] = f (recent(A, u.log)), where A be the set of nodes in subtree(w, u).

Therefore, I3(u) is preserved in Line 2, and hence, preserved in the execution

of T4.

By part (2) of Lemma 4.6.3, recent({u}, u.log) is not affected. There-

fore, I1(u) is preserved in Line 2, and hence is preserved in the execution of

T4.

Line 12 only affects I2(u). By Lemma 4.6.4, I2(u) holds in Line 12.

Therefore, I1(u) ∧ I2(u) ∧ I3(u) is preserved in the execution of T4.

{I(u)}T5{I(u)}. The only lines that affect I(u) are Lines 2 and 7. Line
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2 does not affect I2(u), but affects I1(u) and I3(u). Line 7 affects only I2(u).

By part (2) of Lemma 4.6.3, recent({u}, u.log) is not affected in Line 2.

Therefore, I1(u) is preserved in Line 2, and hence is preserved in the execution

of T5.

Let m be the update message received and A be the set of nodes in

subtree(w, u). By part (1) of Lemma 4.6.3, after the execution of Line 2,

u.aval [w] = m.x and recent(A, u.log) = recent(A,m.wlog). Hence, by I2(u),

u.aval [w] = f (recent(A, u.log)).

By part (2) of Lemma 4.6.3, for any node v in the set u.nbrs() \ {w},

recent(B, u.log) is not affected, where B = subtree(v, u), and so the value

of corresponds(B, u.aval [v], u.log) remains unchanged. Hence, along with the

arguments in the preceding paragraph, I3(u) is preserved in Line 2, and hence

is preserved in the execution of T5.

Line 7 affects only I2(u). By Lemma 4.6.4, I2(u) holds in Line 7.

Therefore, I1(u) ∧ I2(u) ∧ I3(u) is preserved in the execution of T5.

{I(u)}T6{I(u)}. In the execution of T6, I1(u), I2(u), and I3(u) are not

affected. Hence, I(u) is preserved in the execution of T6. �

For a request sequence τ and a request q, index (τ, q) returns the index

of q in τ if present, and returns −1 otherwise. For any request sequence τ , and

requests q1 and q2 in τ , the predicate precedes(τ, q1, q2) holds if index (τ, q1) <

index (τ, q2).
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Lemma 4.6.6. Let q1 and q2 be any gather or write requests such that q1.node =

q2.node and q1.index < q2.index . Then, q1 and q2 belong to q1.node.gwlog, and

precedes(q1.node.gwlog , q1, q2).

Proof. From the given condition, requests q1 and q2 belong to q1.node.log and

precedes(q1.node.log , q1, q2). By the construction of gwlog , the lemma follows.

�

Lemma 4.6.7. Let u and v be distinct nodes and let q1 and q2 be write requests

in v.gwlog such that q2.node = v, precedes(v.gwlog , q1, q2), and q2 belongs to

u.gwlog. Then, q1 belongs to u.gwlog and precedes(u.gwlog , q1, q2).

Proof. By induction on the length l of the path from v to u.

Base case. l = 1, that is, u and v are neighboring nodes. Let u

receive q2 in an update or a response message m, that is, q2 belongs to

m.wlog and q2 does not belong to u.log just before u receives m. By in-

spection of the code, m.wlog = v.wlog . Hence, just before m is sent, q2

belongs to v.log . Since precedes(v.log , q1, q2), precedes(m.wlog , q1, q2). If q1

is in u.log just before receiving m, then on receiving m, q2 belongs to u.log ,

so precedes(u.gwlog , q1, q2). Otherwise, on receiving m, u.log = u.log .(u.log −

m.wlogw) and precedes(u.log , q1, q2). Hence, by the construction of u.gwlog ,

precedes(u.gwlog , q1, q2).

Induction hypothesis. Assume that the lemma holds for l − 1, where

l ≥ 2.
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Induction step. Let w be the node such that w belongs to u.nbrs()

and v belongs to subtree(T,w, u). Let u receive q2 from w in an update or

a response message m. By inspection of the code, q2 belongs to w.log , and

so, by construction of w.gwlog , q2 also belongs to w.gwlog . By the induc-

tion hypothesis and by the construction of w.gwlog , q1 belongs to w.log and

precedes(w.log , q1, q2) when m is sent. Since m.wlog = w.wlog when m is sent,

q1 belongs to m.wlog and precedes(m.log , q1, q2). As in the base case, regard-

less of whether q1 belongs to u.log just before receiving m, q1 belongs to u.log

and precedes(u.log , q1, q2) on receiving m. Hence, by construction of u.gwlog ,

precedes(u.gwlog , q1, q2). �

Lemma 4.6.8. Let q1 and q2 be gather requests such that q1.node 6= q2.node,

and q1
i
 q2 for some integer i, where i > 1. Then, there is a write request

q′ such that q′.node = q1.node and q1
j
 q′

i−j
 q2 for some integer j, where

1 ≤ j < i.

Proof. By contradiction. Assume that there is no such write request at q1.node.

Let q1
j′

 q′
1
 q′′

i−j′−1
 q2 such that q′′ is the first request in this chain that is

not at q1.node. That is, in this chain, q1, . . . , q
′ are at q.node. We can find such

a request (q′′) since q2.node 6= q1.node. By the definition of causal ordering,

q′
1
 q′′ if q′ is a write request and q′′ is a gather request, which contradicts

the assumption. Hence, the contradiction. Therefore, the lemma follows. �

Lemma 4.6.9. For any node u, let qi be a request such that (qi.op = write)∨

(qi.op = gather∧qi.node = u), for i in {1, 2}. Further assume that q1  q2 and
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q2 belongs to u.gwlog. Then, q1 belongs to u.gwlog and precedes(u.gwlog , q1, q2).

Proof. We prove the lemma by induction on the positive integer i such that

q1
i
 q2.

Base case: q1
1
 q2. There are two cases, depending on q1

1
 q2 due to

rule (1) or rule (2).

If q1
1
 q2 by rule (1), then q1.node = q2.node and q1.index < q2.index .

There are two subcases: (a) u = q1.node; (b) u 6= q1.node. In subcase (a),

by Lemma 4.6.6, q1 and q2 belong to u.gwlog , and precedes(u.gwlog , q1, q2).

In subcase (b), let v be q1.node. By Lemma 4.6.6, precedes(v.gwlog , q1, q2).

Since u 6= v, q1 and q2 are write requests. Since q2 belongs to u.gwlog , by

Lemma 4.6.7, q1 is in u.gwlog and precedes(u.gwlog , q1, q2) holds.

If q1
1
 q2 by rule (2), then q1 is a write request and q2 is a gather

request such that q2 returns (q1.node, q1.index ) in q2.retval . Since q2 returns

(q1.node, q1.index ), q1 is in u.log and precedes(u.log , q1, q2). By the construc-

tion of u.gwlog , q1 is in u.gwlog and precedes(u.gwlog , q1, q2).

Induction hypothesis: Suppose that q1
i
 q2, for some positive integer

i. Then, request q1 belongs to u.gwlog and precedes(u.gwlog , q1, q2).

Induction step: Suppose that q1
i
 q′

1
 q2, where i > 0. We consider

the two cases separately.

First we consider the case where either (q′.op = write) or q′.op =

gather ∧ q′.node = u. By the induction hypothesis, q′ belongs to u.gwlog
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and precedes(u.gwlog , q′, q2). Also by the induction hypothesis, q1 belongs

to u.gwlog and precedes(u.gwlog , q1, q
′). Hence, q1 belongs to u.gwlog , and

precedes(u.gwlog , q1, q2).

Second we consider the case where q′.op = gather and q′.node 6= u.

Let q′.node be v. Since q′.op = gather , q′
1
 q2 holds by rule (1), that is,

q2.node = v and q′.index < q2.index . Since v 6= u, q2 is a write request.

By Lemma 4.6.6, precedes(v.gwlog , q′, q2). Now consider the following two

possible subcases for q1: (a) q1.op = write; (b) q1.op = gather ∧ q1.node =

u. On subcase (a), by the induction hypothesis, q1 belongs to v.gwlog and

precedes(v.gwlog , q1, q
′). From the argument given above, q1 and q2 belong to

v.gwlog and precedes(v.gwlog , q1, q2). By Lemma 4.6.7, q1 belongs to u.gwlog

and precedes(u.gwlog , q1, q2).

Now consider subcase (b). Since q1.node 6= q′.node, q1
i
 q′, where i >

1, and q1 and q′ are gather requests. By Lemma 4.6.8, there is a write request

q′′ such that q′′.node = u and q1
j
 q′′

i−j
 q′, for some j such that 1 ≤ j < i. By

the induction hypothesis, q′′ belongs to v.gwlog and precedes(v.gwlog , q′′, q′).

Hence, from the arguments given above, precedes(v.gwlog , q′′, q2). Since q′′

and q2 are write requests, q2.node = v, q2 belongs to u.gwlog , and predi-

cate precedes(v.gwlog , q′′, q2) holds, by Lemma 4.6.7, precedes(u.gwlog , q′′, q2).

From the arguments given above, q′′ belongs to u.gwlog and q1
j
 q′′ for

some j ≥ 1. Hence, by the induction hypothesis, precedes(u.gwlog , q1, q
′′).

From the arguments given above, it follows that, q1 belongs to u.gwlog and

precedes(u.gwlog , q1, q2). �
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Lemma 4.6.10. For any node u, u.gwlog ′ respects the causal ordering among

the requests in u.gwlog ′.

Proof. We prove this lemma by induction on the number of iterations in the

construction of u.gwlog ′. For the base case, by Lemma 4.6.9, u.gwlog respects

the causal ordering among the requests in u.gwlog . In each iteration of the

construction, the additional requests are added at the end of u.gwlog ′. By

Lemma 4.6.9, this step preserves the causal ordering among the requests in

u.gwlog ′. �

Lemma 4.6.11. For any node u, u.log ′ and u.gwlog ′ are compatible.

Proof. We prove this lemma by induction on the number of iterations in the

construction of u.log ′ and u.gwlog ′. For the base case, we need to show that

u.log and u.gwlog are compatible. Consider any combine request q at node u.

By Lemma 4.6.5, I(u) is an invariant, so corresponds(nodes(T ), q.retval , u.log),

where q.retval = u.gval(). Hence, by the construction of u.gwlog , for any

combine request in u.log , there is a compatible gather request in u.gwlog , and

u.log and u.gwlog are compatible.

In each iteration of the construction of u.log ′ and node.gwlog ′, by the

base case and the induction hypothesis, additional requests appended to both

of the request sequences are mutually compatible. Hence, u.log ′ and u.gwlog ′

are compatible. �
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Theorem 11. Let set A be the execution-history of any lease-based algorithm

A. Then, A is causally consistent.

Proof. Consider any node u in T . By construction, u.gwlog ′ is a serializa-

tion of all requests in u.gwlog ′. From this observation and Lemma 4.6.10,

u.gwlog ′ is causally consistent. By construction, u.log ′ contains all requests in

pruned(A, u). By Lemma 4.6.11, u.log ′ and u.gwlog ′ are compatible. Hence,

A is causally consistent. �

4.7 Experimental Results

In this section we present experimental results comparing the perfor-

mance of algorithm RWW to that of certain static strategies under a wide range

of operating conditions. Our performance metric is the cost of communica-

tion, which is measured in terms of the average number of messages incurred

in executing a given request sequence. We compare the performance of RWW

to that of the update-all and update-none static lease-based algorithms. In

the update-all algorithm, leases on all edges are set, and the leases are kept

that way throughout the processing of a given request sequence. Therefore,

during the execution of a write request, update-all algorithm results in sending

an update message along each edge. On the other hand, in the update-none

algorithm, no lease is set on any edge, and on a write request at a node, the

local value of the node is updated.

We simulate 127 nodes arranged in a complete binary tree. We use
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summation as our aggregation operator. Our evaluation shows that algorithm

RWW adapts well with varying workload.

4.7.1 Sequential Execution

In Figure 4.10, we plot the performances of RWW, update-all and

update-none for sequential executions of different request sequences with vary-

ing combine-write ratio. Each request sequence consists of 10000 requests and

is generated as follows. For a combine-write ratio r, we generate a real ran-

dom number uniformly distributed in the range [0, 1], and if the number is less

than r, then we generate a combine request at a node uniformly and randomly

selected from the set of all nodes. We repeat the above process 10000 times

to generate a request sequence with the desired combine-write ratio.

In Figure 4.10, we vary the combine-write ratio from 0 to 1 with a

step size of 0.1. For each combine-write ratio, the performance of each of the

algorithm is base on the runs over 10 different request sequences with the same

combine-write ratio. We observe that RWW algorithm adapts well to different

combine-write ratios.

4.7.2 Concurrent Execution

In this section we compare the performance of RWW, update-all, and

update-none for concurrent execution of request sequences. For our experi-

ments, we construct trees and request sequences as follows.

For each of the experiments in Figures 4.11 to 4.17, we generate a
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Figure 4.10: Sequential execution.
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complete binary tree consisting of 127 nodes. For each edge, we generate a

Poisson-distributed delay along the edge. In Figures 4.11 to 4.17, we vary the

Poisson distribution parameter λ as indicated.

Each request sequence consists of 10000 requests and is generated as

follows. For a combine-write ratio r, we generate a uniformly distributed value

in the range [0, 1], and if this value is less than r, then we generate a combine

request at a node uniformly and randomly selected from the set of all nodes.

We repeat the above process 10000 times to generate a request sequence with

the desired combine-write ratio. To determine the interval between any two

requests, we generate a random integer uniformly distributed in the range of

[0, 64].

Our experiments (Figure 4.11 to Figure 4.17) show that algorithm

RWW performs well in executing request sequences with different combine-

write ratios.
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Figure 4.11: Concurrent execution with λ = 0.
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Figure 4.12: Concurrent execution with λ = 1.
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Figure 4.13: Concurrent execution with λ = 5.
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Figure 4.14: Concurrent execution with λ = 10.
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Figure 4.15: Concurrent execution with λ = 20.
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Figure 4.16: Concurrent execution with λ = 50.
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Figure 4.17: Concurrent execution with no leases.
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Chapter 5

Conclusion

We conclude this dissertation with some open problems for future re-

search.

In the realm of cooperative caching, an open problem for further re-

search is to tighten the bounds for an online Hierarchical Cooperative Caching

algorithm with cache capacity blowup O(d1−ǫ), where d is the depth of the

given hierarchy.

In the realm of compression caching, there are multiple directions for

future research. First, it would be interesting to generalize the upper bound al-

gorithms presented in Chapter 3 to achieve O(m)-competitiveness with O(m)

factor capacity blowup for a richer set of the problems in the class of com-

pression caching. Second, an important direction is to consider the design of

the distributed storage system as alluded in Section 3.3, and collectively ad-

dress the existence of different file formats and machines distributed over the

network.

In the realm of aggregation, an interesting open problem is as follows.

In many emerging networks like peer-to-peer and sensor networks, nodes in

the network participate in routing, forwarding, querying, and aggregating data.
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In Chapter 4, we study the aggregation problem and designed an aggregation

protocol that adapts aggregation aggressiveness in a given tree network. There

is a tradeoff between performance and accuracy in the aggregation problem

[17, 34, 35], where accuracy can be measured in various ways, for example,

in terms of consistency, staleness, and numerical error. In Chapter 4, our

notion of accuracy is defined in terms of consistency. In some applications like

network monitoring and sensor networks, one can tolerate numerical error and

staleness in order to minimize the communication overhead.

One formulation of the hierarchical approximate aggregation problem

is as follows. Assume that we are given a set of nodes arranged in a hierarchy,

and that each node periodically updates its local value. Also assume that we

are given an aggregation function (e.g., sum or average) that is hierarchically

computable. To simplify the present discussion, let us assume that the execu-

tion is sequential, in the sense that an update is initiated only in a quiescent

state of the network. Given an error budget ∆, we wish to ensure that after

each successive update is processed, the root node knows an interval of width

∆ that contains the actual aggregate value. The goal is to minimize the total

number of messages used in order to maintain this invariant.

One open problem is whether one could design and analyze an efficient

distributed protocol for online hierarchical approximate aggregation.

One natural approach to the above problem is as follows. Each node

maintains an interval containing the aggregate value for the subtree rooted

at that node. The width of the interval at the root is at most ∆, and the
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sum of the interval widths of the children of any node u is at most the width

of the interval of u. In effect, at any time, each node has an error window

— determined by the width of its interval — and it distributes all or part

of this window to its children. Intuitively, the distribution of error should

favor children with more update-related activity; for example, if the hierarchy

rooted at some child v of u does not produce any updates over a long period

of time, then u is likely to assign a small error window to v.

In Chapter 4, we allow concurrent requests and generalize the tradi-

tional causal consistency definitions for the aggregation problem. Similarly, for

the hierarchical approximate aggregation problem one could allow concurrent

updates and define appropriate semantics for the protocol. In terms of perfor-

mance, one could analyze the protocol in the framework of competitive anal-

ysis. As is typical in the competitive analysis of distributed algorithms [6, 7],

one could focus on performance bounds for sequential executions.
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