Appendix: Constant Nullspace Strong Convexity and Fast Convergence of Proximal Methods under High-Dimensional Settings

Ian E.H. Yen Cho-Jui Hsieh Pradeep Ravikumar Inderjit Dhillon Department of Computer Science University of Texas at Austin {ianyen,cjhsieh,pradeepr,inderjit}@cs.utexas.edu

1 Proof for properties of proximal operations

The proximal operator $\mathbf{prox}(.)$ is defined as

$$\mathbf{x}_{t+1} = \mathbf{prox}(\mathbf{x}_{t+\frac{1}{2}}) = \operatorname*{arg\,min}_{\mathbf{x}} h(\mathbf{x}) + \frac{M}{2} \|\mathbf{x} - \mathbf{x}_{t+\frac{1}{2}}\|_{2}^{2}.$$
 (1)

Lemma 1. Define $\Delta^P x = x - \operatorname{prox}(x)$, the following properties hold for the proximal operation (1).

1. $M\Delta^{P} \boldsymbol{x} \in \partial h(\mathbf{prox}(\boldsymbol{x})).$

2.
$$\|\mathbf{prox}(\boldsymbol{x}_1) - \mathbf{prox}(\boldsymbol{x}_2)\|_2^2 \le \|\boldsymbol{x}_1 - \boldsymbol{x}_2\|_2^2 - \|\Delta^P \boldsymbol{x}_1 - \Delta^P \boldsymbol{x}_2\|_2^2$$

Proof. The first property follows directly from the optimality condition of (1). The second property holds since for $M\Delta^P \boldsymbol{x}_1 \in \partial h(\operatorname{prox}(\boldsymbol{x}_1)), \ M\Delta^P \boldsymbol{x}_2 \in \partial h(\operatorname{prox}(\boldsymbol{x}_2))$ we have $\langle M\Delta^P \boldsymbol{x}_1 - M\Delta^P \boldsymbol{x}_2, \operatorname{prox}(\boldsymbol{x}_1) - \operatorname{prox}(\boldsymbol{x}_2) \rangle \geq 0$, and thus,

$$egin{aligned} \|m{x}_1 - m{x}_2\|^2 &= \|\left(\mathbf{prox}(m{x}_1) - \mathbf{prox}(m{x}_2)
ight) + (\Delta^P m{x}_1 - \Delta^P m{x}_2) \|^2 \ &\geq \|\mathbf{prox}(m{x}_1) - \mathbf{prox}(m{x}_2) \|^2 + \|\Delta^P m{x}_1 - \Delta^P m{x}_2 \|^2, \end{aligned}$$

which gives the second property.

The proximal operator $\mathbf{prox}_{H}(.)$ is defined for any PSD matrix H as

$$\mathbf{prox}_{H}(\boldsymbol{x}) = \underset{\boldsymbol{v}}{\arg\min} \ h(\boldsymbol{v}) + \frac{1}{2} \|\boldsymbol{v} - \boldsymbol{x}\|_{H}^{2}.$$
 (2)

Lemma 2. Define $\Delta^P x = x - \mathbf{prox}_H(x)$, the following properties hold for the proximal operator:

- 1. $H\Delta^{P} \boldsymbol{x} \in \partial h(\mathbf{prox}_{H}(\boldsymbol{x})).$
- 2. $\|\mathbf{prox}_H(\boldsymbol{x}_1) \mathbf{prox}_H(\boldsymbol{x}_2)\|_H^2 \le \|\boldsymbol{x}_1 \boldsymbol{x}_2\|_H^2$.

Proof. The first property follows directly from the optimality condition of (2). The second property holds since for $H\Delta^P x_1 \in \partial h(\mathbf{prox}(x_1)), H\Delta^P x_2 \in \partial h(\mathbf{prox}(x_2))$ we have $\langle H\Delta^P x_1 - H\Delta^P x_2, \mathbf{prox}(x_1) - \mathbf{prox}(x_2) \rangle \geq 0$, and thus,

$$\begin{split} \| \boldsymbol{x}_1 - \boldsymbol{x}_2 \|_H^2 &= \| \left(\mathbf{prox}_H(\boldsymbol{x}_1) - \mathbf{prox}_H(\boldsymbol{x}_2) \right) + (\Delta^P \boldsymbol{x}_1 - \Delta^P \boldsymbol{x}_2) \|_H^2 \\ &\geq \| \mathbf{prox}_H(\boldsymbol{x}_1) - \mathbf{prox}_H(\boldsymbol{x}_2) \|_H^2 + \| \Delta^P \boldsymbol{x}_1 - \Delta^P \boldsymbol{x}_2 \|_H^2 \\ &\geq \| \mathbf{prox}_H(\boldsymbol{x}_1) - \mathbf{prox}_H(\boldsymbol{x}_2) \|_H^2, \end{split}$$

where the second inequality follows from the PSD of H.

2 Proof of Lemma 3

Lemma 3 (Optimal Set). Let $\overline{\mathcal{E}}$ be the active set at optimal and $\overline{\mathcal{E}}^+ = \{j \mid \| \Pi_{\mathcal{M}_j}(\overline{\rho}) \|_* = \lambda\}$ be its augmented set (which is unique since $\overline{\rho}$ is unique) such that $\Pi_{\mathcal{M}_j}(\overline{\rho}) = \lambda \overline{a}_j$, $j \in \overline{\mathcal{E}}^+$. The optimal solutions then form a polyhedral set

$$\bar{\mathcal{X}} = \left\{ \boldsymbol{x} \mid \Pi_{\mathcal{T}}(\boldsymbol{x}) = \bar{\boldsymbol{z}} \text{ and } \boldsymbol{x} \in \bar{\mathcal{O}} \right\},$$
(3)

where $\bar{\mathcal{O}} = \left\{ \boldsymbol{x} \mid \boldsymbol{x} = \sum_{j \in \bar{\mathcal{E}}^+} c_j \bar{\boldsymbol{a}}_j, c_j \ge 0, j \in \bar{\mathcal{E}}^+ \right\}$ is the set of \boldsymbol{x} with $\bar{\boldsymbol{\rho}} \in \partial h(\boldsymbol{x})$.

Proof. The optimality condition are $g(x) = \bar{g}$ and $\bar{\rho} \in \partial h(x)$ by Theorem 1. Since $\Pi_{\mathcal{T}}(x) = \bar{z}$, we have $g(x) = \bar{g}$ already. Therefore, we only need to show that $\bar{\rho} \in \partial h(x)$ iff $x \in \bar{\mathcal{O}}$.

Suppose $\bar{\rho} \in \partial h(\boldsymbol{x})$. Then for $j \notin \bar{\mathcal{E}}^+$, we know $\|\Pi_{\mathcal{M}_j}(\bar{\rho})\|_* < 1$, which means $\Pi_{\mathcal{M}_j}(\boldsymbol{x}) = 0$, and for $j \in \bar{\mathcal{E}}^+$, we know $\Pi_{\mathcal{M}_j}(\bar{\rho}) = \lambda \bar{\boldsymbol{a}}_j$, which means $\Pi_{\mathcal{M}_j}(\boldsymbol{x})$ can be 0 or $c_j \bar{\boldsymbol{a}}_j$ for some $c_j > 0$. Therefore, \boldsymbol{x} must have the form $\boldsymbol{x} = \sum_{j \in \bar{\mathcal{E}}^+} c_j \bar{\boldsymbol{a}}_j, c_j \ge 0, j \in \bar{\mathcal{E}}^+$.

Now for the other direction, suppose $\boldsymbol{x} = \sum_{j \in \bar{\mathcal{E}}^+} c_j \bar{\boldsymbol{a}}_j, c_j \geq 0, j \in \bar{\mathcal{E}}^+$ and $\mathcal{E} \subseteq \bar{\mathcal{E}}^+$ is the set for which $c_j > 0, j \in \mathcal{E}$. Then since $\|\Pi_{\mathcal{M}_j}(\bar{\boldsymbol{\rho}})\|_* \leq 1, j \notin \mathcal{E}$ and for $j \in \mathcal{E} \subseteq \bar{\mathcal{E}}^+$ we have $\Pi_{\mathcal{M}_j}(\bar{\boldsymbol{\rho}}) = \lambda \bar{\boldsymbol{a}}_j$, we conclude that $\bar{\boldsymbol{\rho}} \in \partial h(\boldsymbol{x})$.

3 Proof of Lemma 5

Lemma 5. Let $\bar{\mathcal{A}} = span(\bar{a}_1, \bar{a}_2, \dots, \bar{a}_{|\bar{\mathcal{E}}^+|})$. Suppose $\|\boldsymbol{x}\| \leq R$ and $\Pi_{\mathcal{M}_j}(\boldsymbol{x}) = \mathbf{0}$ for $j \notin \bar{\mathcal{E}}^+$. Then

$$\lambda^2 \| \boldsymbol{x} - \Pi_{\bar{\mathcal{A}}}(\boldsymbol{x}) \|_2^2 \le R^2 \| \boldsymbol{\rho} - \bar{\boldsymbol{\rho}} \|_2^2$$

where $\rho \in \partial h(x)$ and $\bar{\rho}$ is as defined in Theorem 1.

Proof. Since $\Pi_{\mathcal{M}_j}(\boldsymbol{x}) = \boldsymbol{0}$ for $j \notin \bar{\mathcal{E}}^+$, we have $\boldsymbol{x} = \sum_{j \in \bar{\mathcal{E}}^+} c_j \boldsymbol{a}_j$ for some $\boldsymbol{a}_j \in \mathcal{M}_j$. Then

$$\begin{aligned} \|\boldsymbol{x} - \Pi_{\bar{\mathcal{A}}}(\boldsymbol{x})\|_{2}^{2} &= \|\sum_{j \in \bar{\mathcal{E}}^{+}} c_{j}\boldsymbol{a}_{j} - \sum_{j \in \bar{\mathcal{E}}^{+}} c_{j}\langle \boldsymbol{a}_{j}, \bar{\boldsymbol{a}}_{j} \rangle \bar{\boldsymbol{a}}_{j}\|_{2}^{2} \\ &= \sum_{j \in \bar{\mathcal{E}}^{+}} c_{j}^{2} \|\boldsymbol{a}_{j} - \langle \boldsymbol{a}_{j}, \bar{\boldsymbol{a}}_{j} \rangle \bar{\boldsymbol{a}}_{j}\|_{2}^{2} \leq \sum_{j \in \bar{\mathcal{E}}^{+}} c_{j}^{2} \|\boldsymbol{a}_{j} - \bar{\boldsymbol{a}}_{j}\|_{2}^{2} \end{aligned}$$

Since $\Pi_{\mathcal{M}_j}(\boldsymbol{\rho}) = \lambda \boldsymbol{a}_j, \Pi_{\mathcal{M}_j}(\bar{\boldsymbol{\rho}}) = \lambda \bar{\boldsymbol{a}}_j$, we have

$$\|oldsymbol{x} - \Pi_{ar{\mathcal{A}}}(oldsymbol{x})\|_2^2 \leq rac{1}{\lambda^2} \sum_{j \in ar{\mathcal{E}}^+} c_j^2 \|\Pi_{\mathcal{M}_j}(oldsymbol{
ho}) - \Pi_{\mathcal{M}_j}(ar{oldsymbol{
ho}})\|_2^2 \leq rac{R^2}{\lambda^2} \|oldsymbol{
ho} - ar{oldsymbol{
ho}}\|_2^2$$

as claimed.

4 Proof of Lemma 6

Lemma 6 (Optimality Condition). For any matrix H satisfying CNSC-T, the update

$$\Delta \boldsymbol{x} = \underset{\boldsymbol{d}}{\operatorname{argmin}} \quad h(\boldsymbol{x} + \boldsymbol{d}) + \boldsymbol{g}(\boldsymbol{x})^T \boldsymbol{d} + \frac{1}{2} \|\boldsymbol{d}\|_H^2$$
(4)

has

$$F(\boldsymbol{x} + t\Delta \boldsymbol{x}) - F(\boldsymbol{x}) \le -t \|\Delta \boldsymbol{z}\|_{H}^{2} + O(t^{2}),$$
(5)

where $\Delta z = \prod_{\mathcal{T}} (\Delta x)$. Furthermore, if x is an optimal solution, $\Delta x = 0$ satisfies (4).

Proof. By smoothness of f(x) and convexity of h(x), we have

$$F(\boldsymbol{x} + t\Delta \boldsymbol{x}) - F(\boldsymbol{x}) = h(\boldsymbol{x} + t\Delta \boldsymbol{x}) - h(\boldsymbol{x}) + f(\boldsymbol{x} + t\Delta \boldsymbol{x}) - f(\boldsymbol{x})$$

$$\leq t(h(\boldsymbol{x} + \Delta \boldsymbol{x}) - h(\boldsymbol{x})) + g(\boldsymbol{x})^{T}(t\Delta \boldsymbol{x}) + \mathcal{O}(t^{2}).$$
(6)

Then we try to bound the descent amount predicted by gradient $t(h(\boldsymbol{x} + \Delta \boldsymbol{x}) - h(\boldsymbol{x}) + g(\boldsymbol{x})^T \Delta \boldsymbol{x})$. Since $\Delta \boldsymbol{x}$ is optimal solution of (4), we have

$$h(\boldsymbol{x} + \Delta \boldsymbol{x}) + \boldsymbol{g}(\boldsymbol{x})^T \Delta \boldsymbol{x} + \frac{1}{2} \|\Delta \boldsymbol{x}\|_H^2$$

$$\leq h(\boldsymbol{x} + t\Delta \boldsymbol{x}) + \boldsymbol{g}(\boldsymbol{x})^T (t\Delta \boldsymbol{x}) + \frac{1}{2} \|t\Delta \boldsymbol{x}\|_H^2$$

$$\leq th(\boldsymbol{x} + \Delta \boldsymbol{x}) + (1 - t)h(\boldsymbol{x}) + \boldsymbol{g}(\boldsymbol{x})^T (t\Delta \boldsymbol{x}) + \frac{1}{2} \|t\Delta \boldsymbol{x}\|_H^2,$$
(7)

which implies

$$(1-t)(h(\boldsymbol{x} + \Delta \boldsymbol{x}) - h(\boldsymbol{x})) + (1-t)\boldsymbol{g}(\boldsymbol{x})^T \Delta \boldsymbol{x} + \frac{1-t^2}{2} \|\Delta \boldsymbol{x}\|_H^2 \le 0,$$
(8)

and therfore,

$$(h(\boldsymbol{x} + \Delta \boldsymbol{x}) - h(\boldsymbol{x})) + \boldsymbol{g}(\boldsymbol{x})^T \Delta \boldsymbol{x} \le -\frac{1+t}{2} \|\Delta \boldsymbol{x}\|_H^2 = -\frac{1+t}{2} \|\Delta \boldsymbol{z}\|_H^2,$$
(9)

where $\Delta z = \Pi_{\mathcal{T}}(\Delta x)$ and last inequality follows from CNSC- \mathcal{T} of H. Let $t \to 1$ and combine (9) and (6), we obtain

$$F(\boldsymbol{x} + t\Delta \boldsymbol{x}) - F(\boldsymbol{x}) \le -t \|\Delta \boldsymbol{z}\|_{H}^{2} + \mathcal{O}(t^{2}),$$
(10)

which shows Δx obtained from (4) is a descent direction if $\Delta z \neq 0$.

Now suppose x is an optimal solution of F(x). Then the Δx defined in (4) cannot be a descent direction, which means Δz must be **0**. However, since f(x) and H satisfy CNSC- \mathcal{T} , when $\Delta z = \mathbf{0}$, (4) reduced to

$$\Delta \boldsymbol{x} = \underset{\Delta \boldsymbol{y} \in \mathcal{T}^{\perp}}{\operatorname{argmin}} \quad h(\boldsymbol{x} + \Delta \boldsymbol{y}). \tag{11}$$

 $\Delta x = \mathbf{0}$ satisfies (11) since x = y + z is already a minimum of h(x) + f(x), while f(x) does not depend on y, where $y = \prod_{\mathcal{T}^{\perp}} (x)$.

5 Proof of Lemma 7

Lemma 7. Suppose h(x) and f(x) are Lipchitz-continuous with Lipchitz constants L_h and L_f . In quadratic convergence phase (defined in Theorem 3), Proximal Newton Method has

$$F(\boldsymbol{x}_t) - F(\bar{\boldsymbol{x}}) \le L \|\boldsymbol{z}_t - \bar{\boldsymbol{z}}\|,\tag{12}$$

where $L = \max\{L_h, L_f\}$ and $\boldsymbol{z}_t = \Pi_{\mathcal{T}}(\boldsymbol{x}_t), \, \bar{\boldsymbol{z}} = \Pi_{\mathcal{T}}(\bar{\boldsymbol{x}}).$

Proof. LWe prove (12) by showing that $|f(z_1) - f(z_2)| \le L_f ||z_1 - z_2||$ and $|h(z_1 + \hat{y}(z_1)) - h(z_2 + \hat{y}(z_2))| \le L_h ||z_1 - z_2||$ for any $z_1 \in \mathcal{T}$, $z_2 \in \mathcal{T}$. Since f(z) does not depend on the null-component y, the first inequality holds directly from the Lipchitz-continuity of f(z). The second inequality holds since

$$h(\boldsymbol{z}_1 + \hat{\boldsymbol{y}}(\boldsymbol{z}_1)) \le h(\boldsymbol{z}_1 + \hat{\boldsymbol{y}}(\boldsymbol{z}_2)) \le h(\boldsymbol{z}_2 + \hat{\boldsymbol{y}}(\boldsymbol{z}_2)) + L_h \|\boldsymbol{z}_1 - \boldsymbol{z}_2\|$$

and

$$h(z_2 + \hat{y}(z_2)) \le h(z_2 + \hat{y}(z_1)) \le h(z_1 + \hat{y}(z_1)) + L_h ||z_1 - z_2||$$

by the definition of $\hat{y}(z_1), \hat{y}(z_2)$ and Lipchitz-continuity of h(x).