Appendix: Constant Nullspace Strong Convexity and Fast Convergence of Proximal Methods under High-Dimensional Settings

Ian E.H. Yen Cho-Jui Hsieh Pradeep Ravikumar Inderjit Dhillon
Department of Computer Science
University of Texas at Austin
\{ianyen, cjhsieh, pradeepr, inderjit\}@cs.utexas.edu

1 Proof for properties of proximal operations

The proximal operator $\operatorname{prox}($.$) is defined as$

$$
\begin{equation*}
\boldsymbol{x}_{t+1}=\boldsymbol{p r o x}\left(\boldsymbol{x}_{t+\frac{1}{2}}\right)=\underset{\boldsymbol{x}}{\arg \min } h(\boldsymbol{x})+\frac{M}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{t+\frac{1}{2}}\right\|_{2}^{2} . \tag{1}
\end{equation*}
$$

Lemma 1. Define $\Delta^{P} \boldsymbol{x}=\boldsymbol{x}-\operatorname{prox}(\boldsymbol{x})$, the following properties hold for the proximal operation (1).

1. $M \Delta^{P} \boldsymbol{x} \in \partial h(\boldsymbol{\operatorname { p r o x }}(\boldsymbol{x}))$.
2. $\left\|\operatorname{prox}\left(\boldsymbol{x}_{1}\right)-\operatorname{prox}\left(\boldsymbol{x}_{2}\right)\right\|_{2}^{2} \leq\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{2}^{2}-\left\|\Delta^{P} \boldsymbol{x}_{1}-\Delta^{P} \boldsymbol{x}_{2}\right\|_{2}^{2}$.

Proof. The first property follows directly from the optimality condition of (1). The second property holds since for $M \Delta^{P} \boldsymbol{x}_{1} \in \partial h\left(\operatorname{prox}\left(\boldsymbol{x}_{1}\right)\right), M \Delta^{P} \boldsymbol{x}_{2} \in \partial h\left(\boldsymbol{\operatorname { p r o x }}\left(\boldsymbol{x}_{2}\right)\right)$ we have $\left\langle M \Delta^{P} \boldsymbol{x}_{1}-\right.$ $\left.M \Delta^{P} \boldsymbol{x}_{2}, \operatorname{prox}\left(\boldsymbol{x}_{1}\right)-\operatorname{prox}\left(\boldsymbol{x}_{2}\right)\right\rangle \geq 0$, and thus,

$$
\begin{aligned}
\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|^{2} & =\left\|\left(\operatorname{prox}\left(\boldsymbol{x}_{1}\right)-\operatorname{prox}\left(\boldsymbol{x}_{2}\right)\right)+\left(\Delta^{P} \boldsymbol{x}_{1}-\Delta^{P} \boldsymbol{x}_{2}\right)\right\|^{2} \\
& \geq\left\|\operatorname{prox}\left(\boldsymbol{x}_{1}\right)-\operatorname{prox}\left(\boldsymbol{x}_{2}\right)\right\|^{2}+\left\|\Delta^{P} \boldsymbol{x}_{1}-\Delta^{P} \boldsymbol{x}_{2}\right\|^{2},
\end{aligned}
$$

which gives the second property.
The proximal operator $\operatorname{prox}_{H}($.$) is defined for any PSD matrix H$ as

$$
\begin{equation*}
\boldsymbol{\operatorname { p r o x }}_{H}(\boldsymbol{x})=\underset{\boldsymbol{v}}{\arg \min } h(\boldsymbol{v})+\frac{1}{2}\|\boldsymbol{v}-\boldsymbol{x}\|_{H}^{2} . \tag{2}
\end{equation*}
$$

Lemma 2. Define $\Delta^{P} \boldsymbol{x}=\boldsymbol{x}-\operatorname{prox}_{H}(\boldsymbol{x})$, the following properties hold for the proximal operator:

1. $H \Delta^{P} \boldsymbol{x} \in \partial h\left(\operatorname{prox}_{H}(\boldsymbol{x})\right)$.
2. $\left\|\operatorname{prox}_{H}\left(\boldsymbol{x}_{1}\right)-\operatorname{prox}_{H}\left(\boldsymbol{x}_{2}\right)\right\|_{H}^{2} \leq\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{H}^{2}$.

Proof. The first property follows directly from the optimality condition of (2). The second property holds since for $H \Delta^{P} \boldsymbol{x}_{1} \in \partial h\left(\operatorname{prox}\left(\boldsymbol{x}_{1}\right)\right), H \Delta^{P} \boldsymbol{x}_{2} \in \partial h\left(\boldsymbol{\operatorname { p r o x }}\left(\boldsymbol{x}_{2}\right)\right)$ we have $\left\langle H \Delta^{P} \boldsymbol{x}_{1}-\right.$ $\left.H \Delta^{P} \boldsymbol{x}_{2}, \operatorname{prox}\left(\boldsymbol{x}_{1}\right)-\operatorname{prox}\left(\boldsymbol{x}_{2}\right)\right\rangle \geq 0$, and thus,

$$
\begin{aligned}
\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{H}^{2} & =\left\|\left(\operatorname{prox}_{H}\left(\boldsymbol{x}_{1}\right)-\operatorname{prox}_{H}\left(\boldsymbol{x}_{2}\right)\right)+\left(\Delta^{P} \boldsymbol{x}_{1}-\Delta^{P} \boldsymbol{x}_{2}\right)\right\|_{H}^{2} \\
& \geq\left\|\operatorname{prox}_{H}\left(\boldsymbol{x}_{1}\right)-\operatorname{prox}_{H}\left(\boldsymbol{x}_{2}\right)\right\|_{H}^{2}+\left\|\Delta^{P} \boldsymbol{x}_{1}-\Delta^{P} \boldsymbol{x}_{2}\right\|_{H}^{2} \\
& \geq\left\|\operatorname{prox}_{H}\left(\boldsymbol{x}_{1}\right)-\operatorname{prox}_{H}\left(\boldsymbol{x}_{2}\right)\right\|_{H}^{2},
\end{aligned}
$$

where the second inequality follows from the PSD of H.

2 Proof of Lemma 3

Lemma 3 (Optimal Set). Let $\overline{\mathcal{E}}$ be the active set at optimal and $\overline{\mathcal{E}}^{+}=\left\{j \mid\left\|\Pi_{\mathcal{M}_{j}}(\overline{\boldsymbol{\rho}})\right\|_{*}=\lambda\right\}$ be its augmented set (which is unique since $\overline{\boldsymbol{\rho}}$ is unique) such that $\Pi_{\mathcal{M}_{j}}(\overline{\boldsymbol{\rho}})=\lambda \overline{\boldsymbol{a}}_{j}, j \in \overline{\mathcal{E}}^{+}$. The optimal solutions then form a polyhedral set

$$
\begin{equation*}
\overline{\mathcal{X}}=\left\{\boldsymbol{x} \mid \Pi_{\mathcal{T}}(\boldsymbol{x})=\overline{\boldsymbol{z}} \text { and } \boldsymbol{x} \in \overline{\mathcal{O}}\right\} \tag{3}
\end{equation*}
$$

where $\overline{\mathcal{O}}=\left\{\boldsymbol{x} \mid \boldsymbol{x}=\sum_{j \in \overline{\mathcal{E}}^{+}} c_{j} \overline{\boldsymbol{a}}_{j}, c_{j} \geq 0, j \in \overline{\mathcal{E}}^{+}\right\}$is the set of \boldsymbol{x} with $\overline{\boldsymbol{\rho}} \in \partial h(\boldsymbol{x})$.
Proof. The optimality condition are $\boldsymbol{g}(\boldsymbol{x})=\overline{\boldsymbol{g}}$ and $\overline{\boldsymbol{\rho}} \in \partial h(\boldsymbol{x})$ by Theorem 1. Since $\Pi_{\mathcal{T}}(\boldsymbol{x})=\overline{\boldsymbol{z}}$, we have $\boldsymbol{g}(\boldsymbol{x})=\overline{\boldsymbol{g}}$ already. Therefore, we only need to show that $\overline{\boldsymbol{\rho}} \in \partial h(\boldsymbol{x})$ iff $\boldsymbol{x} \in \overline{\mathcal{O}}$.
Suppose $\overline{\boldsymbol{\rho}} \in \partial h(\boldsymbol{x})$. Then for $j \notin \overline{\mathcal{E}}^{+}$, we know $\left\|\Pi_{\mathcal{M}_{j}}(\overline{\boldsymbol{\rho}})\right\|_{*}<1$, which means $\Pi_{\mathcal{M}_{j}}(\boldsymbol{x})=0$, and for $j \in \overline{\mathcal{E}}^{+}$, we know $\Pi_{\mathcal{M}_{j}}(\overline{\boldsymbol{\rho}})=\lambda \overline{\boldsymbol{a}}_{j}$, which means $\Pi_{\mathcal{M}_{j}}(\boldsymbol{x})$ can be $\mathbf{0}$ or $c_{j} \overline{\boldsymbol{a}}_{j}$ for some $c_{j}>0$. Therefore, \boldsymbol{x} must have the form $\boldsymbol{x}=\sum_{j \in \overline{\mathcal{E}}^{+}} c_{j} \overline{\boldsymbol{a}}_{j}, c_{j} \geq 0, j \in \overline{\mathcal{E}}^{+}$.
Now for the other direction, suppose $\boldsymbol{x}=\sum_{j \in \overline{\mathcal{E}}^{+}} c_{j} \overline{\boldsymbol{a}}_{j}, c_{j} \geq 0, j \in \overline{\mathcal{E}}^{+}$and $\mathcal{E} \subseteq \overline{\mathcal{E}}^{+}$is the set for which $c_{j}>0, j \in \mathcal{E}$. Then since $\left\|\Pi_{\mathcal{M}_{j}}(\overline{\boldsymbol{\rho}})\right\|_{*} \leq 1, j \notin \mathcal{E}$ and for $j \in \mathcal{E} \subseteq \overline{\mathcal{E}}^{+}$we have $\Pi_{\mathcal{M}_{j}}(\overline{\boldsymbol{\rho}})=\lambda \overline{\boldsymbol{a}}_{j}$, we conclude that $\overline{\boldsymbol{\rho}} \in \partial h(\boldsymbol{x})$.

3 Proof of Lemma 5

Lemma 5. Let $\overline{\mathcal{A}}=\operatorname{span}\left(\overline{\boldsymbol{a}}_{1}, \overline{\boldsymbol{a}}_{2} \ldots, \overline{\boldsymbol{a}}_{\left|\overline{\mathcal{E}}^{+}\right|}\right)$. Suppose $\|\boldsymbol{x}\| \leq R$ and $\Pi_{\mathcal{M}_{j}}(\boldsymbol{x})=\mathbf{0}$ for $j \notin \overline{\mathcal{E}}^{+}$. Then

$$
\lambda^{2}\left\|\boldsymbol{x}-\Pi_{\overline{\mathcal{A}}}(\boldsymbol{x})\right\|_{2}^{2} \leq R^{2}\|\boldsymbol{\rho}-\overline{\boldsymbol{\rho}}\|_{2}^{2}
$$

where $\boldsymbol{\rho} \in \partial h(\boldsymbol{x})$ and $\overline{\boldsymbol{\rho}}$ is as defined in Theorem 1 .
Proof. Since $\Pi_{\mathcal{M}_{j}}(\boldsymbol{x})=\mathbf{0}$ for $j \notin \overline{\mathcal{E}}^{+}$, we have $\boldsymbol{x}=\sum_{j \in \overline{\mathcal{E}}^{+}} c_{j} \boldsymbol{a}_{j}$ for some $\boldsymbol{a}_{j} \in \mathcal{M}_{j}$. Then

$$
\begin{aligned}
\left\|\boldsymbol{x}-\Pi_{\overline{\mathcal{A}}^{\prime}}(\boldsymbol{x})\right\|_{2}^{2} & =\left\|\sum_{j \in \overline{\mathcal{E}}^{+}} c_{j} \boldsymbol{a}_{j}-\sum_{j \in \overline{\mathcal{E}}^{+}} c_{j}\left\langle\boldsymbol{a}_{j}, \overline{\boldsymbol{a}}_{j}\right\rangle \overline{\boldsymbol{a}}_{j}\right\|_{2}^{2} \\
& =\sum_{j \in \overline{\mathcal{E}}^{+}} c_{j}^{2}\left\|\boldsymbol{a}_{j}-\left\langle\boldsymbol{a}_{j}, \overline{\boldsymbol{a}}_{j}\right\rangle \overline{\boldsymbol{a}}_{j}\right\|_{2}^{2} \leq \sum_{j \in \overline{\mathcal{E}}^{+}} c_{j}^{2}\left\|\boldsymbol{a}_{j}-\overline{\boldsymbol{a}}_{j}\right\|_{2}^{2}
\end{aligned}
$$

Since $\Pi_{\mathcal{M}_{j}}(\boldsymbol{\rho})=\lambda \boldsymbol{a}_{j}, \Pi_{\mathcal{M}_{j}}(\overline{\boldsymbol{\rho}})=\lambda \overline{\boldsymbol{a}}_{j}$, we have

$$
\left\|\boldsymbol{x}-\Pi_{\overline{\mathcal{A}}}(\boldsymbol{x})\right\|_{2}^{2} \leq \frac{1}{\lambda^{2}} \sum_{j \in \overline{\mathcal{E}}^{+}} c_{j}^{2}\left\|\Pi_{\mathcal{M}_{j}}(\boldsymbol{\rho})-\Pi_{\mathcal{M}_{j}}(\overline{\boldsymbol{\rho}})\right\|_{2}^{2} \leq \frac{R^{2}}{\lambda^{2}}\|\boldsymbol{\rho}-\overline{\boldsymbol{\rho}}\|_{2}^{2}
$$

as claimed.

4 Proof of Lemma 6

Lemma 6 (Optimality Condition). For any matrix H satisfying CNSC- \mathcal{T}, the update

$$
\begin{equation*}
\Delta \boldsymbol{x}=\underset{\boldsymbol{d}}{\operatorname{argmin}} \quad h(\boldsymbol{x}+\boldsymbol{d})+\boldsymbol{g}(\boldsymbol{x})^{T} \boldsymbol{d}+\frac{1}{2}\|\boldsymbol{d}\|_{H}^{2} \tag{4}
\end{equation*}
$$

has

$$
\begin{equation*}
F(\boldsymbol{x}+t \Delta \boldsymbol{x})-F(\boldsymbol{x}) \leq-t\|\Delta \boldsymbol{z}\|_{H}^{2}+O\left(t^{2}\right) \tag{5}
\end{equation*}
$$

where $\Delta \boldsymbol{z}=\Pi_{\mathcal{T}}(\Delta \boldsymbol{x})$. Furthermore, if \boldsymbol{x} is an optimal solution, $\Delta \boldsymbol{x}=\mathbf{0}$ satisfies (4).
Proof. By smoothness of $f(\boldsymbol{x})$ and convexity of $h(\boldsymbol{x})$, we have

$$
\begin{align*}
F(\boldsymbol{x}+t \Delta \boldsymbol{x})-F(\boldsymbol{x}) & =h(\boldsymbol{x}+t \Delta \boldsymbol{x})-h(\boldsymbol{x})+f(\boldsymbol{x}+t \Delta \boldsymbol{x})-f(\boldsymbol{x}) \\
& \leq t(h(\boldsymbol{x}+\Delta \boldsymbol{x})-h(\boldsymbol{x}))+g(\boldsymbol{x})^{T}(t \Delta \boldsymbol{x})+\mathcal{O}\left(t^{2}\right) \tag{6}
\end{align*}
$$

Then we try to bound the descent amount predicted by gradient $t\left(h(\boldsymbol{x}+\Delta \boldsymbol{x})-h(\boldsymbol{x})+g(\boldsymbol{x})^{T} \Delta \boldsymbol{x}\right)$. Since $\Delta \boldsymbol{x}$ is optimal solution of (4), we have

$$
\begin{align*}
& h(\boldsymbol{x}+\Delta \boldsymbol{x})+\boldsymbol{g}(\boldsymbol{x})^{T} \Delta \boldsymbol{x}+\frac{1}{2}\|\Delta \boldsymbol{x}\|_{H}^{2} \\
\leq & h(\boldsymbol{x}+t \Delta \boldsymbol{x})+\boldsymbol{g}(\boldsymbol{x})^{T}(t \Delta \boldsymbol{x})+\frac{1}{2}\|t \Delta \boldsymbol{x}\|_{H}^{2} \tag{7}\\
\leq & t h(\boldsymbol{x}+\Delta \boldsymbol{x})+(1-t) h(\boldsymbol{x})+\boldsymbol{g}(\boldsymbol{x})^{T}(t \Delta \boldsymbol{x})+\frac{1}{2}\|t \Delta \boldsymbol{x}\|_{H}^{2}
\end{align*}
$$

which implies

$$
\begin{equation*}
(1-t)(h(\boldsymbol{x}+\Delta \boldsymbol{x})-h(\boldsymbol{x}))+(1-t) \boldsymbol{g}(\boldsymbol{x})^{T} \Delta \boldsymbol{x}+\frac{1-t^{2}}{2}\|\Delta \boldsymbol{x}\|_{H}^{2} \leq 0 \tag{8}
\end{equation*}
$$

and therfore,

$$
\begin{equation*}
(h(\boldsymbol{x}+\Delta \boldsymbol{x})-h(\boldsymbol{x}))+\boldsymbol{g}(\boldsymbol{x})^{T} \Delta \boldsymbol{x} \leq-\frac{1+t}{2}\|\Delta \boldsymbol{x}\|_{H}^{2}=-\frac{1+t}{2}\|\Delta \boldsymbol{z}\|_{H}^{2} \tag{9}
\end{equation*}
$$

where $\Delta \boldsymbol{z}=\Pi_{\mathcal{T}}(\Delta \boldsymbol{x})$ and last inequality follows from CNSC- \mathcal{T} of H. Let $t \rightarrow 1$ and combine (9) and (6), we obtain

$$
\begin{equation*}
F(\boldsymbol{x}+t \Delta \boldsymbol{x})-F(\boldsymbol{x}) \leq-t\|\Delta \boldsymbol{z}\|_{H}^{2}+\mathcal{O}\left(t^{2}\right) \tag{10}
\end{equation*}
$$

which shows $\Delta \boldsymbol{x}$ obtained from (4) is a descent direction if $\Delta \boldsymbol{z} \neq \boldsymbol{0}$.
Now suppose \boldsymbol{x} is an optimal solution of $F(\boldsymbol{x})$. Then the $\Delta \boldsymbol{x}$ defined in (4) cannot be a descent direction, which means $\Delta \boldsymbol{z}$ must be $\mathbf{0}$. However, since $f(\boldsymbol{x})$ and H satisfy CNSC- \mathcal{T}, when $\Delta \boldsymbol{z}=\mathbf{0}$, (4) reduced to

$$
\begin{equation*}
\Delta \boldsymbol{x}=\underset{\Delta \boldsymbol{y} \in \mathcal{T} \perp}{\operatorname{argmin}} \quad h(\boldsymbol{x}+\Delta \boldsymbol{y}) . \tag{11}
\end{equation*}
$$

$\Delta \boldsymbol{x}=\mathbf{0}$ satisfies (11) since $\boldsymbol{x}=\boldsymbol{y}+\boldsymbol{z}$ is already a minimum of $h(\boldsymbol{x})+f(\boldsymbol{x})$, while $f(\boldsymbol{x})$ does not depend on \boldsymbol{y}, where $\boldsymbol{y}=\Pi_{\mathcal{T}^{\perp}}(\boldsymbol{x})$.

5 Proof of Lemma 7

Lemma 7. Suppose $h(\boldsymbol{x})$ and $f(\boldsymbol{x})$ are Lipchitz-continuous with Lipchitz constants L_{h} and L_{f}. In quadratic convergence phase (defined in Theorem 3), Proximal Newton Method has

$$
\begin{equation*}
F\left(\boldsymbol{x}_{t}\right)-F(\overline{\boldsymbol{x}}) \leq L\left\|\boldsymbol{z}_{t}-\overline{\boldsymbol{z}}\right\|, \tag{12}
\end{equation*}
$$

where $L=\max \left\{L_{h}, L_{f}\right\}$ and $\boldsymbol{z}_{t}=\Pi_{\mathcal{T}}\left(\boldsymbol{x}_{t}\right), \overline{\boldsymbol{z}}=\Pi_{\mathcal{T}}(\overline{\boldsymbol{x}})$.
Proof. LWe prove (12) by showing that $\left|f\left(\boldsymbol{z}_{1}\right)-f\left(\boldsymbol{z}_{2}\right)\right| \leq L_{f}\left\|\boldsymbol{z}_{1}-\boldsymbol{z}_{2}\right\|$ and $\mid h\left(\boldsymbol{z}_{1}+\hat{\boldsymbol{y}}\left(\boldsymbol{z}_{1}\right)\right)-$ $h\left(\boldsymbol{z}_{2}+\hat{\boldsymbol{y}}\left(\boldsymbol{z}_{2}\right)\right) \mid \leq L_{h}\left\|\boldsymbol{z}_{1}-\boldsymbol{z}_{2}\right\|$ for any $\boldsymbol{z}_{1} \in \mathcal{T}, \boldsymbol{z}_{2} \in \mathcal{T}$. Since $f(\boldsymbol{z})$ does not depend on the nullcomponent \boldsymbol{y}, the first inequality holds directly from the Lipchitz-continuity of $f(\boldsymbol{z})$. The second inequality holds since

$$
h\left(\boldsymbol{z}_{1}+\hat{\boldsymbol{y}}\left(\boldsymbol{z}_{1}\right)\right) \leq h\left(\boldsymbol{z}_{1}+\hat{\boldsymbol{y}}\left(\boldsymbol{z}_{2}\right)\right) \leq h\left(\boldsymbol{z}_{2}+\hat{\boldsymbol{y}}\left(\boldsymbol{z}_{2}\right)\right)+L_{h}\left\|\boldsymbol{z}_{1}-\boldsymbol{z}_{2}\right\|
$$

and

$$
h\left(\boldsymbol{z}_{2}+\hat{\boldsymbol{y}}\left(\boldsymbol{z}_{2}\right)\right) \leq h\left(\boldsymbol{z}_{2}+\hat{\boldsymbol{y}}\left(\boldsymbol{z}_{1}\right)\right) \leq h\left(\boldsymbol{z}_{1}+\hat{\boldsymbol{y}}\left(\boldsymbol{z}_{1}\right)\right)+L_{h}\left\|\boldsymbol{z}_{1}-\boldsymbol{z}_{2}\right\|
$$

by the definition of $\hat{\boldsymbol{y}}\left(\boldsymbol{z}_{1}\right), \hat{\boldsymbol{y}}\left(\boldsymbol{z}_{2}\right)$ and Lipchitz-continuity of $h(\boldsymbol{x})$.

