
Appendix

A Statistical Analysis: When Covariates Are Bounded

In this section, we consider our closed-form estimators in the case when covariates x are bounded:

(C2’) For every i = 1, . . . , n, kx(i)k
2

is bounded, so that h✓⇤, x(i)i is also bounded by ⌘
max

,

under which the behavior of `
1

regularized MLEs is well studied in several works [6, 8]. The case
where the covariates x are strictly bounded requires a more straightforward analysis. In particular,
we can provide simplified specifications of the bounds 

`,A

and 
u,A

in (8), as well as of the response
polytope subsets M0 in (7).

Specifically, suppose that |h✓⇤, x(i)i|  ⌘
max

for all i = 1, . . . , n. We then define the following
response polytope subset M0 such that

M0
:=

�

µ : µ = A0
(↵) , where ↵ 2 [�⌘

max

, ⌘
max

]

 

. (9)
The bound 

`,A

in (8) should hold as before but with this simpler subset M0, so that
max

a2M0[ ¯M |[A�1

]

0
(a)|  

`,A

. In addition, we modify the inequality for the bound 
u,A

in
(8) so that max

↵2[�⌘

max

,⌘

max

]

|A00
(↵)|  

u,A

.

Logistic regression models. Since the double derivative of the log partition function in this case
is uniformly bounded, (8) still holds with 

u,A

= 1. On the other hand, when all covariates are
bounded and hence h✓⇤, x(i)i is bounded by ⌘

max

, it can be shown that (8) for a new M0 in (9) holds
when 

`,A

= max{ 1

2

+

1

2

exp(2⌘
max

), 1/✏}.

Poisson regression models. Similarly in the logistics case, if h✓⇤, x(i)i is bounded by ⌘
max

, then

`,A

= max{exp(⌘
max

), 1/✏} and 
u,A

= exp(⌘
max

) from the definitions of A00
(·) and [A�1

](·)
of Poisson models. Another example is the exponential regression case, which is provided in the
appendix due to the space limit.

Given 
`,A

, 
u,A

and M as specified above, we can recover the following error bounds as a corollary
of Theorem 1 when covariates are bounded:
Corollary 2. Consider any logistic regression model or a Poisson regression model where condi-
tions (C1), (C3) as well as (C2’) hold. Suppose that we solve our closed-form estimation prob-

lem (4), setting the thresholding parameter ⌫ = C
1

q

log p

0

n

, and the constraint bound �
n

=

2

`
(C

1

+ C 0
1

)

q

log p

0

n

where C 0
1

is some constant depending only on ⌘
max

and ✏. Then the opti-

mal solution b✓ of (4) is guaranteed to be consistent:
�

�

b✓ � ✓⇤
�

�

1  4


`

�

C
1

+ C 0
1

�

r

log p0

n
,

�

�

b✓ � ✓⇤
�

�

2

 8


`

�

C
1

+ C 0
1

�

r

k log p0

n
,

�

�

b✓ � ✓⇤
�

�

1

 16k


`

�

C
1

+ C 0
1

�

r

log p0

n
,

with probability at least 1� c
1

p0�c

0
1 for some universal constants c

1

, c0
1

> 0 and p0 := max{n, p}.

Moreover, when min

s2S

|✓⇤
s

| � 6

`
(C

1

+ C 0
1

)

q

log p

0

n

, b✓ is sparsistent.

We remark that the rates in Corollary 2 are asymptotically the same as those for standard `
1

-
regularized MLE estimators (see for instance Theorem 5 in [6]). This is especially remarkable
given the simplicity of our framework.

B Computational Complexity

Computing our closed-form estimator in (6) requires solving a linear system (and not necessarily
a matrix inversion). In general, the time complexity of solving a linear system depends on the
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sparsity of the matrix. For instance, conjugate gradient as a direct method has a time complexity
of O(ps) where s is the number of non-zero entries of T

⌫

�

X

>
X

n

�

[19], while iterative conjugate
gradient solvers have a time complexity of O(s

p
cone), where cone is the condition number of

T
⌫

�

X

>
X

n

�

[19]. Recently developed solvers considerably improve upon these time complexities
by further exploiting the structure of of T

⌫

�

X

>
X

n

�

. For instance, for the case where T
⌫

�

X

>
X

n

�

is diagonally dominant, the linear system can be solved in time O(s log p1/2) using the algorithm
of [20], and in time O(s logc p) for some constant c, using the method of [21]. Though beyond
the scope of this paper, a detailed computational study of the incorporation of these various linear
system solvers into our approach, as well as the designing of linear systems solvers targeted to the
specific structure underlying our closed-form estimators, are certainly very interesting directions for
future work.

C Useful lemma(s)

Lemma 1 (Theorem 1 of [15, 17]). Let � be max

ij

�

�

⇥

X

>
X

n

⇤

ij

� ⌃

ij

�

�. Suppose that ⌫ � 2�. Then,
under the conditions (C3) and the properties of a generalized thresholding operator described in
Section 3, we can deterministically guarantee that the spectral norm of error is bounded as follows

�

�

�

�

�

�

�

�

�

T
⌫

⇣X>X

n

⌘

� ⌃

�

�

�

�

�

�

�

�

�

1
 5⌫1�qc

0

+ 3⌫�qc
0

�. (10)

Lemma 2 (Lemma 1 of [22]). Let A be the event that
�

�

�

�

X>X

n
� ⌃

�

�

�

�

1
 8(max

i

⌃

ii

)

r

10⌧ log p0

n

where p0 := max{n, p} and ⌧ is any constant greater than 2. Suppose that the design matrix X is
i.i.d. sampled from ⌃-Gaussian ensemble with n � 40max

i

⌃

ii

. Then, the probability of event A
occurring is at least 1� 4/p0⌧�2.

D Proof of Theorem 1

In order to prove the theorem, we first generalize theorems in [14, 23, 24] for GLMs:
Theorem 2. Suppose we solve the estimation problem (4), such that true structured mo-
ment satisfies Condition (C1), and the constraint term �

n

is set as �
n

�
�

�

�

✓⇤ �
⇥

T
⌫

�

X

>
X

n

�⇤�1

X

>
[rA]

�1

(⇧

¯M(y))

n

�

�

�

1
. Then, the optimal solution b✓ of (4) satisfies:

kb✓ � ✓⇤k1  2�
n

,

kb✓ � ✓⇤k
2

 4

p
k�

n

,

kb✓ � ✓⇤k
1

 8k�
n

.

To complete the proof, we need to show that �
n

�
�

�

�

✓⇤ �
⇥

T
⌫

�

X

>
X

n

�⇤�1

X

>
[rA]

�1

(⇧

¯M(y))

n

�

�

�

1
under the conditions specified in Theorem 1.

We first compute the upper bound of
�

�

�

�

�

�

⇥

T
⌫

�

X

>
X

n

�⇤�1

�

�

�

�

�

�

1, so that we later have
�

�

�

✓⇤ �
⇥

T
⌫

�X>X

n

�⇤�1

X>
[rA]

�1

(⇧

¯M(y))

n

�

�

�

1


�

�

�

�

�

�

�

�

�

h

T
⌫

⇣X>X

n

⌘i�1

�

�

�

�

�

�

�

�

�

1

�

�

�

T
⌫

⇣X>X

n

⌘

✓⇤ � X>
[rA]

�1

(⇧

¯M(y))

n

�

�

�

1


�

�

�

�

�

�

�

�

�

h

T
⌫

⇣X>X

n

⌘i�1

�

�

�

�

�

�

�

�

�

1

 

�

�

�

�

X>

n

n

X✓⇤ � [rA]

�1

�

⇧

¯M(y)
�

o

�

�

�

�

1
+ C

1

r

log p0

n
k✓⇤k

1

!
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where we use the fact that kT
⌫

�

X

>
X

n

�

✓⇤ � X

>
X

n

✓⇤k1  C
1

q

log p

0

n

k✓⇤k
1

given the selection of ⌫
in the statement.

Furthermore, with the selection ⌫ in the statement, Lemma 1 and 2 hold with probability at least
1 � 4/p0⌧�2. Armed with (10), we use the triangle inequality of norm and the condition (C3): for
any w

�

�

�

T
⌫

⇣X>X

n

⌘

w
�

�

�

1
=

�

�

�

T
⌫

⇣X>X

n

⌘

w � ⌃w + ⌃w
�

�

�

1
� k⌃wk1 �

�

�

�

⇣

T
⌫

⇣X>X

n

⌘

� ⌃

⌘

w
�

�

�

1
(i)
� 

`

kwk1 �
�

�

�

⇣

T
⌫

⇣X>X

n

⌘

� ⌃

⌘

w
�

�

�

1
�
⇣


`

�
�

�

�

�

�

�

�

�

�

T
⌫

⇣X>X

n

⌘

� ⌃

�

�

�

�

�

�

�

�

�

1

⌘

kwk1

where the inequality (i) uses the condition (C3). Now, by Lemma 1 with the selection of ⌫, we have
�

�

�

�

�

�

�

�

�

T
⌫

⇣X>X

n

⌘

� ⌃

�

�

�

�

�

�

�

�

�

1
 c

1

⇣

log p0

n

⌘

(1�q)/2

c
0

where c
1

is a constant related only on ⌧ and max

i

⌃

ii

. Specifically, it is defined as
6.5
�

16(max

i

⌃

ii

)

p
10⌧
�

1�q . Hence, as long as n >
�

2c

1

c

0

`

�

2

1�q
log p0 as stated, so that

�

�

�

�

�

�T
⌫

�

X

>
X

n

�

� ⌃

�

�

�

�

�

�

1  `
2

, we can conclude that
�

�T
⌫

�

X

>
X

n

�

w
�

�

1 � `
2

kwk1, which implies
�

�

�

�

�

�

⇥

T
⌫

�

X

>
X

n

�⇤�1

�

�

�

�

�

�

1  2

`

Therefore, now we have
�

�

�

�

✓⇤ �
h

T
⌫

⇣X>X

n

⌘i�1X>
[rA]

�1

�

⇧

¯M(y)
�

n

�

�

�

�

1

 2


`

 

�

�

�

�

X>

n

n

X✓⇤ � [rA]

�1

�

⇧

¯M(y)
�

o

�

�

�

�

1
+ C

1

r

log p0

n
k✓⇤k

1

!

. (11)

To finalize the proof, we now focus on the term
�

�

X

>

n

�

X✓⇤� [rA]

�1

�

⇧

¯M(y)
� 

�

�

1 in (11). Noting
that rA and [rA]

�1 are element-wise functions, (11) can be rewritten as
�

�

�

�

X>

n

n

[rA]

�1

⇣

rA(X✓⇤)
⌘

� [rA]

�1

�

⇧

¯M(y)
�

o

�

�

�

�

1
. (12)

By applying mean value theorem to every element in [rA]

�1

�

rA(X✓⇤)
�

� [rA]

�1

�

⇧

¯M(y)
�

, we
have, for a fixed j 2 {1, 2, . . . , p},

�

�

�

�



X>

n

n

[rA]

�1

⇣

rA(X✓⇤)
⌘

� [rA]

�1

�

⇧

¯M(y)
�

o

�

j

�

�

�

�

=

�

�

�

�

1

n

n

X

i=1

X
ij

n

(A0
)

�1

⇣

A0�h✓⇤, x(i)i
�

⌘

� (A0
)

�1

⇣

⇥

⇧

¯M(y)
⇤

i

⌘o

�

�

�

�

=

�

�

�

�

1

n

n

X

i=1

X
ij

L
i

n

A0�h✓⇤, x(i)i
�

�
⇥

⇧

¯M(y)
⇤

i

o

�

�

�

�

where L
i

is [(A0
)

�1

]

0
(a) for some point a between A0

(h✓⇤, x(i)i) and
⇥

⇧

¯M(y)
⇤

i

by mean value
theorem. By triangular inequality of `1 norm, we have

�

�

�

�

1

n

n

X

i=1

X
ij

L
i

n

A0�h✓⇤, x(i)i
�

� y(i) + y(i) �
⇥

⇧

¯M(y)
⇤

i

o

�

�

�

�


�

�

�

�

1

n

n

X

i=1

X
ij

L
i

n

A0
(h✓⇤, x(i)i)� y(i)

o

�

�

�

�

| {z }

(I)

+

�

�

�

�

1

n

n

X

i=1

X
ij

L
i

n

y(i) �
⇥

⇧

¯M(y)
⇤

i

o

�

�

�

�

| {z }

(II)

. (13)
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(Upper bound of (I) in (13)): (I) can be upper bounded as shown in [8]:

max

j=1,...,p

�

�

�

1

n

n

X

i=1

X
ij

L
i

�

A0
(h✓⇤, x(i)i)� y(i)

 

�

�

�

 
u

max

i

|L
i

|
r

2max

i

|A00
(h✓⇤, x(i)i)| log p

0

n

(14)

with probability at least 1� cp0�c

0
. By condition (C2), we have

P(|h✓⇤, x(i)i| � �)  2 exp

⇣

� �2

22

u

k✓⇤k2
2

⌘

for all � > 0, (15)

hence it follows max

i

|h✓⇤, x(i)i|  2k✓⇤k
2


u

p
log n with probability at least 1� 2/n. Now, since

for all a in M0 [M, |[(A0
)

�1

]

0
(a)|  

`,A

, and max

i=1,...,n

|A00
(h✓⇤, x(i)i)|  

u,A

by definition
in (8), we simply obtain

(I)  
u


`,A

r

2
u,A

log p0

n
. (16)

(Upper bound of (II) in (13)): For a fixed j 2 {1, 2, . . . , p}, the variable {X
ij

}n
i=1

are i.i.d., zero
mean and sub-Gaussian by the condition (C2). Hence with vector

⇥

L
i

(y(i) � [⇧

¯M(y)]
i

)

⇤

n

i=1

whose
`
2

norm is bounded by
p
n max

i=1,...,n

L
i

�

y(i) �
⇥

⇧

¯M(y)
⇤

i

�

, we have

max

j=1,...,p

�

�

�

�

1

n

n

X

i=1

X
ij

L
i

n

y(i) �
⇥

⇧

¯M(y)
⇤

i

o

�

�

�

�

 2
u

⇣

max

i=1,...,n

L
i

�

y(i) �
⇥

⇧

¯M(y)
⇤

i

�

⌘

r

log p0

n

with probability at least 1� cp0�c

0
. Combining all pieces together completes the proof.

The proof of the statement (b) is straightforward. As we have just shown,
�

�

�

✓⇤ �
⇥

T
⌫

�

X

>
X

n

�⇤�1

X

>
[rA]

�1

(⇧

¯M(y))

n

�

�

�

1
 �

n

. Moreover, our estimator b✓ is obtained by applying

element-wise soft-thresholding from
⇥

T
⌫

�

X

>
X

n

�⇤�1

X

>
[rA]

�1

(⇧

¯M(y))

n

. Hence, if ✓⇤
i

= 0, then
�

�

�

[

⇥

T
⌫

�

X

>
X

n

�⇤�1

X

>
[rA]

�1

(⇧

¯M(y))

n

]

i

�

�

�

 �
n

and b✓
i

= 0 after thresholding by construction. At the
same time, if |✓⇤

i

| is greater than 3�
n

, it will be trivially non-zero even after thresholding since
kb✓ � ✓⇤k1  2�

n

, therefore b✓ correctly includes all such true supports.

E Applying Theorem 1 for exponential regression models

Exponential regression models described in Section 2 require the covariates are necessarily bounded
so that the canonical parameter should be strictly negative and the distribution can be normalizable.
Hence in this case, we will assume the parameter has a bias term b < 0, so that the canonical
parameter takes the form h✓⇤, xi+ b. To make it sure every canonical parameter is strictly negative,
x(i) is properly bounded and/or the bias b is smaller enough. Toward this, we assume b  �2⌘

max

so that h✓⇤, x(i)i+ b  �⌘
max

< 0 for all x(i).

Now, we specify 
`,A

and 
u,A

as in other cases. Since the exponential family log-partition func-
tion for exponential regression models is A(⌘) := � log(�⌘), we have |A00

(h✓⇤, x(i)i + b)| =

1

(h✓⇤
,x

(i)i+b)

2

 1

⌘

2

max

for all i = 1, . . . , n, so that (8) holds with 
u,A

=

1

⌘

2

max

.

We now turn to the inequality on 
`,A

in (8). In this case, the response moment polytope for the
response y 2 Y ⌘ [0,1) is given by M = [0,1). Its interior in turn is given by Mo

= (0,1).
For our subset of the interior we thus set M = [✏,1), for some ✏ s.t. 0 < ✏ < 1. The forward
mapping of exponential models is A0

(⌘) = � 1

⌘

, and therefore M0 in (9) becomes [ 1

⌘

max

,1). Then,
noting that the inverse mapping of exponential regression models is given by (A0

)

�1

(µ) = � 1

µ

, it
is Lipschitz for M [M0 with constant 

`,A

max{ 1

⌘

2

max

, 1/✏2}, so that the inequality on 
`,A

in (8)
holds as well.

Note that with this setting of M, ⇧
¯M(y

i

) = I(y
i

 ✏)✏+ I(y
i

> ✏)y
i

, where I(A) is an indicator
function that is equal to 1 if A is true and 0 otherwise. Then, we can directly derive the results as in
Corollary 2
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Figure 1: Elem-GLM vs. `
1

regularized MLE for logistic regression models when (n, p, k) =

(1000, 1000, 10) (Left) and (n, p, k) = (1000, 5000, 10) (Right).
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Figure 2: Elem-GLM vs. `
1

regularized MLE for Poisson regression models when (n, p, k) =

(300, 200, 10) (Left) and (n, p, k) = (300, 2000, 10) (Right).

F Experiment Details and Additional Experiments

We find c, c0 from the set with a wide range: C := {102, 75, 50, 25, 10, . . . , 10�9, 7.5 ⇥ 10

�10, 5 ⇥
10

�10, 2.5 ⇥ 10

�10, 10�10}. We compare our estimator with `
1

regularized MLEs with different
stopping criteria: (i) `

1

MLE1 stops the descent algorithm after the number of iterations exceeds
i
max

= 50, (ii) `
1

MLE2 stops after i
max

= 10

2, and (iii) `
1

MLE3 does after i
max

= 500 iterations.
Or they can stop if no update is made at certain iteration i before i

max

: k✓i�✓

i�1k
2

k✓i�1k
2

is smaller than
� = 10

�10.

For fair comparisons, we again find the regularization parameter of regularized MLEs, �
n

=

c
p

log p/n where c 2 C from a validation set. Moreover, we apply an element-wise soft-
thresholding even for regularized MLEs with thresholding parameter c0

p

log p/n where c0 2 C.
Experiments here are run on MATLAB in a single computing node with a Intel Core i5 2.5GHz
CPU and 8G memory. We solve `

1

regularized MLE using proximal gradient descent, and employ
the built-in MATLAB function “\” to solve linear system involving T

⌫

�

X

>
X

n

�

.

Figure 1 shows receiver operator curves (ROC) for support set recovery task of logistic regression
models under two different regimes when varying regularization parameters �

n

for both methods.
The thresholding parameter for Elem-GLM is selected via cross validation as described above. Simi-
larly, Figure 2 represents the results for Poisson regression models. For Poisson model, we randomly
choose non-zero k entries in ✓⇤ from uniform distribution in (1, 2).

Table 2-4 show the results of experiments described in Section 5, some of which are preselected and
provided in Table 1.

14



Table 2: Comparisons on simulated datasets when parameters are tuned to minimize `
2

error on
independent validation sets. We fix p = 2000 and vary n and k.

(n, k) METHOD TP FP `
2

ERROR TIME (SEC)

(1000,10)

`
1

MLE1 1 0.1410 4.6558 11.9
`
1

MLE2 1 0.1407 4.2583 23.2
`
1

MLE3 1 0.1609 3.6589 87.9
ELEM-GLM 1 0.0156 3.0954 2.9

(1000,100)

`
1

MLE1 0.9240 0.2771 19.4423 12.4
`
1

MLE2 0.9330 0.2895 19.2349 24.6
`
1

MLE3 0.9340 0.3304 19.0301 90.6
ELEM-GLM 0.7890 0.1918 16.7169 2.9

(1500,10)

`
1

MLE1 1 0.1719 4.4271 16.9
`
1

MLE2 1 0.1751 3.9717 33.6
`
1

MLE3 1 0.1685 3.2796 124.1
ELEM-GLM 1 0.0606 2.9346 3.7

(1500,100)

`
1

MLE1 0.9820 0.3153 19.0947 18.2
`
1

MLE2 0.9800 0.3465 18.8142 36.0
`
1

MLE3 0.9820 0.4023 18.5004 129.6
ELEM-GLM 0.8700 0.1636 15.2261 3.8

We also evaluate the performance of our closed-form estimators on some real binary classification
datasets, obtained from LIBSVM (http://www.csie.ntu.edu.tw/⇠cjlin/libsvmtools/datasets/). We as-
sume the logistic regression models for these datasets, and compare our Elem-GLM against `

1

MLE1

with i
max

= 10

2 and `
1

MLE2 with i
max

= 10

3. Since the true parameter ✓⇤ is unknown for real
datasets, we tune parameters for a classification error rates on a new test set and evaluate the es-
timators in terms of classification error rates on a test set and entire training time (in second) for
cross-validation using the set C above. Toward this, we divide each dataset into equal-sized 9 parts
and combine 3 parts to generate training, validation and test sets; we combine them in 9 different
ways and average the results over 9 different cases. Results are summarized in Table 5. Note that
datasets here are not high-volume and some are not even high-dimensional (p < n). We defer
comparing estimators on big-data sets to future work.
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Table 3: Comparisons on simulated datasets when parameters are tuned to minimize `
2

error on
independent validation sets. We fix p = 5000 and vary n and k.

(n, k) METHOD TP FP `
2

ERROR TIME (SEC)

(2000,10)

`
1

MLE1 1 0.1094 4.5450 63.9
`
1

MLE2 1 0.0873 4.0721 133.1
`
1

MLE3 1 0.1000 3.4846 348.3
ELEM-GLM 0.9900 0.0184 2.7375 26.5

(2000,100)

`
1

MLE1 0.9910 0.1595 19.2499 71.5
`
1

MLE2 0.9900 0.1658 18.9967 141.8
`
1

MLE3 0.9900 0.1887 18.7371 355.1
ELEM-GLM 0.9180 0.1517 15.5974 26.2

(2000,1000)

`
1

MLE1 0.7004 1 65.3568 72.0
`
1

MLE2 0.6974 1 65.3106 141.3
`
1

MLE3 0.6949 1 65.2976 388.9
ELEM-GLM 0.7091 0.9541 63.4709 25.9

(4000,10)

`
1

MLE1 1 0.1626 4.2132 155.5
`
1

MLE2 1 0.1327 3.6569 296.8
`
1

MLE3 1 0.1112 2.9681 829.3
ELEM-GLM 1 0.0069 2.6213 40.2

(4000,100)

`
1

MLE1 1 0.2208 18.7428 166.5
`
1

MLE2 1 0.2345 18.3571 318.0
`
1

MLE3 1 0.2962 17.9892 838.6
ELEM-GLM 0.9950 0.4381 15.9836 40.4

(4000,1000)

`
1

MLE1 0.7086 1 65.1418 159.9
`
1

MLE2 0.7021 1 65.0396 320.9
`
1

MLE3 0.6999 0.9999 64.9398 950.6
ELEM-GLM 0.8007 1 62.8094 40.6

Table 4: Comparisons on simulated datasets when parameters are tuned to minimize `
2

error on
independent validation sets. We fix p = 10

4 and vary n and k.

(n, k) METHOD TP FP `
2

ERROR TIME (SEC)

(5000,100)

`
1

MLE1 1 0.1301 18.9079 500.1
`
1

MLE2 1 0.1695 18.5567 983.8
`
1

MLE3 1 0.2001 18.2351 2353.3
ELEM-GLM 0.9975 0.3622 16.4148 151.8

(5000,1000)

`
1

MLE1 0.7990 1 65.1895 520.7
`
1

MLE2 0.7935 1 65.1165 1005.8
`
1

MLE3 0.7965 1 65.1024 2560.1
ELEM-GLM 0.8295 1 63.2359 152.1

(8000,100)

`
1

MLE1 1 0.1904 18.6186 810.6
`
1

MLE2 1 0.2181 18.1806 1586.2
`
1

MLE3 1 0.2364 17.6762 3568.9
ELEM-GLM 0.9450 0.0359 11.9881 221.1

(8000,1000)

`
1

MLE1 0.7965 1 65.0714 809.5
`
1

MLE2 0.7900 1 64.9650 1652.8
`
1

MLE3 0.7865 1 64.8857 4196.6
ELEM-GLM 0.7015 0.5103 61.0532 219.4
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Table 5: Comparisons of the empirical prediction errors on some benchmark datasets.

DATA SET
`
1

MLE1 `
1

MLE2 Elem-GLM
ERR TIME ERR TIME ERR TIME

COD-RNA 0.3156 3.61 0.0669 133.9 0.0640 0.25
IJCNN1 0.0971 5.10 0.0771 164.5 0.0842 0.25
DIABETES 0.2596 0.09 0.2356 1.09 0.2313 0.01
HEART 0.1938 0.06 0.2062 1.55 0.1975 0.01
AUSTRALIAN 0.1448 0.07 0.1352 4.68 0.1347 0.01
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