

Figure 1: Receiver operator curves for support set recovery task when $(n, p)=(800,1600)$ (Left), $(n, p)=(5000,10000)$ (Right).

Appendix

A Proof of Theorem 1

Let Δ be the error vector, $\widehat{\theta}-\theta^{*}$. Since we choose λ_{n} greater than $\left\|\theta^{*}-[\nabla B]^{-1}(\widehat{\phi})\right\|_{\infty}$,

$$
\begin{gather*}
\|\Delta\|_{\infty}=\left\|\widehat{\theta}-[\nabla B]^{-1}(\widehat{\phi})+[\nabla B]^{-1}(\widehat{\phi})-\theta^{*}\right\|_{\infty} \\
\leq\left\|\widehat{\theta}-[\nabla B]^{-1}(\widehat{\phi})\right\|_{\infty}+\left\|\theta^{*}-[\nabla B]^{-1}(\widehat{\phi})\right\|_{\infty} \leq 2 \lambda_{n} \tag{12}
\end{gather*}
$$

At the same time, by the fact that $\theta_{S^{c}}^{*}=\mathbf{0}$, and the decomposability of $\|\cdot\|_{1}$ with respect to $\left(S, S^{c}\right)$,

$$
\begin{align*}
\left\|\theta^{*}\right\|_{1} & =\left\|\theta^{*}\right\|_{1}+\left\|\Delta_{S^{c}}\right\|_{1}-\left\|\Delta_{S^{c}}\right\|_{1} \\
& =\left\|\theta^{*}+\Delta_{S^{c}}\right\|_{1}-\left\|\Delta_{S^{c}}\right\|_{1} \\
& \stackrel{(i)}{\leq}\left\|\theta^{*}+\Delta_{S^{c}}+\Delta_{S}\right\|_{1}+\left\|\Delta_{S}\right\|_{1}-\left\|\Delta_{S^{c}}\right\|_{1} \\
& =\left\|\theta^{*}+\Delta\right\|_{1}+\left\|\Delta_{S}\right\|_{1}-\left\|\Delta_{S^{c}}\right\|_{1} \tag{13}
\end{align*}
$$

where the equality (i) holds by the triangle inequality of ℓ_{1} norm. Now, since we minimize the objective $\|\theta\|_{1}$ in (8), we obtain the inequality of $\left\|\theta^{*}+\Delta\right\|_{1}=\|\widehat{\theta}\|_{1} \leq\left\|\theta^{*}\right\|_{1}$. Combining this inequality with (13), we have

$$
\begin{equation*}
0 \leq\left\|\Delta_{S}\right\|_{1}-\left\|\Delta_{S^{c}}\right\|_{1} \tag{14}
\end{equation*}
$$

Armed with inequalities (12) and (14), we utilize the Hölder's inequality and the decomposability of $\|\cdot\|_{1}$ in order to compute the error bound:

$$
\begin{equation*}
\|\Delta\|_{2}^{2}=\langle\Delta, \Delta\rangle \leq\|\Delta\|_{\infty}\|\Delta\|_{1} \leq\|\Delta\|_{\infty}\left(\left\|\Delta_{S}\right\|_{1}+\left\|\Delta_{S^{c}}\right\|_{1}\right) \tag{15}
\end{equation*}
$$

Since the error vector Δ satisfies the property: $\left\|\Delta_{S^{c}}\right\|_{1} \leq\left\|\Delta_{S}\right\|_{1}$ from (14),

$$
\begin{equation*}
\|\Delta\|_{2}^{2} \leq 2\|\Delta\|_{\infty}\left\|\Delta_{S}\right\|_{1} \tag{16}
\end{equation*}
$$

Combining all the pieces together yields

$$
\begin{equation*}
\|\Delta\|_{2}^{2} \leq 4 \lambda_{n} \sqrt{k}\left\|\Delta_{S}\right\|_{2} \tag{17}
\end{equation*}
$$

Notice that the projection operator is non-expansive, $\left\|\Delta_{S}\right\|_{2}^{2} \leq\|\Delta\|_{2}^{2}$. Hence, we obtain $\left\|\Delta_{S}\right\|_{2} \leq$ $4 \lambda_{n} \sqrt{k}$, and plugging it back into (17) yields the error bound, $\left\|\widehat{\theta}-\theta^{*}\right\|_{2}$.
Finally, the error bound in terms of ℓ_{1}, is straightforward from the following reasoning:

$$
\|\Delta\|_{1}=\left\|\Delta_{S}\right\|_{1}+\left\|\Delta_{S^{c}}\right\|_{1} \leq 2\left\|\Delta_{S}\right\|_{1} \leq 2 \sqrt{k}\left\|\Delta_{S}\right\|_{2} \leq 8 \lambda_{n} k
$$

B Useful lemma(s)

Lemma 1 (Theorem 1 of $[22,23]$). Let δ be $\max _{i j}\left|\left[\frac{X^{\top} X}{n}\right]_{i j}-\Sigma_{i j}\right|$. Suppose that $\nu \geq 2 \delta$. Then, under the conditions (C-Thresh) and (C-Sparse $\mathbf{\Sigma}$), we can deterministically guarantee that the spectral norm of error is bounded as follows

$$
\begin{equation*}
\left\|T_{\nu}(S)-\Sigma\right\|_{\infty} \leq 5 \nu^{1-q} c_{0}(p)+3 \nu^{-q} c_{0}(p) \delta \tag{18}
\end{equation*}
$$

Lemma 2 (Lemma 1 of [13]). Let \mathcal{A} be the event that

$$
\left\|\frac{X^{\top} X}{n}-\Sigma\right\|_{\infty} \leq 8\left(\max _{i} \Sigma_{i i}\right) \sqrt{\frac{10 \tau \log p^{\prime}}{n}}
$$

where $p^{\prime}:=\max \{n, p\}$ and τ is any constant greater than 2 . Suppose that the design matrix X is i.i.d. sampled from Σ-Gaussian ensemble with $n \geq 40 \max _{i} \Sigma_{i i}$. Then, the probability of event \mathcal{A} occurring is at least $1-4 / p^{\prime \tau-2}$.
Lemma 3 (Lemma 3 of [19]). For discrete graphical models in (6),

$$
\left\|\phi-\mu^{*}\right\|_{\infty} \leq 2 \sqrt{\frac{\log p}{n}}
$$

with probability at least $1-2 \exp (-2 \log p)$.

C Proof of Corollary 1

In order to utilize Theorem 1 for this specific case, we only need to show that $\| \Theta^{*}-$ $\left[T_{\nu}(S)\right]^{-1} \|_{\infty, \text { off }} \leq \lambda_{n}$ for the setting of λ_{n} in the statement:

$$
\begin{align*}
& \left\|\Theta^{*}-\left[T_{\nu}(S)\right]^{-1}\right\|_{\infty, \text { off }}=\left\|\left[T_{\nu}(S)\right]^{-1}\left(T_{\nu}(S) \Theta^{*}-I\right)\right\|_{\infty, \text { off }} \\
\leq & \left\|\left[T_{\nu}(S)\right]^{-1}\right\|_{\infty}\left\|T_{\nu}(S) \Theta^{*}-I\right\|_{\infty, \text { off }}=\left\|\left[T_{\nu}(S)\right]^{-1}\right\|\left\|_{\infty}\right\| \Theta^{*}\left(T_{\nu}(S)-\Sigma^{*}\right) \|_{\infty, \text { off }} \\
\leq & \left\|\left[T_{\nu}(S)\right]^{-1}\right\|_{\infty}\left\|\Theta^{*}\right\|_{\infty}\left\|T_{\nu}(S)-\Sigma^{*}\right\|_{\infty, \text { off }} \tag{19}
\end{align*}
$$

We first compute the upper bound of $\left\|\left[T_{\nu}(S)\right]^{-1}\right\| \|_{\infty}$. By the selection ν in the statement, Lemma 1 and 2 hold with probability at least $1-4 / p^{\prime \tau-2}$. Armed with (18), we use the triangle inequality of norm and the condition (C-Sparse $\boldsymbol{\Sigma}$): for any w

$$
\begin{aligned}
& \quad\left\|T_{\nu}(S) w\right\|_{\infty}=\left\|T_{\nu}(S) w-\Sigma w+\Sigma w\right\|_{\infty} \geq\|\Sigma w\|_{\infty}-\left\|\left(T_{\nu}(S)-\Sigma\right) w\right\|_{\infty} \\
& \stackrel{(\mathrm{i})}{\geq} \kappa_{2}\|w\|_{\infty}-\left\|\left(T_{\nu}(S)-\Sigma\right) w\right\|_{\infty} \geq\left(\kappa_{2}-\left\|T_{\nu}(S)-\Sigma\right\|_{\infty}\right)\|w\|_{\infty}
\end{aligned}
$$

where the inequality (i) uses the condition (C-Sparse $\boldsymbol{\Sigma}$). Now, by Lemma 1 with the selection of ν, we have

$$
\left\|T_{\nu}(S)-\Sigma\right\|_{\infty} \leq c_{1}\left(\frac{\log p^{\prime}}{n}\right)^{(1-q) / 2} c_{0}(p)
$$

where c_{1} is a constant related only on τ and $\max _{i} \Sigma_{i i}$. Specifically, it is defined as $6.5\left(16\left(\max _{i} \Sigma_{i i}\right) \sqrt{10 \tau}\right)^{1-q}$. Hence, as long as $n>\left(\frac{2 c_{1} c_{0}(p)}{\kappa_{2}}\right)^{\frac{2}{1-q}} \log p^{\prime}$ as stated, so that $\| T_{\nu}(S)-$ $\Sigma \|_{\infty} \leq \frac{\kappa_{2}}{2}$, we can conclude that $\left\|T_{\nu}(S) w\right\|_{\infty} \geq \frac{\kappa_{2}}{2}\|w\|_{\infty}$, which implies $\left\|\left[T_{\nu}(S)\right]^{-1}\right\|_{\infty} \leq \frac{2}{\kappa_{2}}$.
The remaining term in (19) is $\left\|T_{\nu}(S)-\Sigma^{*}\right\|_{\infty, \text { off }} ;\left\|T_{\nu}(S)-\Sigma^{*}\right\|_{\infty, \text { off }} \leq\left\|T_{\nu}(S)-S\right\|_{\infty, \text { off }}+$ $\left\|S-\Sigma^{*}\right\|_{\infty, \text { off }}$. By construction of $T_{\nu}(\cdot)$ in (C-Thresh) and by Lemma 2, we can confirm that $\left\|T_{\nu}(S)-S\right\|_{\infty, \text { off }}$ as well as $\left\|S-\Sigma^{*}\right\|_{\infty, \text { off }}$ can be upper-bounded by ν.

By combining all together, we can confirm that the selection of λ_{n} satisfies the requirement of Theorem 1, which completes the proof.

D Proof of Corollary 2

As in proof of Corollary 1 , we need to show that $\left\|\theta^{*}-\mathcal{B}_{\text {trw }}^{*}(\widehat{\phi})\right\|_{\infty, E} \leq \lambda_{n}$ for the setting of λ_{n} in the statement:

$$
\begin{aligned}
& \left\|\theta^{*}-\mathcal{B}_{\text {trw }}^{*}(\widehat{\phi})\right\|_{\infty, E} \\
= & \left\|\theta^{*}-\mathcal{B}_{\text {trw }}^{*}\left(\mu^{*}\right)+\mathcal{B}_{\text {trw }}^{*}\left(\mu^{*}\right)-\mathcal{B}_{\text {trw }}^{*}(\widehat{\phi})\right\|_{\infty, E} \\
\leq & \|\left[\theta^{*}-\mathcal{B}_{\text {trw }}^{*}\left(\mu^{*}\right)\left\|_{\infty, E}+\right\|\left[\mathcal{B}_{\text {trw }}^{*}\left(\mu^{*}\right)-\mathcal{B}_{\text {trw }}^{*}(\widehat{\phi}) \|_{\infty, E}\right.\right. \\
\leq & \epsilon+\left\|\mathcal{B}_{\text {trw }}^{*}\left(\mu^{*}\right)-\mathcal{B}_{\text {trw }}^{*}(\widehat{\phi})\right\|_{\infty, E}
\end{aligned}
$$

Now, let us focus on the second term above, where $\mathcal{B}_{\text {trw }}^{*}(\cdot)$ is defined in (10). For all any combination of $(s t ; j k)$, we have

$$
\begin{aligned}
& \left|\rho_{s t} \log \frac{\mu_{s t ; j k}^{*}}{\mu_{s ; j}^{*} \mu_{t ; k}^{*}}-\rho_{s t} \log \frac{\widehat{\phi}_{s t ; j k}}{\widehat{\phi}_{s ; j} \widehat{\phi}_{t ; k}}\right| \leq\left|\log \frac{\mu_{s t ; j k}^{*}}{\mu_{s ; j}^{*} \mu_{t ; k}^{*}}-\log \frac{\widehat{\phi}_{s t ; j k}}{\widehat{\phi}_{s ; j} \widehat{\phi}_{t ; k}}\right| \\
= & \left|\left(\log \mu_{s t ; j k}^{*}-\log \widehat{\phi}_{s t ; j k}\right)+\left(\log \widehat{\phi}_{s ; j}-\log \mu_{s ; j}^{*}\right)+\left(\log \widehat{\phi}_{t ; k}-\log \mu_{t ; k}^{*}\right)\right| \\
\leq & \left|\log \mu_{s t ; j k}^{*}-\log \widehat{\phi}_{s t ; j k}\right|+\left|\log \widehat{\phi}_{s ; j}-\log \mu_{s ; j}^{*}\right|+\left|\log \widehat{\phi}_{t ; k}-\log \mu_{t ; k}^{*}\right|
\end{aligned}
$$

By Lemma 3, $\left\|\phi-\mu^{*}\right\|_{\infty} \leq c_{1} \sqrt{\frac{\log p}{n}}$ with at least probability $1-2 \exp (-2 \log p)$. Therefore, for any index α, we have

$$
\begin{aligned}
& \left|\log \widehat{\phi}_{\alpha}-\log \mu_{\alpha}^{*}\right|=\log \frac{\max \left\{\widehat{\phi}_{\alpha}, \mu_{\alpha}^{*}\right\}}{\min \left\{\widehat{\phi}_{\alpha}, \mu_{\alpha}^{*}\right\}} \leq \log \left(\frac{\min \left\{\widehat{\phi}_{\alpha}, \mu_{\alpha}^{*}\right\}+c_{1} \sqrt{\frac{\log p}{n}}}{\min \left\{\widehat{\phi}_{\alpha}, \mu_{\alpha}^{*}\right\}}\right) \\
\leq & \log \left(1+\frac{c_{1}}{\min \left\{\widehat{\phi}_{\alpha}, \mu_{\alpha}^{*}\right\}} \sqrt{\frac{\log p}{n}}\right) \leq \frac{c_{1}}{\min \left\{\widehat{\phi}_{\alpha}, \mu_{\alpha}^{*}\right\}} \sqrt{\frac{\log p}{n}}
\end{aligned}
$$

If $n>\frac{4 c_{1}^{2} \log p}{\epsilon_{\min }^{2}}$, then $\widehat{\phi}_{\alpha} \geq \mu_{\alpha}^{*}-c_{1} \sqrt{\frac{\log p}{n}} \geq \mu_{\alpha}^{*}-\frac{\epsilon_{\min }}{2} \geq \frac{\epsilon_{\min }}{2}$ again by Lemma 3 and (C-Marginal). Hence, we can conclude $\left|\log \widehat{\phi}_{\alpha}-\log \mu_{\alpha}^{*}\right| \leq \frac{2 c_{1}}{\epsilon_{\min }} \sqrt{\frac{\log p}{n}}$, and finally we have $\left\|\theta^{*}-\mathcal{B}_{\text {trw }}^{*}(\widehat{\phi})\right\|_{\infty, E} \leq$ $\frac{6 c_{1}}{\epsilon_{\min }} \sqrt{\frac{\log p}{n}}$.

E Extension to Group Sparsity in DMRFs

A pertinent structural constraint for DMRFs is that of group-sparsity, where all the parameters of an edge are grouped together, so as to encourage sparsity in terms of the edges. Specifically, for each pair of nodes (s, t) in the DMRF, denote by $G_{s, t}$ the group of indices corresponding to the parameter group $\left\{\theta_{s, t ; j, k}: j, k \in[m]\right\}$. Let $\theta_{G_{s, t}}$ denote the corresponding parameter sub-vector. Let $\mathcal{G}:=\left\{G_{s, t}: s, t \in V\right\}$. A natural regularization function for such a setting is the following group-structured ℓ_{1} / ℓ_{α} norm defined as $\|\theta\|_{\mathcal{G}, \alpha, E}:=\sum_{(s, t) \in V}\left\|\theta_{G_{s, t}}\right\|_{\alpha}$, where α is a constant between 2 and ∞.

We then consider the following variant of Elem-DMRF, with the regularization function set to the above group-structured norm:

$$
\begin{aligned}
& \underset{\theta}{\operatorname{minimize}}\|\theta\|_{\mathcal{G}, \alpha, E} \\
& \quad \text { s. t. }\left\|\theta-\mathcal{B}_{\text {trw }}^{*}(\widehat{\phi})\right\|_{\mathcal{G}, \alpha, E}^{*} \leq \lambda_{n}
\end{aligned}
$$

where $\|\theta\|_{\mathcal{G}, \alpha, E}^{*}:=\max _{(s, t)}\left\|\theta_{G_{s, t}}\right\|_{\alpha^{*}}$ for a constant α^{*} satisfying $\frac{1}{\alpha}+\frac{1}{\alpha^{*}}=1$.
It can easily be seen that the estimator is still available in closed-form via group-wise softthresholding of $\mathcal{B}_{\text {trw }}^{*}(\widehat{\phi})$. We note that our theoretical analysis can be naturally extended to such group sparsity structure (and to other structures such as low rank). We will consider doing so in future work.

