
A Appendix-A — Proof for Convergence Analysis

A.1 Linear Convergence of Augmented Lagrangian Method

Theorem 4. Let {yt}1
t=0

be the sequences of dual variables produced by Algorithm 1 and
{(xt, ⇠

t

)}1
t=0

be the corresponding sequence of solutions to the primal Augmented Lagrangian prob-
lem. Denote

�

t

=

1

⌘
t

(yt+1 � yt) =


A

I

xt � b
I

+ ⇠t

A
E

xt � b
E

�
2 @g(yt). (27)

and ⇧

S

⇤
(yt) as the projection of yt to the set of optimal dual solutions. Then we have

kyt �⇧

S

⇤
(yt)k  Lk�tk (28)

and

k�t+1k  min

✓
L

⌘
t

, 1

◆
k�tk, (29)

where L := L(S⇤, y0) > 0 is a constant depending on the solution set S⇤ and initial distance to
this set R = ky0 �⇧

S

⇤
(y0)k.

Proof. This theorem is a special case of the linear convergence proof in [16]. In particular, the
Linear Program (1) can be written as

min

x2Rn
f(x) = cTx

s.t.


A

I

I
A

E

O

� 
x
⇠

�
=


b
I

b
E

�
,

x
j

� 0, j = 1...n
b

⇠
i

� 0, i = 1...m
I

,

(30)

which is a special case of the Quadratic Programming formulation analyzed in [16] with quadratic
term Q = 0 (which is positive semi-definite). The analysis assumes all iterates yt to be within a
bounded distance R to the optimal solution set, which is satisfied with R = ky0 � ⇧

S

⇤
(yt)k since

by non-expansiveness of proximal operator, we have

kyt+1�⇧

S

⇤
(yt+1

)k  kyt+1�⇧

S

⇤
(yt)k = kprox

g

(yt)�prox

g

(⇧

S

⇤
(yt))k  kyt�⇧

S

⇤
(yt)k,

where
prox

g

(yt) = argmin
y

g(y) +
⌘
t

2

ky � ytk2,

and thus the distance of each iterate to the optimal set is bounded by R = ky0�⇧

S

⇤
(y0)k. Inequal-

ities (28), (29) then follow from Proposition 4.4 and Theorem 4.5 of [16] respectively, where the
constant L is defined through characteristics of S⇤ and an upper bound R on the distance to solution
set.

We then have following outer iteration complexity for Algorithm 1, assuming each proximal sub-
problem (6) is solved exactly.
Corollary 1 (Outer Iteration Complexity). Setting ⌘

t

� ⌘ = (1 + ↵)L, we have

kyt �⇧

S

⇤
(yt)k  ✏

by performing

t � (1 +

1

↵
) log

✓
Lk�0k

✏

◆

iterations of Algorithm (1), where k�0k = kprox
⌘tg

(y0)� y0k.

Proof. For ⌘
t

� ⌘ = (1 + ↵)L, we have

k�t+1k  (1� 1

z
)k�tk,
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where z = (1 +

1

↵

), and thus for

t � (1 +

1

↵
) log

✓
Lk�0k

✏

◆
,

we have
k�tk  (1� 1

z
)

z log

Lk�0k
✏ k�0k  (e�1

)

log

Lk�0k
✏ k�

0

k  ✏

L
,

and therefore by (28), kyt �⇧

S

⇤
(yt)k  ✏.

A.2 Linear Convergence of Randomized Coordinate Descent on Subproblem (6)

In this section, we prove linear convergence of Algorithm 2 to the optimum of sub-problem (6) by
exploiting the fact that objective (6), though not being strongly convex, has strong convexity when
restricted to a constant linear subspace [28, 29]. In particular, denote n̄ = n+m

I

and

x̄ =


x
⇠

�
2 Rn̄ , c̄ =


c
0

�
, ¯A =


A

I

I
A

E

O

�
.

We can express the objective (6) as

min

x,xb�0,⇠�0

F (x̄) = c̄T x̄+ g( ¯Ax̄), (31)

where
g(z) =

⌘
t

2

kz � b� 1

⌘
t

ytk2

is ⌘
t

-strongly convex w.r.t. z and therefore F (x̄) is strongly convex when restricted to the space
N?, where N = Null( ¯A) is the Nullspace of constraint matrix ¯A. Formally, a Constant Nullspace
Strongly Convex (CNSC) function has the following properties.
Lemma 1 ( CNSC [29] ). Let N = Null( ¯A) be the Nullspace of ¯A and H = r2F (x̄) be the
Hessian matrix of (31). For any x̄ 2 Rn̄, we can express it as x̄ = u + v where u = ⇧N (x̄),
v = ⇧N?(x̄) s.t.

Hu = 0 (32)
and

vTHv � mkvk2, (33)
for some m > 0.

Proof. The Hessian of (31) can be written as

r2F (x̄) = H = ⌘
t

¯AT

¯A

and thus (32) can be easily verified. On the other hand, (33) holds with m = ⌘
t

�
min

> 0, where
�
min

denotes minimum positive eigenvalue of ¯AT

¯A.

Then we can profile the optimal solution of (31) with the following condition.
Lemma 2 (Optimality Condition). Express subproblem objective (31) as

F (x̄) + h(x̄),

where h(x̄) =
P

j2[n̄]\{nb+1...nb+nf} hj

(x̄
j

) with

h
j

(x̄) =

⇢
0 , x̄

j

� 0

1 , o.w.. (34)

Then there are unique ⇢⇤, s⇤ and t⇤ s.t. x̄⇤ is optimal solution of (31) iff

�rF (x̄⇤
) = �c̄�rg(t⇤) = ⇢⇤ 2 @h(x̄) (35)

and c̄T x̄⇤
= s⇤ and ¯Ax̄⇤

= t⇤.
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Proof. The first-order condition implies (35) to be necessary and sufficient for x̄⇤ to be optimal, so
we only need to verify the uniqueness of ⇢⇤, s⇤ and t⇤. Consider two solutions x̄

1

, x̄
2

that are both
optimal. Denote �x = x̄

1

� x̄
2

. By convexity of h(x̄), we have

h�rF (x̄
1

) +rF (x̄
2

),�xi = h⇢
1

� ⇢
2

,�xi � 0, (36)

Note for quadratic F (x̄), the Hessian r2F (x̄) = H is constant and thus

rF (x̄
1

)�rF (x̄
2

) = H�x. (37)

Then by CNSC condition (32), we have

h�rF (x̄
1

) +rF (x̄
2

),�xi = h�H�x,�xi = ��vTH�v (38)

where �v = ⇧N?(�x) is the projection of �x onto the subspace N?. Then by CNSC (33),

��vTH�v  �mk�vk2

for some m > 0, but (36) implies
��vTH�v � 0.

Then the above two inequalities can simultaneously hold only if �v = 0, which means the optimal
v⇤ as well as t⇤ =

¯Ax̄⇤
=

¯Av⇤ are unique. Furthermore, the optimal ⇢⇤ = �c̄ � rg(t⇤) and
s⇤ = F ⇤ � g(t⇤) are also unique.

From Lemma 2, the set of optimal solutions forms a polyhedral set satisfying (i) ¯Ax̄ = t⇤, (ii)
c̄T x̄ = s⇤ and (iii) x

b

� 0 , ⇠ � 0. Then we can bound the distance of any point x̄ to the polyhedral
set by the amount of infeasibility to the three (in)equalities based on Hoffman’s bound introduced
as follows.
Lemma 3 (Hoffman’s Bound). Let S = {x 2 Rd | Ax  b, Ex = c} be a polyhedral set. Then
for any point x 2 Rd,

kx�⇧S(x)k2
2

 ✓

����
[Ax� b]

+

Ex� c

����
2

2

(39)

where ⇧S(x) = argmin

y2S ky � xk is the projection of x to the set S , and ✓ > 0 is a constant
depending on the polyhedral set S .

Proof. The Hoffman’s bound first appears in [31] and a proof for the `
2

-norm’s version (39) and the
definition of the constant ✓(S) can be found in [28] (lemma 4.3).

Note for any feasible descent method (such as Coordinate Descent method), all iterates {x̄k}1
k=1

are
feasible, and therefore one can bound the distance of any iterate to the set of optimal solutions by
the amount of infeasibility to the two conditions ¯Ax̄ = t⇤, c̄T x̄ = s⇤ as

kx̄�⇧S(x̄)k2  ✓(S)
�
k ¯Ax̄� t⇤k2 + kc̄T x̄� s⇤k2

�
, (40)

which plays an important role in the proof of linear convergence of Randomized Coordinate Descent
on the CNSC function (31). Now we move on to lemmas specific to Algorithm 2. For simplicity, we
will analyze RCD that employs a conservative step size 1/r2

jj

¯F (x̄) = 1/(⌘
t

kā
j

k2) instead of the
one using dynamic line search (15). However, the result only differs by a constant factor �� (line
search parameter) on the descent amount.
Lemma 4 (Descent Amount). The expected descent amount for each RCD update of Algorithm 2
has

E[F (x̄k+1

)]� F (x̄k

)  1

n

✓
min

�

h(x̄k

+ �) + hrF (x̄k

), �i+ M⌘
t

2

k�k2
◆
, (41)

where M � max

j2[n]

kā
j

k2 is an upper bound on the coordinate-wise second derivative, ā
j

is the
j-th column of ¯A.
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Proof. First, notice that Algorithm 2 maintains ⇠ (i.e. x̄
n+1

,..,x̄
n+mf ) to be optimal given other

variables x through equation (8), so we have

0 = min

�j

h
j

(x̄
j

+ �
j

) +r
j

F (x̄k

)�
j

+

M⌘
t

2

�2
j

, j = n+ 1, ..., n+m
I

. (42)

Therefore, the algorithm picks coordinate uniformly from {1...n} (without {n+ 1, ..., n+m
I

}) to
update. Note the constant

M � 1

⌘
t

max

j2[n]

|r2

jj

F (x̄)| = max

j2[n̄]

kā
j

k2

upper bounds the coordinate-wise second-derivative of both F (x̄) and ˆF (x) = min

⇠

F (x, ⇠). There-
fore, denote e

j

as vector of all zeros except value 1 at the j-th coordinate. We have

F (x̄k+1

)� F (x̄k

) = F (xk+1, ⇠(xk+1

))� F (xk, ⇠k)

 F (xk+1, ⇠k)� F (xk, ⇠k)

= min

�j

h
j

(xk

j

+ �
j

) +r
j

F (xk

)�
j

+

⌘
t

kā
j

k2

2

�2
j

 min

�j

h
j

(xk

j

+ �
j

) +r
j

F (xk

)�
j

+

M⌘
t

2

�2
j

.

Taking expectation of LHS and RHS w.r.t. j yields the result.

Finally, notice that the function g(z) =

⌘t

2

kz � b + yt/⌘
t

k2 is locally Lipschitz-continuous with
constant L

g

= ⌘
t

R
z

for z satisfying kz � b+ yt/⌘
t

k  R
z

, that is,

|g(z
1

)� g(z
2

)|  L
g

kz
1

� z
2

k (43)

for 8z
1

, z
2

with kz
1

� b + yt/⌘
t

k  R
z

, kz
2

� b + yt/⌘
t

k  R
z

, where L
g

is an upper bound on
the magnitude of dual iterates kyt+1k = k⌘

t

(

¯Ax̄k � b) + ytk.
From simplicity of analysis, in the following, we slightly loosen upper bounds by setting constants
L
g

 max(L
g

, 1), M  max(M, 1), ✓  max(✓, 1), such that L
g

,M, ✓ � 1. Then we are ready
to prove the main theorem of this section.
Theorem 5 (Linear Convergence). The iterates {x̄k}1

k=0

of RCD Algorithm satisfy

E[F (x̄k+1

)]� F ⇤ 
✓
1� 1

n�

◆�
E[F (x̄k

)]� F ⇤�

where F ⇤ is the optimum of (6) and

� = max

�
16⌘

t

M✓(F 0 � F ⇤
) , 2M✓(1 + 4L2

g

) , 6
 
.

Proof. Let x̄⇤
= ⇧S(x̄k

) be the projection of x̄k to the set of optimal solutions. From Lemma 4, we
have

E[F (x̄k+1

)]� F (x̄k

)  1

n

✓
min

�

h(x̄k

+ �) + hrF (x̄k

), �i+ M⌘
t

2

k�k2
◆

 1

n

✓
min

�

h(x̄k

+ �) + F (x̄k

+ �)� F (x̄k

) +

M⌘
t

2

k�k2
◆

 1

n

✓
min

↵2[0,1]

F (x̄k

+ ↵(x̄⇤ � x̄k

))� F (x̄k

) +

M⌘
t

↵2

2

kx̄⇤ � x̄kk2
◆

 1

n

✓
min

↵2[0,1]

�↵(F (x̄k

)� F (x̄⇤
)) +

M⌘
t

↵2

2

kx̄⇤ � x̄kk2
◆
,

(44)
where the second and fourth inequality follow from the convexity of F (x̄), and the third inequality
follows from the fact that both x̄⇤ and x̄k are feasible (h(x̄⇤

) = h(x̄k

) = 0). Now based on the error
bound inequality (40), we discuss two cases.
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Case 1: 4L2

g

k ¯Ax̄� t⇤k2 < (c̄T x̄� s⇤)2.

In this case, we have

kx̄k � x̄⇤k2  ✓
�
k ¯Ax̄k � t⇤k2 + kc̄T x̄k � s⇤k2

�

 ✓

✓
1

4L2

g

+ 1

◆
(c̄T x̄k � s⇤)2  2✓(c̄T x̄k � s⇤)2

(45)

and
|c̄T x̄k � s⇤| � 2L

g

k ¯Ax̄k � t⇤k � 2|g( ¯Ax̄k

)� g(t⇤)|.
Note in this case, c̄T x̄k � s⇤ must be non-negative. Otherwise,

F (x̄k

)� F ⇤
= g( ¯Ax̄k

)� g(t⇤) + (c̄T x̄k � s⇤)

 |g( ¯Ax̄k

)� g(t⇤)|� |c̄T x̄k � s⇤|

 �1

2

|c̄T x̄k � s⇤| < 0,

leads to contradiction (since x̄k is feasible, F (x̄k

) cannot be smaller than F ⇤). Therefore, we have

F (x̄k

)� F ⇤
= g( ¯Ax̄k

)� g(t⇤) + c̄T x̄k � s⇤

� �|g( ¯Ax̄k

)� g(t⇤)|+ c̄T x̄k � s⇤

� 1

2

(c̄T x̄k � s⇤).

(46)

Combining (44), (45), and (46), we have

E[F (x̄k+1

)]� F (x̄k

)  1

n
min

↵2[0,1]

�↵

2

(c̄T x̄k � s⇤) +
2⌘

t

M✓↵2

2

(c̄T x̄k � s⇤)2

=

⇢
�1/(16⌘

t

M✓n) , 1/(4⌘
t

M✓(c̄T x̄k � s⇤))  1

� 1

4n

(c̄T x̄� s⇤) , o.w.

Furthermore, we have

� 1

16⌘
t

M✓n
 � 1

16⌘
t

M✓n(F 0 � F ⇤
)

(F (x̄⇤
)� F ⇤

)

where F 0

= F (x̄0

), and

� 1

4n
(c̄T x̄� s⇤)  � 1

6n
(F (x̄k

)� F ⇤
)

since F (x̄k

)� F ⇤  |g( ¯Ax̄k

)� g(t⇤)|+ c̄T x̄k � s⇤  3

2

(c̄T x̄k � s⇤). In summary, for Case 1 we
obtain

E[F (x̄k+1

)]� F ⇤  (1� 1

n�
1

)

�
E[F (x̄k

)]� F ⇤� (47)

where
�
1

= max

�
16⌘

t

M✓(F 0 � F ⇤
) , 6

 
. (48)

Case 2: 4L2

g

k ¯Ax̄k � t⇤k2 � (c̄T x̄k � s⇤)2.

In this case, we have
kx̄k � x̄⇤k2  ✓

�
1 + 4L2

g

�
k ¯Ax̄k � t⇤k2, (49)

and by strong convexity of g(z),

F (x̄k

)� F ⇤ � c̄T (x̄k � x̄⇤
) +rg(t⇤)T ¯A(x̄k � x̄⇤

) +

⌘
t

2

k ¯Ax̄k � t⇤k2.

Adding inequality 0 = h(x̄k

)� h(x̄⇤
) � h⇢⇤, x̄k � x̄⇤i for some ⇢⇤ 2 @h(x̄⇤

) to the above gives

F (x̄k

)� F ⇤ � ⌘
t

2

k ¯Ax̄k � t⇤k2 (50)
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since ⇢⇤ + c̄+rg(t⇤)T ¯A = ⇢⇤ +rF (x̄⇤
) = 0. Combining (44), (49), and (50), we obtain

E[F (x̄k+1

)]� F (x̄k

)  1

n
min

↵2[0,1]

�↵(F (x̄k

)� F ⇤
) +

M✓(1 + 4L2

g

)↵2

2

�
F (x̄k

)� F ⇤�

= � 1

2M✓(1 + 4L2

g

)n

�
F (x̄k

)� F ⇤�
(51)

Combining results of Case 1 (47) and Case 2 (51), and taking expectation on both sides w.r.t. the
history leads to the result (19).

We then bounds the number of iterations required to achieve ✏ sub-optimality with high probability
1� p by the following corollary.
Corollary 2 (Inner Iteration Complexity). To guarantee

F (x̄k

)� F ⇤  ✏ (52)

with probability 1� p, it suffices running RCD Algorithm 2 for

k � �n log

✓
F (x̄0

)� F ⇤

✏p

◆

iterations, where � is constant defined in Theorem 5.

Proof. We use the Theorem 1 of [26] to transfer the linear convergence in expectation (19) into
iteration complexity. To do this, we express (19) in the form

E[F (x̄k+1

)]� F ⇤ 
✓
1� 1

c

◆�
E[F (x̄k

)]� F ⇤� ,

with c = �n, and then apply the theorem to show that c log( 1

✏p

) updates suffice to guarantee F (x̄k

)�
F ⇤  ✏ with probability 1� p.

To relate the solution quality of sub-problem (6) to the outer proximal iterations (5), we need to
bound not only the function difference in primal but also the distance to the exact solution yt+1

=

prox

⌘tg
(yt) to the proximal update (5). To achieve this, we transfer the bound on F (x̄k

) � F ⇤ to
that on ky(x̄k

)� yt+1k.
Corollary 3. To guarantee

ky(x̄k

)� yt+1k  ✏
0

(53)
with probability 1� p, it suffices running RCD for

k � 2�n log

 s
2⌘

t

(F (x̄0

)� F ⇤
)

p

1

✏
0

!

iterations.

Proof. Given the primal iterate x̄k, the corresponding dual iterate y(x̄k

) is maintained through (7),
written as

y(x̄k

) = ⌘
t

(

¯Ax̄k � b) + yt.

Therefore,
ky(x̄k

)� yt+1k = k ¯A(x̄k � x̄k

S)k. (54)
To bound (54) by the function value difference, note that

F (x̄k

)� F (x̄k

S) = hrF (x̄k

S), x̄
k � x̄k

Si+
1

2

(x̄k � x̄k

S)
Tr2F (x̄k

S)(x̄
k � x̄k

S)

and since
0 = h(x̄k

)� h(x̄k

S) � h⇢⇤, x̄k � x̄k

Si

15



(⇢⇤ 2 @h(x̄k

S) is the unique subgradient at optimal defined in (35)), together we get

F (x̄k

)� F (x̄k

S) �
1

2

(x̄k � x̄k

S)
Tr2F (x̄k

S)(x̄
k � x̄k

S) =
⌘
t

2

k ¯A(x̄k � x̄k

S)k2,

which, combined with (54), leads to the bound

ky(x̄t

)� yt+1k 
q
2⌘

t

�
F (x̄k

)� F (x̄k

S)
�
.

Therefore, to guarantee ky(x̄k

)� yt+1k  ✏
0

, it suffices to have F (x̄k

)� F (x̄k

S) 
✏

2
0

2⌘t
, which can

be achieved with high probability 1� p by running RCD Algorithm 2 for

k � �n log

✓
2⌘

t

(F (x̄0

)� F ⇤
)

✏2
0

p

◆
= 2�n log

 s
2⌘

t

(F (x̄0

)� F ⇤
)

p

1

✏
0

!
(55)

according to Corollary 2.

A.3 Overall Iteration Complexity of AL-CD

This section combines the linear convergence of Augmented Lagrangian (AL) and Coordinate De-
scent (CD) to give an overall iteration complexity that bounds the number of RCD updates required
for AL-CD to find an LP solution of ✏ precision.

The first key lemma bounds the approximation error incurred in the outer iterates when solving inner
sub-problems in an inexact fashion.
Lemma 5 (Inexact Proximal Map). Suppose, for a given dual iterate yt, each sub-problem (6) is
solved inexactly s.t.

kŷt+1 � prox

⌘tg
(yt)k  ✏

0

. (56)

Then let {ŷt}1
t=1

be the sequence of iterates produced by inexact proximal updates and {yt}1
t=1

as
that generated by exact updates. After t iterations, we have

kŷt � ytk  t✏
0

. (57)

Proof. By the non-expansiveness of proximal operation,

kŷt+1 � yt+1k  kŷt+1 � prox

⌘tg
(ŷt)k+ kprox

⌘tg
(ŷt)� yt+1k

 ✏
0

+ kprox
⌘tg

(ŷt)� prox

⌘tg
(yt)k

 ✏
0

+ kŷt � ytk.

Recursively applying the above inequality leads to the conclusion (57).

Note the above implies that, if an exact AL method performs t outer iterations to achieve ✏-precise
solution, then solving each subproblem with precision ✏

0

= ✏/t makes only an additional ✏ approx-
imation error in the overall result. This insight turns out to give the following main theorem.
Theorem 6 (Iteration Complexity). Denote {ŷt}1

t=1

as the sequence of iterates obtained from
inexact dual proximal updates and {yt}1

t=1

as that generated by exact updates. To guarantee
kŷt � ŷt

S⇤
k  2✏ with probability 1� p, it suffices to run Algorithm 1 for

T = (1 +

1

↵
) log

✓
LR

✏

◆
(58)

outer iterations with ⌘
t

= (1 + ↵)L, and solve each sub-problem (6) by running Algorithm 2 for

k � 2�n

✓
log

⇣!
✏

⌘
+

3

2

log

✓
(1 +

1

↵
) log

LR

✏

◆◆
(59)

inner iterations, where ! =

q
2(1+↵)L(F

0�F

⇤
)

p

, R = k�0k.
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Proof. Since
kŷt � ŷt

S⇤k  kŷ
t � yt

S⇤k  ky
t � yt

S⇤k+ kŷ
t � ytk,

to guarantee kŷt� ŷt
S⇤
k  2✏, it suffices to let kyt� yt

S⇤
k < ✏ and kŷt� ytk < ✏, where the former

can be guaranteed as long as the number of outer iterations

T = (1 +

1

↵
) log

✓
Lk�0k

✏

◆

by Corollary 1. To ensure kŷt � ytk < ✏, according to Lemma 5, it suffices to solve each proximal
subproblem to precision ✏

0

= ✏/T . To guarantee that the T subproblems are all solved to preci-
sion ✏

0

= ✏/T with probability 1 � p, we require each of them to hold with probability 1 � p/T
independently, which can be guaranteed by running RCD on each subproblem for

k � 2�n log

 s
2(1 + ↵)L(F

t

(x̄0

)� F ⇤
t

)

p

T 3/2

✏

!

inner iterations (Corollary 3), where F
t

(x̄) denotes the objective of t-th subproblem. To remove
the dependency of k on t, we bound the term F

t

(x̄0

) � F ⇤
t

by F 0 � F ⇤, where F ⇤  F ⇤
t

is a
lower bound on the optimal function value of subproblem, which exists as long as the original LP
is bounded below, and F 0 � F

t

(x̄0

) is a bound on the initial function value of each sub-problem,
which exists as long as each subproblem is initialized by the solution of previous subproblem, and
each subproblem is solved with precision ✏

0

= ✏/T . Then to guarantee the above inequality, it
suffices to have

k � 2�n

✓
log

⇣!
✏

⌘
+

3

2

log

✓
(1 +

1

↵
) log

LR

✏

◆◆
,

where ! =

q
2(1+↵)L(F

0�F

⇤
)

p

, R = k�0k.
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B Appendix-B. Data Statistics

All data sets for experiments of L1-regularized SVM can be found in the LIBSVM dataset reposi-
tory, where the data set cod-rna.rf uses D = 5000 Fourier Random Features [32, 33] to approximate
the effect of Gaussian RBF kernel. We choose � = 1 for all L1-regularized SVM problems except
for cod-rna.rf we use � = 10 to increase the primal sparsity. The data sets textmine, E2006 for
Sparse Inverse Covariance Estimation are also obtained from LIBSVM dataset repository, while the
micromass, dorothea are taken from UCI Machine Learning repository. For Sparse Inverse Covari-
ance Estimation, we excluded features of frequency less than 10. The ocr data set is taken from
http://ai.stanford.edu/

˜

btaskar/ocr/. For Non-negative Matrix Factorization, we
set the matrix approximation tolerance to be 0.01 times number of samples.

Table 4: Data Statistics for L1-SVM
Data set #Samples #Features NNZ #class nb mI

rcv 15564 47236 1028284 53 4833738 778200
news 15935 62061 1272569 20 2498415 302765
sector 6412 55197 1045412 105 11597992 666848
mnist 60000 780 8994156 10 75620 540000

cod-rna.rf 59535 5000 297675000 2 69537 59535
viecle 78823 100 7882300 3 79429 157646

real-sim 72309 20958 3709083 2 114227 72309

Table 5: Data Statistics for Sparse Inverse Covariance Selection

Data set #Samples #Features NNZ nb mI mE nf

textmine 21519 30438 2283179 60876 60876 43038 43038
E2006 16087 27917 19640157 55834 55834 32174 32174

dorothea 800 23616 463088 47232 47232 1600 1600

Table 6: Data Statistics for Convex Nonnegative Matrix Factorization

Data set #Samples #Features NNZ nb mI

micromass 931 1,299 106,292 2,896,770 4,107,438
ocr 52,152 127 1,466,486 6,639,433 13,262,864
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