Appendix: Sparse Random Feature Algorithm as Coordinate Descent in Hilbert Space

Ian E.H. Yen ${ }^{1}$ Ting-Wei Lin ${ }^{2}$ Shou-De Lin ${ }^{2}$ Pradeep Ravikumar ${ }^{1}$ Inderjit Dhillon ${ }^{1}$ Department of Computer Science
1: University of Texas at Austin, 2: National Taiwan University
1: \{ianyen, pradeepr, inderjit\}@cs.utexas.edu,
2: \{b97083, sdlin\}@csie.ntu.edu.tw

1 Proof of Lemma 1

Lemma 1. Suppose loss function $L(z, y)$ has β-Lipchitz-continuous derivative and $\left|\phi_{h}(\boldsymbol{x})\right| \leq$ $B, \forall h \in \mathcal{H}, \forall \boldsymbol{x} \in \mathcal{X}$. The loss term $\operatorname{Loss}(\overline{\boldsymbol{w}} ; \boldsymbol{\phi})=\frac{1}{N} \sum_{n=1}^{N} L\left(\left\langle\overline{\boldsymbol{w}}, \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)\right\rangle, y_{n}\right)$ in (9) has

$$
\operatorname{Loss}\left(\overline{\boldsymbol{w}}+\eta \boldsymbol{\delta}_{h} ; \boldsymbol{\phi}\right)-\operatorname{Loss}(\overline{\boldsymbol{w}} ; \boldsymbol{\phi}) \leq g_{h} \eta+\frac{\gamma}{2} \eta^{2}
$$

, where $\boldsymbol{\delta}_{h}=\boldsymbol{\delta}(\|x-h\|)$ is a Dirac function centered at $h, g_{h}=\nabla_{\overline{\boldsymbol{w}}} \operatorname{Loss}(\overline{\boldsymbol{w}} ; \boldsymbol{\phi})(h)$ is the Frechet derivative of loss term evaluated at h, and $\gamma=\beta B^{2}$.

Proof. For a loss function of β-Lipchitz-continuous derivative, we have

$$
\begin{equation*}
L(z+d, y)-L(z, y) \leq L^{\prime}(z, y) d+\frac{\beta}{2} d^{2} \tag{1}
\end{equation*}
$$

. For $\overline{\boldsymbol{w}}+\eta \boldsymbol{\delta}_{h}$, we have $z+d=\left\langle\overline{\boldsymbol{w}}, \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)\right\rangle+\eta \phi_{h}\left(\boldsymbol{x}_{n}\right)$. Substitute it into (1), average over n, apply the bound $\left|\phi_{h}\left(\boldsymbol{x}_{n}\right)\right| \leq B$, and the result follows.

2 Proof of Corollary 1

Corollary 1 (Approximation Guarantee). The output of Algorithm 1 has

$$
\begin{equation*}
E\left[\lambda\left\|\overline{\boldsymbol{w}}^{(D)}\right\|_{1}+\operatorname{Loss}\left(\overline{\boldsymbol{w}}^{(D)} ; \boldsymbol{\phi}\right)\right] \leq\left\{\lambda\left\|\boldsymbol{w}^{*}\right\|_{2}+\operatorname{Loss}\left(\boldsymbol{w}^{*} ; \overline{\boldsymbol{\phi}}\right)\right\}+\frac{2 \gamma\left\|\boldsymbol{w}^{*}\right\|_{2}^{2}}{D^{\prime}} \tag{2}
\end{equation*}
$$

with $D^{\prime}=\max \{D-c, 0\}$, where \boldsymbol{w}^{*} is the optimal solution of problem (7), c is a constant defined in Theorem 2.

Proof. Plug $\boldsymbol{w}^{\text {ref }}=\boldsymbol{w}^{*}$ into (18), we have

$$
\begin{equation*}
E\left[\bar{F}\left(\boldsymbol{w}^{(D)}\right)\right] \leq \lambda\left\|\sqrt{\boldsymbol{p}} \circ \boldsymbol{w}^{*}\right\|_{1}+\operatorname{Loss}\left(\boldsymbol{w}^{*} ; \overline{\boldsymbol{\phi}}\right)+\frac{2 \gamma\left\|\boldsymbol{w}^{*}\right\|^{2}}{D^{\prime}} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\|\sqrt{\boldsymbol{p}} \circ \boldsymbol{w}^{*}\right\|_{1}=\int_{h \in H} \sqrt{p(h)}\left|w^{*}(h)\right| d h \leq \sqrt{\int_{h \in H} p(h) d h} \sqrt{\int_{h \in H} w^{*}(h)^{2} d h}=\left\|\boldsymbol{w}^{*}\right\|_{2} \tag{4}
\end{equation*}
$$

by Cauchy-Schwarz inequality and the fact probability distribution sums to 1 .

3 Proof of Corollary 2

Corollary 2. The bound (25) holds for any $R \geq 1$ in Algorithm 1, where if there are T iterations then $D=T R$.

Proof. We have proved the case when $R=1$. To prove bound (25) for $R>1$, we simply show that Algorithm 1 achieves larger descent amount if $R>1$. Suppose current solution and working set are $\overline{\boldsymbol{w}}^{t}, A^{(t)}$. Let $\overline{\boldsymbol{w}}_{1}^{t+R}, A_{1}^{(t+R)}$ be solution and working set obtained from running Algorithm 1 for R more iterations, each with 1 feature drawn, and let $\overline{\boldsymbol{w}}_{R}^{t+1}, A_{R}^{(t+1)}$ be those obtained from running 1 iteration of Algorithm 1 with R features drawn. From step 4 of Algorithm 1, we have $A_{1}^{(t+R)} \subseteq A_{R}^{(t+1)}$, and therefore $F\left(\overline{\boldsymbol{w}}_{R}^{t+1}\right) \leq F\left(\overline{\boldsymbol{w}}_{1}^{t+R}\right)$ following step 3 .

