Appendix A

Lemma 12. Let $\mathcal{F} = \{f : \mathcal{X} \mapsto \mathfrak{R}\}$, the constraint set $\mathcal{C} \subset \mathcal{F}$, and the functional $\mathcal{G} : \mathcal{F} \mapsto \mathfrak{R}$, consider the optimization problem:

$$f^* = \operatorname*{arg\,max}_{f \in \mathcal{F}} \mathcal{G}(f)$$
 s.t. $f \in \mathcal{C}$

If the Fréchet derivative $\nabla \mathcal{G}(f)$ exists, then f^* is locally optimal iff. $f^* \in \mathcal{C}$ and:

$$\begin{split} \langle \nabla \mathcal{G}(f^*), f^* - f \rangle &\geq 0 \quad \forall \ f \in \mathcal{C}, \\ \Rightarrow \ \int_{x \in \mathcal{X}} \ [\nabla \mathcal{G}(f^*)]_x f^*(x) dx \geq \int_{x \in \mathcal{X}} \ [\nabla \mathcal{G}(f^*)]_x f(x) dx \quad \forall \ f \in \mathcal{C}, \end{split}$$

С.

Lemma 12 is a generalization of the well known first order condition for optimality of finite dimensional optimization problems [24, Section 4.2.3] to optimization of smooth functionals.

Proposition 13. Let \mathcal{L} be a measure of the form (4), and $\hat{\delta}_S$ be some estimator of its optimal threshold δ^* . Assume $\hat{\delta}_S \in (0,1)$ and $\hat{\delta}_S \stackrel{p}{\to} \delta^*$. Also assume the cumulative distribution of η_x conditioned on Y = 1 and on Y = 0, $F_{\eta_x|Y=1}(z) = \mathbb{P}(\eta_x \leq z|Y=1)$ and $F_{\eta_x|Y=0}(z) = \mathbb{P}(\eta_x \leq z|Y=0)$ are continuous at $z = \delta^*$. Let the classifier be given by one of the following:

- (a) the classifier $\hat{\theta}_{\hat{\delta}_S}(x) = \operatorname{sign}(\hat{\eta}_x \hat{\delta}_S)$, where $\hat{\eta}$ is a class probability estimate that satisfies $E_x[|\hat{\eta}_x \eta_x|^r] \xrightarrow{p} 0$ for some $r \ge 1$,
- (b) the classifier $\hat{\theta}_{\hat{\delta}_S} = \text{sign}(\hat{\phi}_{\hat{\delta}_S})$, the empirical minimizer of the ERM (7) using a suitably calibrated convex loss $\ell_{\hat{\delta}_S}$ [9],

then $\hat{\theta}_{\hat{\delta}_{S}}$ is \mathcal{L} -consistent.

Proof. Given Proposition 6, the proofs for parts (a) and (b) essentially follow from the arguments in [7] for consistency with respect to the AM measure. Under the stated assumptions, the decomposition Lemma (Lemma 2) of [7] holds: For a classifier $\hat{\theta}$, if

$$R_{\hat{\delta}_{S}}(\hat{\theta}) - \min_{\alpha} R_{\hat{\delta}_{S}}(\theta) \xrightarrow{p} 0 \quad \text{then}, \quad \mathcal{L}^{*} - \mathcal{L}(\hat{\theta}) \xrightarrow{p} 0$$

This allows us to directly invoke Theorems 5 and Theorems 6 of [7] giving us the desired \mathcal{L} -consistency in parts (a) and (b) respectively.

Appendix B: Proofs

Proof of Theorem 2

Proof. Let $\mathcal{F} = \{f : \mathcal{X} \mapsto \mathfrak{R}\}$, and note that $\Theta \subset \mathcal{F}$. We consider a continuous extension of (4) by extending the domain of \mathcal{L} from Θ to \mathcal{F} . This results in the following optimization:

$$f^* = \operatorname*{arg\,max}_{f \in \mathcal{F}} \mathcal{L}(f) \quad \text{s.t.} \quad f \in \Theta$$
(8)

It is clear that (4) is equivalent to (8), and the minima coincide i.e. $f^* = \theta^*$. The Fréchet derivative of \mathcal{L} evaluated at x is given by:

$$[\nabla \mathcal{L}(f)]_x = \frac{1}{(c_1 - d_1 L(f)) D_r(f)} \left[\eta_x - \frac{d_2 \mathcal{L}(f) - c_2}{c_1 - d_1 \mathcal{L}(f)} \right] \mu(x)$$

where $D_r(f)$ is denominator of $\mathcal{L}(f)$. A function $f^* \in \Theta$ optimizes \mathcal{L} if $f^* \in \Theta$ and (Lemma 12):

$$\int_{x \in \mathcal{X}} [\nabla \mathcal{L}(f^*)]_x f(x) dx \ge \int_{x \in \mathcal{X}} [\nabla \mathcal{L}(f^*)]_x f^*(x) dx \quad \forall f \in \Theta.$$

Thus, when $c_1 \ge d_1 \mathcal{L}^*$, a necessary condition for local optimality is that the sign of f^* and the sign of $[\nabla \mathcal{L}(f^*)]$ agree pointwise wrt. x. This is equivalent to the condition that $\operatorname{sign}(f^*) = \operatorname{sign}(\eta_x - \delta^*)$. Combining this result with the constraint set $f \in \Theta$, we have that $f^* = \operatorname{sign}(f^*)$, thus $f^* = \operatorname{sign}(\eta_x - \delta^*)$ is locally optimal. Finally, we note that $f^* = \operatorname{sign}(\eta_x - \delta^*)$ is unique for $f \in \Theta$, thus f^* is globally optimal. The proof for $c_1 < d_1 \mathcal{L}^*$ follows using similar arguments. \Box

Proof of Proposition 6

Proof. From Corollary 4 we know $\delta^* = -\frac{c_2}{c_1}$. Since $0 < \delta^* < 1$, and $c_1 < 1$ from Proposition 7, we have $1 > c_1 > 0$. We can rewrite $\mathcal{L}(\theta)$ as $\mathcal{L}(\theta) = c_1[(1 - \delta^*)TP + \delta^*TN] + \tilde{A}$, where \tilde{A} is a constant. We have:

$$\begin{aligned} R_{\delta^*}(\theta) &= E_{(x,y)\sim\mathbb{P}} \left[\left((1-\delta^*) \mathbf{1}_{\{y=1\}} + \delta^* \mathbf{1}_{\{y=0\}} \right) \cdot \mathbf{1}_{\{\theta(x)\neq y\}} \right] \\ &= (1-\delta^*) P(y=1,\theta(x)=0) + \delta^* P(y=0,\theta(x)=1) \\ &= (1-\delta^*) FN + \delta^* FP \\ &= (1-\delta^*) (\pi - TP) + \delta^* (1-\pi - TN) \\ &= (1-\delta^*) \pi + \delta^* (1-\pi) - \left((1-\delta^*) TP + \delta^* TN \right) \\ &= (1-\delta^*) \pi + \delta^* (1-\pi) + \frac{\tilde{A}}{c_1} - \frac{1}{c_1} \mathcal{L}(\theta). \end{aligned}$$

Observing that $(1 - \delta^*)\pi + \delta^*(1 - \pi) + \frac{\tilde{A}}{c_1}$ is a constant independent of θ , the proof is complete. \Box

Proof of Lemma 8

Proof. For a given $\theta, \epsilon_1 > 0, \rho > 0$, there exists an N such that for any n > N, $\mathbb{P}(|\mathrm{TP}_n(\theta) - \mathrm{TP}(\theta)| < \epsilon_1) > 1 - \rho/2$ and $\mathbb{P}(|\gamma_n(\theta) - \gamma(\theta)| < \epsilon_1) > 1 - \rho/2$. By union bound, the two events simultaneously hold with probability at least $1 - \rho$. Let $\tilde{c}_1 = 1/|c_1|$ if $c_1 \neq 0$ else $\tilde{c}_1 = 0$. Define $\tilde{c}_2, \tilde{d}_1, \tilde{d}_2$ similarly. Now define $C = \max(\tilde{c}_1, \tilde{c}_2)$ and $D = \max(\tilde{d}_1, \tilde{d}_2)$. Observe that either C > 0 or D > 0 otherwise \mathcal{L} is a constant. Now for a given $\epsilon > 0$, after some simple algebra, we need

$$\epsilon_1 \le \frac{(d_1 \operatorname{TP}(\theta) + d_2 \gamma(\theta) + d_0)\epsilon}{D(\mathcal{L}(\theta) + \epsilon) + C}$$

Choosing some ϵ_1 satisfying the upper bound above guarantees $\mathcal{L}(\theta) - \epsilon < \mathcal{L}_n(\theta) < \mathcal{L}(\theta) + \epsilon$. Thus for all n > N implied by this ϵ_1 and ρ , $P(|\mathcal{L}_n(\theta) - \mathcal{L}(\theta)| < \epsilon) > 1 - \rho$ holds.

Now, for the rate of convergence, Hoeffding's inequality with $\rho = 4e^{-2n\epsilon_1^2}$ (or $\epsilon_1 = \sqrt{\frac{1}{2n} \ln \frac{4}{\rho}}$) gives us $\mathbb{P}(|\mathrm{TP}_n(\theta) - \mathrm{TP}(\theta)| < \epsilon_1) > 1 - \rho/2$ and $\mathbb{P}(|\gamma_n(\theta) - \gamma(\theta)| < \epsilon_1) > 1 - \rho/2$. Choose $\epsilon_1 > 0$ as a function of ϵ such that it is sufficiently small, i.e. $\epsilon_1 \leq \frac{(d_1\mathrm{TP}(\theta) + d_2\gamma(\theta) + d_0)\epsilon}{D(\mathcal{L}(\theta) + \epsilon) + C}$. We know $\mathcal{L}(\theta) \leq L$ for any θ (from Proposition 7), therefore $D(\mathcal{L}(\theta) + \epsilon) + C < D(L + \epsilon) + C$. Furthermore, $d_1\mathrm{TP}(\theta) + d_2\gamma(\theta) + d_0 > b_0 + \min(b_{00}, b_{11}, b_{01}, b_{10}) := B$. We can choose $\epsilon_1 = \frac{B\epsilon}{D(L+\epsilon)+C} \leq \frac{(d_1\mathrm{TP}(\theta) + d_2\gamma(\theta) + d_0)\epsilon}{D(\mathcal{L}(\theta) + \epsilon) + C}$ or $\epsilon = \frac{(C+LD)\epsilon_1}{B-D\epsilon_1}$. From the first part of the lemma, we know $P(|\mathcal{L}_n(\theta) - \mathcal{L}(\theta)| < \epsilon) > 1 - \rho$ holds with probability at least ρ . This completes the proof. \Box

Proof of Lemma 9

Proof. Let $\rho = 16e^{\ln(en) - n\epsilon_1^2/32}$, then $\epsilon_1 = \tilde{r}(n, \rho)$. Using Lemma 29.1 in [25], we obtain:

$$\mathbb{P}\big[\sup_{\theta\in\Theta} |\mathrm{TP}_n(\theta) - \mathrm{TP}(\theta)| < \epsilon_1\big] > 1 - \rho/2 \;.$$

By union bound, the inequalities $\mathbb{P}\left[\sup_{\theta\in\Theta} |\mathrm{TP}_n(\theta) - \mathrm{TP}(\theta)| < \epsilon_1\right]$ and $\mathbb{P}\left[\sup_{\theta\in\Theta} |\gamma_n(\theta) - \gamma(\theta)| < \epsilon_1\right]$ simultaneously hold with probability at least $1 - \rho$. If *n* is large enough that $\tilde{r}(n, \rho) < \frac{B}{D}$, then from Proposition 8 we know that, for any given θ , $|\mathcal{L}_n(\theta) - \mathcal{L}(\theta)| < \frac{(C+LD)\tilde{r}(n,\rho)}{B-D\tilde{r}(n,\rho)}$ with probability at least $1 - \rho$. The lemma follows.

Proof of Theorem 10

Proof. Using a strongly proper loss function [19] and its corresponding link function ψ , and an appropriate function class to minimize the empirical loss, we can obtain a class probability estimator $\hat{\eta}$ such that $E_x[|\hat{\eta}_x - \eta_x|^2] \rightarrow 0$ (from Theorem 5 in [26]). Convergence in mean implies convergence

in probability and so we have $\hat{\eta} \xrightarrow{p} \eta$. Now let $\theta_{\delta}^* = \operatorname{sign}(\eta_x - \delta)$. Recall that $\hat{\delta}$ denotes the empirical maximizer obtained in Step 3. Now, since $\mathcal{L}_n(\theta_{\delta}^*) \geq \mathcal{L}_n(\theta_{\delta}^*)$, it follows that:

$$\begin{array}{lll} \mathcal{L}^{*} - \mathcal{L}(\theta_{\hat{\delta}}^{*}) &= \mathcal{L}^{*} - \mathcal{L}_{n}(\theta_{\hat{\delta}}^{*}) + \mathcal{L}_{n}(\theta_{\hat{\delta}}^{*}) - \mathcal{L}(\theta_{\hat{\delta}}^{*}) \\ &\leq \mathcal{L}^{*} - \mathcal{L}_{n}(\theta_{\delta^{*}}^{*}) + \mathcal{L}_{n}(\theta_{\hat{\delta}}^{*}) - \mathcal{L}(\theta_{\hat{\delta}}^{*}) \\ &\leq 2 \sup_{\delta} |\mathcal{L}(\theta_{\delta}^{*}) - \mathcal{L}_{n}(\theta_{\delta}^{*})| \\ &\leq 2\epsilon \xrightarrow{p} 0 \end{array}$$

where ϵ is defined as in Lemma 9. The last step is true by instantiating Lemma 9 with the thresholded classifiers corresponding to $\phi(x) = \eta_x$.

Proof of Theorem 11

Proof. For a fixed δ , $E_{(X,Y)\sim\mathbb{P}}[\ell_{\delta}(\hat{\theta}_{\delta}(X),Y)] \to \min_{\theta} E_{(X,Y)\sim\mathbb{P}}[\ell_{\delta}(\theta(X),Y)]$. With the understanding that the surrogate loss ℓ_{δ} (i.e. the ℓ_{δ} -risk) satisfies regularity assumptions and the minimizer is unique, the weighted empirical risk minimizer also converges to the corresponding Bayes classifier [9]; i.e., we have $\hat{\theta}_{\delta} \xrightarrow{p} \theta_{\delta}^*$. In particular, $\hat{\theta}_{\delta} \xrightarrow{p} \theta_{\delta}^* = \operatorname{sign}(\eta_x - \hat{\delta})$. Let $\hat{\delta}$ denote the empirical maximizer obtained in Step 2. Now, by using an argument identical to the one in Theorem 10 we can show that $\mathcal{L}^* - \mathcal{L}(\theta_{\delta}^*) \leq 2\epsilon \xrightarrow{p} 0$.