
A Proof of Theorem 1

Proof For all Z =

P
i ci i with kAkA =

P
i |ci|, where i = Auiv

T
i B

T , we can construct the
i-th column of W and H as

wi =

p
|ci|Aui and hi =

p
|ci|Bvi.

Clearly, we have Z = WHT and

kA�1Wk2F = kB�1Hk2F =

X

i

|ci|

Thus, if follows that LHS � RHS. Oh the other hand, for a matrix Z = WHT , we can construct

ui =
A�1

wi

kA�1

wik
and vi =

B�1

hi

kB�1

hik
,

and ci = kA�1

wikkB�1

hik. Clearly, we have wih
T
i = ciAuiviBT and Z =

P
i ciAuiv

T
i B

T .
We also have

|ci| = kA�1

wikkB�1

hik  1

2

�
kA�1

wik2 + kB�1

hik2
�

by AM-GM inequality. Thus, we have LHS  RHS.

B Dual Weighted Generalized Nuclear Norm

Recall the definition of the weighted atomic set:

A := { i = wih
T
i : wi = Aui,hi = Bvi, kuik = kvik = 1}.

We derive the dual norm as follows.

kZk⇤A = sup

2A
h , Zi

=sup

u,v
hAuv

TBT , Zi, s.t. kuk = kvk = 1

= sup

u,v
Tr

�
Bvu

TATZ
�
, s.t. kuk = kvk = 1

= sup

u,v
u

TATZBv, s.t. kuk = kvk = 1

=kATZBk

C Proof of Theorem 2

The proof of our main Theorem 2 follows the similar steps used in [16]. The main idea is to use
Theorem 3 [17] to obtain the consistency guarantee. Our proof steps (and indeed that of [16]) are a
consequence of carefully bounding the various quantities needed to make Theorem 3 hold:
Theorem 3 (Theorem 1 of [17]). For the convex optimization problem of the following form:

ˆZ = arg min

Z2Rm⇥n
L(Z;X

1

, . . . , XN ) + �R(Z),

where

(a) the regularizer R is a norm and is decomposable with respect to the subspace pair
(M, ¯M?

), where M ✓ ¯M is a subspace.

(b) the loss function L is convex and differentiable, and satisfies restricted strong convexity
with curvature  and tolerance ⌧
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with a strictly positive regularization constant � � 2R⇤
(rL(Z?)), any optimal solution ˆZ satisfies

the bound

k ˆZ � Z?k2  9

�2

2

 (M)

2

+

�



�
2⌧2(Z?) + 4R(Z?M?)

 
, (C.1)

where  (M) := supZ2M\{0}
R(Z)

kZkF
. Furthermore, if Z? 2 M, then the bound becomes

k ˆZ � Z?k2  9

�2

2

 (M)

2. (C.2)

See [17] for the detailed definitions of decomposable norms and restricted strong convexity.

To apply Theorem 3 to analyze the consistency of (15), we make the following remarks:

• R(Z) = kZkA : the weighted atomic norm defined in (9).
• R⇤

(Z) = kZk⇤A : the dual norm of the weighted atomic norm.

• M = {Z = AMBT
: rank(Z) = k}: the subspace we are interested in.

• L(Z;X
1

, . . . , Zn) =

1

N

PN
i=1

(yt � hXt, Zi)2: where Xt = ei(t)e
T
j(t) (See the corre-

sponding measurement model in (12)). Because the squared-L
2

loss is used in our setting,
the restricted strong convexity parameter  is related to the minimum singular value of the
Hessian of L(Z;X

1

, . . . , XN ). Thus, from (C.1) and (C.2) we can see that the bounds
remain the same when we scale {Xt} and {yt} by the same constant as both  and the
lower bound of � (which is R⇤

(rL(Z?))) are scaled with the same constant. Thus, in the
following proof, we consider the following equivalent statistical measurement model:

yt = h
p
mn✏tei(t)e

T
j(t), Z

?i+ �✏t⌘t (C.3)

where ✏t are i.i.d. Rademacher random variables [16]. Let’s re-define

Xt :=
p
mn✏tei(t)e

T
j(t), (C.4)

yt := hXt, Zi+ �✏t⌘t.

In addition, we also define X (Z) 2 RN be the vector such that X (Z)t = hXt, Zi.
• The exact restricted strong convexity condition we need for (15) is as follows:

1p
N

kX (Z)k � 1

8

kZkF
⇢
1� ĉ

0

↵g(Z)p
N

�
8Z 2 C, (C.5)

where C is defined in (15) and ĉ
0

is a constant (similar to [16, Eq. 28]).

In the following subsections, we prove bounds for the quantities needed for establishing Theorem 2
via the following steps:

• In Section C.1, we derive an upper bound for  (M).
• In Section C.2, we derive an upper bound for R⇤

(rL(Z⇤
)).

• In Section C.3, we prove that the restricted strong convexity (C.5) holds L with exponen-
tially high probability.

Note that for the sake of proving our results, we assume that the target matrix Z? is exactly low rank,
and the minimum singular values of A, B are 1. Our results can be extended in a straightforward
manner when Z? does not exactly lie in M (it is approximately low rank).

C.1 Bounding the Atomic Norm

Based on the definition of  (M), we can derive its upper bound on the atomic norm of Z 2 M
with kZkF = 1.
Lemma 1. Let Z 2 Rm⇥n, Z = AUV TBT , rank(Z) = k be a linear combination of atoms in
A . Then, with the assumption kZkF = 1 we have

kZkA 
p
k

11



Proof
kZkA = kUV T k⇤ 

p
kkUV T kF 

p
kkA�1AUV TB�T kF ,

where the first inequality follows from Cauchy Schwartz, and the second inequality follows from
noting that kA�1k  1 and likewise for kB�1k, since we assumed that the minimum singular value
of both Lw, Lh is unity.

C.2 Bounding the Dual Norm of the Gradient of Loss Function

A key ingredient for our main result will be a bound on the dual norm of the gradient of the loss
function, which we will use to bound the regularizer �. From Eq. (11), and our problem set up in
Eq. (16), we have the following set of inequalities:

krLk⇤A = kS� 1
2

w UT
wrLUhS

� 1
2

h k
(i)

 kS� 1
2

w UT
w kkUhS

� 1
2

h kk(rL)k

=

krLk

�min(L
1
2
w)�min(L

1
2
h )

(ii)

 C�

r
(m+ n) log(m+ n)

N
, (C.6)

with probability at least 1 � exp

⇣
c
p
N log(m+ n)

⌘
. (i) appeals to submultiplicativity, and we

prove (ii) below. From our assumption about unit minimum singular values, we can ignore the
denominator.

Here we develop a bound on the spectral norm of the gradient of the loss function, specifically step
(ii) in (C.6). Our proof follows that of the corresponding result in [16], which we show here for
completeness.

Recall the definition of Xt :=
p
mn✏tei(t)e

T
j(t) in (C.4), we have the gradient of the loss function

given by

rL =

�

N

�����

NX

t=1

⌘tXt

����� (C.7)

For ease of exposition, assume m = n. We now show that with high probability, the quantity in

(C.7) is bounded above by C�
q

m log(m)

N . For m 6= n, our bound can be made necessarily better
since the result we prove can be seen as holding for max{m,n}. To prove our result, we make use
of the matrix noncommutative Bernstein inequality (Theorem 3.2 in [19]):
Lemma 2. Let X

1

, · · · , XN be independent, zero mean random matrices of size m ⇥ n. Suppose
⇢2t := max{kE[XtXT

t ]k, kE[XT
t Xt]k}, and suppose kXtk  ¯M almost surely 8t. Then for any

⌧ > 0

P

"�����

NX

t=1

Xt

����� > ⌧

#
 (m+ n) exp

 
� ⌧2

2PN
t=1

⇢2t +
M⌧
3

!

The above result holds even for sub-exponential random variables [23] and the Orlicz norm instead
of the spectral norm being bounded above by a constant ¯M .

To use Lemma 2, we first derive bounds on the relevant quantities. First, note that for all t, Xt has
a single non zero entry of magnitude m. Noting that ⌘t is a standard Gaussian random variable, we
can bound the Orlicz norm k⌘tXtk 1  m. Also

E
⇥
⌘2tX

T
t Xt

⇤
= E

h
m2

ej(t)e
T
i(t)ei(t)e

T
j(t)

i
= m2E

h
ej(t)e

T
j(t)

i

The matrix inside the expectation has a 1 in the j(t), j(t) location. Since j(t) is chosen uniformly
at random, the expected value of the non zero entry is 1/m. This means

kE
⇥
⌘2tX

T
t Xt

⇤
k = m = kE

⇥
⌘2tXtX

T
t

⇤
k

This gives M = ⇢2t = m. Setting ⌧ = N�, and from Lemma 2, we get

P

"
�

N

�����

NX

t=1

⌘tXt

����� > ��

#
 2m exp

✓
�CN�

m

◆

12



Our result then follows by setting � = c
q

m log(m)

N .

C.3 Restricted Strong Convexity for Generalized Weighted Nuclear Norm

The proof of this result mirrors the corresponding proof in [16]. Hence, to keep things simple,
we skip the steps that are common between our method and [16], and only pause to highlight the
differences.

First, note that since we assume uniformly weighted samples, we need not concern ourselves with
the “weight” matrices that are considered in [16]. Also, define X (Z)t = hXt, Zi, where Xt is
defined as in Appendix C.2. Then, the RSC condition requires us to prove (C.5), which we re-state
it again as follows.

1p
N

kX (Z)k � 1

8

kZkF
⇢
1� ĉ

0

↵g(Z)p
N

�
8Z 2 C,

where C is defined in (15) and ĉ
0

is a constant In other words, we wish to prove that the following
event holds with high probability:

E
1

:=

⇢
8Z 2 C :

1p
N

kX (Z)k � 1

8

kZkF � ĉ
0

m

8

p
N

kZkF
kMk1
kMkF

�
, (C.8)

where M := A�1ZB�T and ↵g is the spikiness defined in (13). Subtracting kZkF from both sides
of the inequality in (C.8), we get

1p
N

kX (Z)k � kZkF � �7

8

kZkF � ĉ
0

m

8

p
N

kZkF
kMk1
kMkF

,

and hence we can define a “bad” event as

E
2

:=

⇢
9Z 2 C :

����
1p
N

kX (Z)k � kZkF
���� >

7

8

kZkF +

ĉ
0

m

8

p
N

kZkF
kMk1
kMkF

�
(C.9)

Now, due to the definition of C, event E
2

is invariant under rescaling of Z (so as M := A�1ZB�T ).
Thus, without loss of generality, we may assume that kMk1 = 1/m. Then, the remaining degrees
of freedom in the set C can be parameterized in terms of the quantities D = kMkF and ⇢ = kMk⇤.
For any Z = AMBT 2 C with kMk1 = 1/d and kMkF  D, we have kMk⇤  ⇢(D), where

⇢(D) := c̄
0

D2

✓
N

m log(m)

◆ 1
2

.

For each radius D > 0, consider the set

B(D) :=

�
Z = AMBT

: kMk1 = 1/m, kMkF  D, kMk⇤  ⇢(D)

 
, (C.10)

and consider the event

E
3

(D) :=

⇢
9Z 2 B(D) :

����
1p
N

kX (Z)k � kZkF
���� >

3

4

D +

ĉ
0

m

8

p
N

kZkF
kMk1
kMkF

�
(C.11)

Now, note that the RHS of inequality in the above event satisfies, for Z 2 B(D)

3

4

D +

ĉ
0

m

8

p
N

kZkF
kMk1
kMkF

=

3

4

D +

ĉ
0

8

p
N

kZkF
kMkF

� 3

4

D +

ĉ
0

8

p
N

,

where the first equality follows since Z = AMBT 2 C ) kMk1 = 1/m, and the last inequality
follows since kZkF = kAMBT kF � �min(A)�min(B)kMkF , and noting that the minimum
singular values of A,B are unity. Finally, we define the event

E
4

(D) :=

⇢
9Z 2 B(D) :

����
1p
N

kX (Z)k � kZkF
���� �

3

4

D +

ĉ
0

8

p
N

�
(C.12)

13



Let S
1

be the set of Z that satisfy event E
1

, and similarly define sets S
2

,S
3

(D),S
4

(D). The follow-
ing statement will be used to prove our results: for each fixed D > 0,

S
4

(D) � S
3

(D) � S
2

� Sc
1

(C.13)
Meaning that if we can show that E

4

holds with very low probability for a fixed D, then it follows
from (C.13) that E

1

holds with high probability. The remainder of the proof will focus on doing so.

First, note that the event E
4

defined in (C.12) is exactly the same as the event defined in [16, Eq. 29].
Hence, we can use the exact same argument as described in [16, Section 5.2] to obtain

P(E
4

(D))  c
1

exp

�
�c

2

ND2

�
.

Now, we have the following result:
Lemma 3. Suppose there are constants c

1

, c
2

so that, for each fixed D > 0,

P(E
4

(D))  c
1

exp

�
�c

2

ND2

�

then 9 a universal constant c0
2

so that

P(E
2

)  c
1

exp(�c0
2

m log(m))

1� exp(�c0
2

m log(m))

.

The statement is the same as [16, Lemma 3], but we have to slightly modify the proof to adapt it to
our setting. We do this in Appendix C.4.

Lemma 3 allows us to shows that if E
4

holds with low probability, then E
2

holds with low probability
as well. Since by construction, Ec

1

⇢ E
2

, the RSC result follows.

Since the results derived here are for the statistical model defined by (C.3), we go from this model
to the initial model that we consider in (12). To this end, one needs to make the following two
transformations, as explained in the remarks following Theorem 3:

• Scale the magnitude of Xt, and consequently � by 1/m

• Scale the noise variance � by m.

The rates we obtain in Theorem 2 remain unchanged as a result of this scaling.

C.4 Proof of Lemma 3

The proof is similar to [16, Lemma 3], we include it with our notation for completeness. For any
Z = AMBT 2 C, with kMk1 = 1/m, based on the definition of C in (15), we have

kMk2F � c̄�1

0

kMk⇤
✓
m log(m)

N

◆ 1
2

� c̄�1

0

kMkF
✓
m log(m)

N

◆ 1
2

,

which gives us kMkF � c̄�1

0

⇣
m log(m)

N

⌘ 1
2

. Hence, we only need to focus on sets B(D) where

D > µ := c̄�1

0

⇣
m log(m)

N

⌘ 1
2

. For l = 1, 2, . . . and a =

7

6

define

Sl :=
�
Z = AMBT 2 C : kMk1 = 1/m, al�1µ  kMkF  alµ, kMk⇤  ⇢(alµ)

 

From the definition of (C.9), we have Sl ⇢ B(alµ). Now, if E
2

holds for some Z, then Z must
belong to Sl for some l. When Z 2 Sl, we know 9Z 2 B(alµ) such that

����
kX (Z)kp

N
� kZkF

���� �
7

8

kZkF +

ĉ
0

m

8

p
N

kZkF
kMk1
kMkF

� 7

8

kZkF +

ĉ
0

8

p
N

� 7

8

al�1µ+

ĉ
0

8

p
N

=

3

4

alµ+

ĉ
0

8

p
N

since a = 7/6.
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Thus, we have shown that when this Z 2 Sl, then E
4

(alµ) must hold. Because any Z which make
the event E

2

hold must fall into some set Sl, the union bound implies that

PJE
2

K 
1X

l=1

P
q
E(alµ)

y

 c
1

1X

l=1

exp

�
�c

2

Na2lµ2

�

 c
1

1X

l=1

exp

�
�2c

2

log(a)lNµ2

�

 c
1

exp(�c̄
2

Nµ2

)

1� exp(�c̄
2

Nµ2

)

= c
1

exp(�c0
2

m logm)

1� exp(�c0
2

m logm)

,

where the last equality follows as Nµ2

= c̄�1

0

(m logm).

D Additional Details for Experimental Results

Experimental environment and Implementation. All the experiments are generated on an Intel
machine with 2 Xeon CPU E5-2680 v2 Ivy Bridge and 256 GB ram. GRALS is implemented using
a MEX routine written in C++. For SGD and GD, we optimize the code from [27] in several ways:
vectorization of for-loops and parallel residual computation using a MEX routine using C++. All
the implementations employ embarrassing parallelization for BLAS operations whenever applicable
(either through parallel BLAS library in Matlab, or simple OpenMP parallel-for loop).

Parameters. In Section 6, we show the results in Figure 3 to demonstrate the superiority of the
proposed algorithm GRALS over the existing approaches: SGD and GD [27]. In Table Supp-1, we
list the parameters used to generate the results. Note that in all the datasets we used, there is only
one set of variables which comes with graph information (say W ). Thus, the regularization consists
of three terms as follows:

�L Tr

�
WT Lap(Ew

)W
�
+ �wkWk2F + �hkHk2F .

In addition to the regularization parameters, there are algorithmic parameters for each approach:

• GRALS: the number of CG iterations to solve each sub-problem
• SGD: the learning rate, ⌘sgd
• GD: the learning rate, ⌘gd

In Table Supp-1, we also report the best algorithm-specific parameters for each method.

Table Supp-1: Parameters used in the experiments for Figure 3

�L �w �h
GRALS SGD GD
CG-iters ⌘sgd ⌘gd

Flixster 0.01 0.01 0.02 3 10

�4

10

�6

Douban 1 0.01 1.01 5 10

�4

10

�6

YahooMusic 100 100 200 20 10

�6

10

�6

Graph Information in Datasets. For Flixster and Douban, the datasets come with the graph in-
formation among users. For YahooMusic, we use the Yahoo Music Track 2 dataset from KDDCup
2011 [8] for the purpose of showing that GRALS scales much better than other approaches. As most
of entries in the test split of the Track 2 dataset are marked as �1 (for the classification purpose in
that track), we only use the training set in our experiments. The original training set is randomly
partitioned into a 90� 10 training-test split. There is no explicit graph information in YahooMusic.
Thus, we use the provided “album”, “artist”, and “genre” attributes for each item (or music track)
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to construct a binary indicator vector and construct a 10-NN graph graph using the inner product
distance over all the items.

RMSE Performance. Because the aim of this paper is to develop scalable algorithms and con-
sistency results for graph regularized matrix factorization (4), we did not include the performance
comparison table (similar to Table 1) for other large datasets for want of space. Here, we report
the results in Table Supp-2. Note that there are other approaches to incorporate graph information
into collaborative filtering, which might lead to different RMSEs. A detailed comparison to all such
methods is beyond the scope of this paper. However, whenever there is a means to incorporate
pairwise relationships between user-user variables or item-item variables, we can use GRALS to
achieve the same results as other approaches, but at a much faster rate. Note that the Yahoo Music
dataset has ratings in the range [0, 100] and hence the larger RMSE values. A fairer comparison can
be obtained by dividing the results by 20, to correspond to ratings in the range [0, 5].

Table Supp-2: RMSE of various methods on the datasets considered in Figure 3. PMF : Our method
with graph Laplacians replaced by identity matrices.

DATASET PMF GRALS Global Mean User Mean Item Mean
Flixster 0.923 0.845 1.092 0.979 1.088
Douban 0.719 0.714 0.907 0.848 0.790

YahooMusic 23.823 22.872 37.941 43.308 38.042
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