8 Appendix A - Proofs for Section 3 and Section 4

8.1 Proof of Lemma 1

Proof. Starting with the original statement of Fano's lemma (see [5] Theorem 2.10.1]), we get:

$$
\begin{align*}
p_{\text {avg }} & \geq \frac{H(G)-I\left(G ; \phi\left(X^{n}\right)\right)-\log 2}{\log |\mathcal{G}|} \\
& \geq \frac{H(G)-I\left(G ; X^{n}\right)-\log 2}{\log |\mathcal{G}|} \tag{7}
\end{align*}
$$

Here we have: (a) by the Data Processing Inequality (see [5, Theorem 2.8.1])
Now, note that:

$$
\begin{equation*}
p_{a v g}=\sum_{G \in \mathcal{G}} \operatorname{Pr}_{\mu}(G) \cdot \operatorname{Pr}(\hat{G} \neq G) \leq \max _{G \in \mathcal{G}} \operatorname{Pr}(\hat{G} \neq G)=p_{\max } \tag{8}
\end{equation*}
$$

8.2 Proof of Corollary 1

Proof. We get the stated bound by picking μ to be a uniform measure on \mathcal{G} in Lemma 1, and then using: $H(G)=\log |\mathcal{G}|$ and $I\left(G ; X^{n}\right) \leq H\left(X^{n}\right) \leq n p$.

8.3 Proof of Lemma 2

Proof. The conditional version of Fano's lemma (see [1, Lemma 9]) yields:

$$
\begin{equation*}
\mathbb{E}_{\mu}[\operatorname{Pr}(\hat{G} \neq G) \mid G \in \mathcal{T}] \geq \frac{H(G \mid G \in \mathcal{T})-I\left(G ; X^{n} \mid G \in \mathcal{T}\right)-\log 2}{\log |\mathcal{T}|} \tag{9}
\end{equation*}
$$

Now,

$$
\begin{align*}
p_{\text {avg }} & =\mathbb{E}_{\mu}[\operatorname{Pr}(\hat{G} \neq G)] \\
& =\operatorname{Pr}_{\mu}(G \in \mathcal{T}) \mathbb{E}_{\mu}[\operatorname{Pr}(\hat{G} \neq G) \mid G \in \mathcal{T}]+\operatorname{Pr}_{\mu}(G \notin \mathcal{T}) \mathbb{E}_{\mu}[\operatorname{Pr}(\hat{G} \neq G) \mid G \notin \mathcal{T}] \\
& \stackrel{a}{\geq} \operatorname{Pr}_{\mu}(G \in \mathcal{T}) \mathbb{E}_{\mu}[\operatorname{Pr}(\hat{G} \neq G) \mid G \in \mathcal{T}] \\
& \geq \mu(\mathcal{T}) \frac{H(G \mid G \in \mathcal{T})-I\left(G ; X^{n} \mid G \in \mathcal{T}\right)-\log 2}{\log |\mathcal{T}|} \tag{10}
\end{align*}
$$

Here we have: (a) since both terms in the equation before are positive. (b) by using the conditional Fano's lemma.

Also, note that:

$$
\begin{align*}
\mathbb{E}_{\mu}[\operatorname{Pr}(\hat{G} \neq G) \mid G \in \mathcal{T}] & =\sum_{G \in \mathcal{T}} \operatorname{Pr}_{\mu}(G \mid G \in \mathcal{T}) \cdot \operatorname{Pr}(\hat{G} \neq G) \\
& \leq \max _{G \in \mathcal{T}} \operatorname{Pr}(\hat{G} \neq G) \\
& \leq \max _{G \in \mathcal{G}} \operatorname{Pr}(\hat{G} \neq G)=p_{\max } \tag{11}
\end{align*}
$$

8.4 Proof of Corollary 2

Proof. We pick μ to be a uniform measure and use $H(G)=\log |\mathcal{G}|$. In addition, we upper bound the mutual information through an approach in [20] which relates it to coverings in terms of the

KL-divergence as follows:

$$
\begin{align*}
I\left(G ; X^{n} \mid G \in \mathcal{T}\right) & \stackrel{a}{=} \sum_{G \in \mathcal{T}} P_{\mu}(G \mid G \in \mathcal{T}) D\left(f_{G}\left(\mathbf{x}^{n}\right) \| f_{X}\left(\mathbf{x}^{n}\right)\right) \\
& \left.\stackrel{b}{\leq} \sum_{G \in \mathcal{T}} P_{\mu}(G \mid G \in \mathcal{T}) D\left(f_{G}\left(\mathbf{x}^{n}\right) \| Q\left(\mathbf{x}^{n}\right)\right)\right) \\
& \stackrel{c}{=} \sum_{G \in \mathcal{T}} P_{\mu}(G \mid G \in \mathcal{T}) D\left(f_{G}\left(\mathbf{x}^{n}\right) \| \sum_{G^{\prime} \in C_{\mathcal{T}}(\epsilon)} \frac{1}{\left|C_{\mathcal{T}}(\epsilon)\right|} f_{G^{\prime}}\left(\mathbf{x}^{n}\right)\right) \\
& =\sum_{G \in \mathcal{T}} P_{\mu}(G \mid G \in \mathcal{T}) \sum_{\mathbf{x}^{n}} f_{G}\left(\mathbf{x}^{n}\right) \log \left(\frac{f_{G}\left(\mathbf{x}^{n}\right)}{\left.\sum_{G^{\prime} \in C_{\mathcal{T}}(\epsilon)} \frac{1}{\left|C_{\mathcal{T}}(\epsilon)\right|} f_{G^{\prime}}\left(\mathbf{x}^{n}\right)\right)}\right) \\
& \leq \log \left|C_{\mathcal{T}}(\epsilon)\right|+n \epsilon \tag{12}
\end{align*}
$$

Here we have: (a) $f_{X}(\cdot)=\sum_{G \in \mathcal{T}} P_{\mu}(G \mid G \in \mathcal{T}) f_{G}(\cdot)$. (b) $Q(\cdot)$ is any distribution on $\{-1,1\}^{n p}$ (see [20, Section 2.1]). (c) by picking $Q(\cdot)$ to be the average of the set of distributions $\left\{f_{G}(\cdot), G \in\right.$ $\left.C_{\mathcal{T}}(\epsilon)\right\}$. (d) by lower bounding the denominator sum inside the log by only the covering element term for each $G \in \mathcal{T}$. Also using $D\left(f_{G}\left(\mathbf{x}^{n}\right) \| f_{G^{\prime}}\left(\mathbf{x}^{n}\right)\right)=n D\left(f_{G} \| f_{G}^{\prime}\right)(\leq n \epsilon)$, since the samples are drawn i.i.d.

Plugging these estimates in Lemma 2 gives the corollary.

8.5 Proof of Lemma 3

Proof. Consider a graph $G(V, E)$ with two nodes a and b such that there are at least d node disjoint paths of length at most ℓ between a and b. Consider another graph $G^{\prime}\left(V, E^{\prime}\right)$ with edge set $E^{\prime} \subseteq E$ such that E^{\prime} contains only edges belonging to the d node disjoint paths of length ℓ between a and b. All other edges are absent in E^{\prime}. Let \mathcal{P} denote the set of node disjoint paths. By Griffith's inequality (see [7, Theorem 3.1]),

$$
\begin{align*}
\mathbb{E}_{f_{G}}\left[x_{a} x_{b}\right] & \geq \mathbb{E}_{f_{G^{\prime}}}\left[x_{a} x_{b}\right] \\
& =2 P_{G^{\prime}}\left(x_{a} x_{b}=+1\right)-1 \tag{13}
\end{align*}
$$

Here, $P_{G^{\prime}}($.$) denotes the probability of an event under the distribution f_{G^{\prime}}$.
We will calculate the ratio $P_{G^{\prime}}\left(x_{a} x_{b}=+1\right) / P_{G^{\prime}}\left(x_{a} x_{b}=-1\right)$. Since we have a zero-field ising model (i.e. no weight on the nodes), $f_{G^{\prime}}(\mathbf{x})=f_{G^{\prime}}(-\mathbf{x})$. Therefore, we have:

$$
\begin{equation*}
\frac{P_{G^{\prime}}\left(x_{a} x_{b}=+1\right)}{P_{G^{\prime}}\left(x_{a} x_{b}=-1\right)}=\frac{2 P_{G^{\prime}}\left(x_{a}=+1, x_{b}=+1\right)}{2 P_{G^{\prime}}\left(x_{a}=-1, x_{b}=+1\right)} \tag{14}
\end{equation*}
$$

Now consider a path $p \in \mathcal{P}$ of length ℓ_{p} whose end points are a and b. Consider an edge (i, j) in the path p. We say i, j disagree if x_{i} and x_{j} are of opposite signs. Otherwise, we say they agree. When $x_{b}=+1, x_{a}$ is +1 iff there are even number of disagreements in the path p. Odd number of disagreements would correspond to $x_{a}=-1$, when $x_{b}=+1$. The location of the disagreements exactly specifies the signs on the remaining variables, when $x_{b}=+1$. Let $d(p)$ denote the number of disagreements in path p. Every agreement contributes a term $\exp (\lambda)$ and every disagreement
contributes a term $\exp (-\lambda)$. Now, we use this to bound 14 as follows:

$$
\begin{align*}
& \frac{P_{G^{\prime}}\left(x_{a} x_{b}=+1\right)}{P_{G^{\prime}}\left(x_{a} x_{b}=-1\right)} \stackrel{a}{=} \frac{\prod_{p \in \mathcal{P}}\left(\sum_{d(p) \text { even }} e^{\lambda \ell_{p}} e^{-2 \lambda d(p)}\right)}{\prod_{p \in \mathcal{P}}\left(\sum_{d(p) \text { odd }} e^{\lambda \ell_{p}} e^{-2 \lambda d(p)}\right)} \\
& \stackrel{b}{=} \frac{\prod_{p \in \mathcal{P}}\left(\left(1+e^{-2 \lambda}\right)^{\ell_{p}}+\left(1-e^{-2 \lambda}\right)^{\ell_{p}}\right)}{\prod_{p \in \mathcal{P}}\left(\left(1+e^{-2 \lambda}\right)^{\ell_{p}}-\left(1-e^{-2 \lambda}\right)^{\ell_{p}}\right)} \quad \stackrel{c}{=} \frac{\prod_{p \in \mathcal{P}}\left(1+(\tanh (\lambda))^{\ell_{p}}\right)}{\prod_{p \in \mathcal{P}}\left(1-(\tanh (\lambda))^{\ell_{p}}\right)} \tag{15}\\
& \geq \frac{d\left(1+(\tanh (\lambda))^{\ell}\right)^{d}}{\left(1-(\tanh (\lambda))^{\ell}\right)^{d}} \tag{16}
\end{align*}
$$

Here we have: (a) by the discussion above regarding even and odd disagreements. Further, the partition function Z (of $f_{G^{\prime}}$) cancels in the ratio and since the paths are disjoint, the marginal splits as a product of marginals over each path. (b) using the binomial theorem to add up the even and odd terms separately. (c) $\ell_{p} \leq \ell, \forall p \in \mathcal{P}$. (d) there are d paths in \mathcal{P}.
Substituting in (13), we get:

$$
\begin{equation*}
\mathbb{E}_{f_{G}}\left[x_{a} x_{b}\right] \geq 1-\frac{2}{1+\frac{\left(1+(\tanh (\lambda))^{\ell}\right)^{d}}{\left(1-(\tanh (\lambda))^{\ell}\right)^{d}}} \tag{17}
\end{equation*}
$$

8.6 Proof of Corollary 3

Proof. From Eq. (4), we get:

$$
\begin{align*}
D\left(f_{G} \| f_{G^{\prime}}\right) & \leq \sum_{(s, t) \in E-E^{\prime}} \lambda\left(\mathbb{E}_{G}\left[x_{s} x_{t}\right]-\mathbb{E}_{G^{\prime}}\left[x_{s} x_{t}\right]\right)+\sum_{(s, t) \in E^{\prime}-E} \lambda\left(\mathbb{E}_{G^{\prime}}\left[x_{s} x_{t}\right]-\mathbb{E}_{G}\left[x_{s} x_{t}\right]\right) \\
& \stackrel{a}{\leq} \sum_{(s, t) \in E-E^{\prime}} \lambda\left(1-\mathbb{E}_{G^{\prime}}\left[x_{s} x_{t}\right]\right)+\sum_{(s, t) \in E^{\prime}-E} \lambda\left(1-\mathbb{E}_{G}\left[x_{s} x_{t}\right]\right) \\
& \leq \frac{2 \lambda\left|E-E^{\prime}\right|}{1+\frac{\left(1+(\tanh (\lambda))^{\ell}\right)^{d}}{\left(1-(\tanh (\lambda))^{\ell}\right)^{d}}}+\frac{2 \lambda\left|E^{\prime}-E\right|}{1+\frac{\left(1+(\tanh (\lambda))^{\ell}\right)^{d}}{\left(1-(\tanh (\lambda))^{\ell}\right)^{d}}} \tag{18}
\end{align*}
$$

Here we have: (a) $\mathbb{E}_{G}\left[x_{s} x_{t}\right] \leq 1$ and $\mathbb{E}_{G^{\prime}}\left[x_{s} x_{t}\right] \leq 1$ (b) for any $(s, t) \in E-E^{\prime}$, the pair of nodes are (ℓ, d) connected. Therefore, bound on $\mathbb{E}_{G^{\prime}}\left[x_{s} x_{t}\right]$ from Lemma 3 applies. Similar bound holds for $\mathbb{E}_{G}\left[x_{s} x_{t}\right]$ for $(s, t) \in E^{\prime}-E$.

8.7 Proof of Lemma 4

Proof. Since the graphs $G(V, E)$ and $G^{\prime}\left(V, E^{\prime}\right)$ differ by only the edge $(a, b) \in E$, we have:

$$
\begin{equation*}
\frac{P_{G}\left(x_{a} x_{b}=+1\right)}{P_{G}\left(x_{a} x_{b}=-1\right)}=e^{2 \lambda} \frac{P_{G^{\prime}}\left(x_{a} x_{b}=+1\right)}{P_{G^{\prime}}\left(x_{a} x_{b}=-1\right)} \tag{19}
\end{equation*}
$$

Here, $P_{G}(\cdot)$ corresponds to the probability of an event under f_{G}. Let $q=P_{G^{\prime}}\left(x_{a} x_{b}=+1\right)$. Now, writing the difference of the correlations,

$$
\begin{align*}
\mathbb{E}_{G}\left[x_{a} x_{b}\right]-\mathbb{E}_{G^{\prime}}\left[x_{a} x_{b}\right] & =2\left(P_{G}\left(x_{a} x_{b}=+1\right)-P_{G^{\prime}}\left(x_{a} x_{b}=-1\right)\right) \\
& \stackrel{a}{=} 2\left(\frac{e^{2 \lambda} q}{1-q+e^{2 \lambda} q}-q\right) \\
& =2\left(e^{2 \lambda}-1\right)\left(\frac{q-q^{2}}{1-q+e^{2 \lambda} q}\right) \tag{20}
\end{align*}
$$

Here we have: (a) by substituting from (19)
Let $h(q)=\left(\frac{q-q^{2}}{1-q+e^{2 \lambda} q}\right)$. Since we have $\lambda>0$ i.e. ferromagnetic ising model, we know that $q \in\left[\frac{1}{2}, 1\right]$. Also, differentiating $h(q)$, we get:

$$
\begin{equation*}
h^{\prime}(q)=\frac{1-2 q-\left(e^{2 \lambda}-1\right) q^{2}}{\left(1-q+e^{2 \lambda} q\right)^{2}} \tag{21}
\end{equation*}
$$

It is easy to check that $h^{\prime}(q) \leq 0$ for $q \in\left[\frac{1}{2}, 1\right]$. Thus, $h(q)$ is a decreasing function, and so, substituting $q=1 / 2$ in 20,

$$
\begin{equation*}
\mathbb{E}_{G}\left[x_{a} x_{b}\right]-\mathbb{E}_{G^{\prime}}\left[x_{a} x_{b}\right] \leq \frac{e^{2 \lambda}-1}{e^{2 \lambda}+1}=\tanh (\lambda) \tag{22}
\end{equation*}
$$

Also, from Eq. (4),

$$
\begin{equation*}
D\left(f_{G} \| f_{G^{\prime}}\right) \leq \lambda\left(\mathbb{E}_{G}\left[x_{a} x_{b}\right]-\mathbb{E}_{G^{\prime}}\left[x_{a} x_{b}\right]\right) \leq \lambda \tanh (\lambda) \tag{23}
\end{equation*}
$$

9 Appendix B - Proofs for Section 5

For the proofs in this section, we will be using the estimate of the number of samples presented in Remark 2 To recapitulate, we had the following generic statement:

For any graph class \mathcal{G} and its subset $\mathcal{T} \subset \mathcal{G}$, suppose we can cover \mathcal{T} with a single point (denoted by G_{0}) with KL-radius ρ, i.e. for any other $G \in \mathcal{T}, D\left(f_{G} \| f_{G_{0}}\right) \leq \rho$. Now, if

$$
\begin{equation*}
n \leq \frac{\log |\mathcal{T}|}{\rho}(1-\delta) \tag{24}
\end{equation*}
$$

then $p_{\max } \geq \delta$. Note that, assuming \mathcal{T} is growing with p, we have ignored the lower order term.
So, for each of the graph classes under consideration, we shall show how to construct G_{0}, \mathcal{T} and compute ρ.

9.1 Proof of Theorem 1

Proof. The graph class is $\mathcal{G}_{p, \eta}$, the set of all graphs on p vertices with at most $\eta(\eta=o(p))$ paths between any two vertices.
Constructing G_{0} : We consider the following basic building block. Take two vertices (s, t) and connect them. In addition, take $\eta-1$ more vertices, and connect them to both s and t. Now, there are exactly η paths between (s, t). There are $(\eta+1)$ total nodes and $(2 \eta-1)$ total edges.

Now, take α disjoint copies of these blocks. We note that we must have $\alpha(\eta+1) \leq p$. We choose $\alpha=\left\lfloor\frac{p}{\eta+1}\right\rfloor \geq \frac{p}{2(\eta+1)}$ suffices.
Constructing \mathcal{T} - Ensemble 1: Starting with G_{0}, we consider the family of graphs \mathcal{T} obtained by removing the main (s, t) edge from one of the blocks. So, we get α different graphs. Let G_{i}, $i \in[\alpha]$, be the graph obtained by removing this edge from the $i^{t h}$ block. Then, note that G_{0} and G_{i} only differ by a single pair $\left(s_{i}, t_{i}\right)$, which is $(2, \eta)$ connected in G_{i}. From Corollary 3 we have, $D\left(f_{G_{0}} \| f_{G_{i}}\right) \leq \frac{2 \lambda}{1+\cosh (2 \lambda)^{n-1}}=\rho$. Plugging $|\mathcal{T}|=\alpha$, and ρ into Eq. 24) gives us the second term for the bound in the theorem.

Constructing \mathcal{T} - Ensemble 2: Starting with G_{0}, we consider the family of graphs \mathcal{T} obtained by removing any edge from one of the blocks. So, we get $\alpha(2 \eta-1) \geq \frac{p}{2}$ different graphs. Let G_{i} be any such graph. Then, note that G_{0} and G_{i} only differ by a single edge. From Lemma 4 we have, $D\left(f_{G_{0}} \| f_{G_{i}}\right) \leq \lambda \tanh (\lambda)=\rho$. Plugging $|\mathcal{T}| \geq p / 2$, and ρ into Eq. 24) gives us the first term for the bound in the theorem.

9.2 Proof of Theorem 2

Proof. The graph class is $\mathcal{G}_{p, \eta, \gamma}$, the set of all graphs on p vertices with at most η paths of length at most γ between any two vertices.

Constructing G_{0} : We consider the following basic building block. Take two vertices (s, t) and connect them. In addition, take $\eta-1$ more vertices, and connect them to both s and t. Also, take another k vertex disjoint paths, each of length $\gamma+1$, between (s, t). Now, there are exactly $\eta+k$ paths between (s, t), but at most η paths of length at most γ. There are $(k \gamma+\eta+1)$ total nodes and $(k(\gamma+1)+2 \eta-1)$ total edges.

Now, take α disjoint copies of these blocks. Note that we must choose α and k such that $\alpha(k \gamma+$ $\eta+1) \leq p$. For some $\nu \in(0,1)$, we choose $\alpha=p^{\nu}$. In this case, $k=t_{\nu}=\frac{p^{1-\nu}-(\eta+1)}{\gamma}$ suffices.

Constructing \mathcal{T} - Ensemble 1: Starting with G_{0}, we consider the family of graphs \mathcal{T} obtained by removing the main (s, t) edge from one of the blocks. So, we get α different graphs. Let $G_{i}, i \in[\alpha]$, be the graph obtained by removing this edge from the $i^{t h}$ block. Then, note that G_{0} and G_{i} only differ by a single pair $\left(s_{i}, t_{i}\right)$, which is $(2, \eta-1)$ connected and also $\left(t_{\nu}, \gamma+1\right)$ connected, in G_{i}. Based on the proof of Lemma 3, the estimate of $D\left(f_{G_{i}} \| f_{G_{0}}\right)$ can be recomputed by handling the two different sets of correlation contributions from the two sets of node disjoint paths, and then combining them based on the probabilities. We get, $D\left(f_{G_{0}} \| f_{G_{i}}\right) \leq \frac{2 \lambda}{1+\left[\cosh (2 \lambda)^{\eta-1}\left(\frac{1+\tanh (\lambda)^{\gamma+1}}{1-\tanh (\lambda)^{\gamma+1}}\right)^{t_{\nu}}\right]}=\rho$.
Plugging $|\mathcal{T}|=\alpha$, and ρ into Eq. 24) gives us the second term for the bound in the theorem.
Constructing \mathcal{T} - Ensemble 2: Starting with G_{0}, we consider the family of graphs \mathcal{T} obtained by removing any edge from one of the blocks. So, we get $\alpha(k(\gamma+1)+2 \eta-1) \geq \frac{p}{2}$ different graphs. Let G_{i} be any such graph. Then, note that G_{0} and G_{i} only differ by a single edge. From Lemma 4 we have, $D\left(f_{G_{0}} \| f_{G_{i}}\right) \leq \lambda \tanh (\lambda)=\rho$. Plugging $\mid \mathcal{T}$ and ρ into Eq. 24, gives us the second term for the bound in the theorem.

9.3 Proof of Theorem 3

Proof. The graph class is $\mathcal{G}_{p, g, d}$, the set of all graphs on p vertices with girth atleast g and degree at most d.

Constructing G_{0} : We consider the following basic building block. Take two vertices (s, t) and connect them. In addition, take k vertex disjoint paths, each of length $g-1$ between (s, t). Now, there are exactly k paths between (s, t). There are $(k(g-2)+2)$ total nodes and $(k(g-1)+1)$ total edges.

Now, take α disjoint copies of these blocks. Note that we must choose α and k such that $\alpha(k(g-$ $2)+2) \leq p$. For some $\nu \in(0,1)$, we choose $\alpha=p^{\nu}$. In this case, $k=d_{\nu}=\min \left(d, \frac{p^{1-\nu}}{g}\right)$ suffices.

Constructing \mathcal{T} - Ensemble 1: Starting with G_{0}, we consider the family of graphs \mathcal{T} obtained by removing the main (s, t) edge from one of the blocks. So, we get α different graphs. Let G_{i}, $i \in[\alpha]$, be the graph obtained by removing this edge from the $i^{t h}$ block. Then, note that G_{0} and G_{i} only differ by a single pair $\left(s_{i}, t_{i}\right)$, which is $\left(d_{\nu}, g-1\right)$ connected in G_{i}. From Corollary 3 we have, $D\left(f_{G_{0}} \| f_{G_{i}}\right) \leq \frac{2 \lambda}{1+\left(\frac{1+\tanh (\lambda)^{g-1}}{1-\tanh (\lambda) g-1}\right)^{d_{\nu}}}=\rho$. Plugging $|\mathcal{T}|=\alpha$, and ρ into Eq. 24) gives us the second term for the bound in the theorem.

Constructing \mathcal{T} - Ensemble 2: Starting with G_{0}, we consider the family of graphs \mathcal{T} obtained by removing any edge from one of the blocks. So, we get $\alpha(k(g-1)+1) \geq \frac{p}{2}$ different graphs. Let G_{i} be any such graph. Then, note that G_{0} and G_{i} only differ by a single edge. From Lemma 4 we have, $D\left(f_{G_{0}} \| f_{G_{i}}\right) \leq \lambda \tanh (\lambda)=\rho$. Plugging $|\mathcal{T}|$ and ρ into Eq. 24) gives us the second term for the bound in the theorem.

9.4 Proof of Theorem 4

Proof. The graph class is $\mathcal{G}_{p, d}^{\text {approx }}$, the set of all graphs on p vertices with degree either d or $d-1$ (we assume that p is a multiple of $d+1$ - if not, we can instead look at a smaller class by ignoring at most d vertices). The construction here is the same as in [16].
Constructing G_{0} : We divide the vertices into $p /(d+1)$ groups, each of size $d+1$, and then form cliques in each group.

Constructing \mathcal{T} : Starting with G_{0}, we consider the family of graphs \mathcal{T} obtained by removing any one edge. Thus, we get $\frac{p}{d+1}\binom{d+1}{2} \geq \frac{p d}{4}$ such graphs. Also, any such graph, G_{i}, differs from G_{0} by a single edge, and also, differs only in a pair that is part of a clique minus one edge. So, combining the estimates from [16] and Lemma 4] we have, $D\left(f_{G_{0}} \| f_{G_{i}}\right) \leq \min \left(\frac{2 \lambda d e^{\lambda}}{e^{\lambda d}}, \lambda \tanh (\lambda)\right)=\rho$. Plugging $|\mathcal{T}|$ and ρ into Eq. 24) gives us the theorem.

9.5 Proof of Theorem 5

Proof. The graph class is $\mathcal{G}_{p, k}^{\text {approx }}$, the set of all graphs on p vertices with at most k edges. The construction here is the same as in [16]

Constructing G_{0} : We choose a largest possible number of vertices m such that we can have a clique on them i.e. $\binom{m}{2} \leq k$. Then, $\sqrt{2 k}+1 \geq m \geq \sqrt{2 k}-1$. We ignore any unused vertices.
Constructing \mathcal{T} : Starting with G_{0}, we consider the family of graphs \mathcal{T} obtained by removing any one edge. Thus, we get $\binom{m}{2} \geq \frac{k}{2}$ such graphs. Also, any such graph, G_{i}, differs from G_{0} by a single edge, and also, differs only in a pair that is part of a clique minus one edge. So, combining the estimates from [16] and Lemma 4 , we have, $D\left(f_{G_{0}} \| f_{G_{i}}\right) \leq \min \left(\frac{2 \lambda e^{\lambda}(\sqrt{2 k}+1)}{e^{\lambda(\sqrt{2 k}-1)}}, \lambda \tanh (\lambda)\right)=\rho$. Plugging $|\mathcal{T}|$ and ρ into Eq. 24 gives us the theorem.

10 Appendix C: Proof of Theorem 6

In this section, we outline the covering arguments in detail along with a Fano's Lemma variant to prove Theorem 6
We recall some definitions and results from [1].
Definition 3. Let $\mathcal{T}_{\epsilon}^{n}=\{G:|\bar{d}(G)-c| \leq c \epsilon\}$ denote the ϵ-typical set of graphs where $\bar{d}(G)$ is the ratio of sum of degree of nodes to the total number of nodes.

A graph G on p nodes is drawn according to the distribution characterizing the Erdős-Rényi ensemble $G(p, c / p)$ (also denoted $\mathcal{G}_{\text {ER }}$ without the parameter c). Then n i.i.d samples $\mathbf{X}^{n}=$ $\mathbf{X}^{(1)}, \ldots \mathbf{X}^{(n)}$ are drawn according to $f_{G}(\mathbf{x})$ with the scalar weight $\lambda>0$. Let $H(\cdot)$ denote the binary entropy function.
Lemma 5. (Lemma 8, 9 and Proof of Theorem 4 in [1]) The ϵ-typical set satisfies:

1. $P_{G \sim G(p, c / p)}\left(G \in \mathcal{T}_{\epsilon}^{p}\right)=1-a_{p}$ where $a_{p} \rightarrow 0$ as $p \rightarrow \infty$.
2. $2^{-\binom{p}{2} H(c / p)(1+\epsilon)} \leq P_{G \sim G(p, c / p)}(G) \leq 2^{-\binom{p}{2} H(c / p)}$.
3. $(1-\epsilon) 2^{\binom{p}{2} H(c / p)} \leq\left|\mathcal{T}_{\epsilon}^{p}\right| \leq 2^{\binom{p}{2} H(c / p)(1+\epsilon)}$ for sufficiently large p.
4. $H\left(G \mid G \in \mathcal{T}_{\epsilon}^{p}\right) \geq\binom{ p}{2} H(c / p)$.
5. (Conditional Fano's Inequality:)

$$
\begin{equation*}
P\left(\hat{G}\left(\mathbf{X}^{n}\right) \neq G \mid G \in \mathcal{T}_{\epsilon}^{p}\right) \geq \frac{H\left(G \mid G \in \mathcal{T}_{\epsilon}^{p}\right)-I\left(G ; \mathbf{X}^{n} \mid G \in \mathcal{T}_{\epsilon}^{p}\right)-1}{\log _{2}\left|\mathcal{T}_{\epsilon}^{p}\right|} \tag{25}
\end{equation*}
$$

10.1 Covering Argument through Fano's Inequality

Now, we consider the random graph class $G(p, c / p)$. Consider a learning algorithm ϕ. Given a graph $G \sim G(p, c / p)$, and n samples \mathbf{X}^{n} drawn according to distribution $f_{G}(\mathbf{x})$ (with weight $\lambda>0$), let $\hat{G}=\phi\left(\mathbf{X}^{n}\right)$ be the output of the learning algorithm. Let $f_{X}($.$) be the marginal distribution of \mathbf{X}^{n}$ sampled as described above. Then the following holds for $p_{\text {avg }}$:

$$
\begin{align*}
p_{\text {avg }} & =\mathbb{E}_{G(p, c / p)}\left[\mathbb{E}_{\mathbf{X}^{n} \sim f_{G}}\left[\mathbf{1}_{\hat{G} \neq G}\right]\right] \\
& \geq \operatorname{Pr}_{G(p, c / p)}\left(G \in \mathcal{T}_{\epsilon}^{p}\right) \mathbb{E}\left[\mathbb{E}_{\mathbf{X}^{n} \sim f_{G}}\left[\mathbf{1}_{\hat{G} \neq G}\right] \mid G \in \mathcal{T}_{\epsilon}^{p}\right] \\
& \stackrel{a}{=}\left(1-a_{p}\right) \mathbb{E}\left[\mathbb{E}_{\mathbf{X}^{n} \sim f_{G}}\left[\mathbf{1}_{\hat{G} \neq G}\right] \mid G \in \mathcal{T}_{\epsilon}^{p}\right] \\
& =\left(1-a_{p}\right) p_{\text {avg }}^{\prime} \tag{26}
\end{align*}
$$

Here, (a) is due to Lemma 5 Here, $p_{\text {avg }}^{\prime}$ is the average probability of error under the conditional distribution obtained by conditioning $G(p, c / p)$ on the event $G \in \mathcal{T}_{\epsilon}^{p}$.
Now, consider G sampled according to the conditional distribution $G(p, c / p) \mid G \in \mathcal{T}_{\epsilon}^{p}$. Then, n samples \mathbf{X}^{n} are drawn i.i.d according to $f_{G}(\mathbf{x}) . \hat{G}=\phi\left(\mathbf{x}^{n}\right)$ is the output of the learning algorithm. Applying conditional Fano's inequality from (25) and using estimates from Lemma 5 , we have:

$$
\begin{align*}
p_{\mathrm{avg}}^{\prime} & =P_{G \sim G(p, c / p) \mid G \in \mathcal{T}_{\epsilon}^{p}, \mathbf{X}^{\mathbf{n}} \sim f_{G}(\mathbf{x})}(\hat{G} \neq G) \\
& \geq \frac{a\binom{p}{2} H(c / p)-I\left(G ; \mathbf{X}^{n} \mid G \in \mathcal{T}_{\epsilon}^{p}\right)-1}{\log _{2}\left|\mathcal{T}_{\epsilon}^{p}\right|} \\
& \geq \frac{b}{\binom{p}{2} H(c / p)-I\left(G ; \mathbf{X}^{n} \mid G \in \mathcal{T}_{\epsilon}^{p}\right)-1} \\
& =\frac{1}{\binom{p}{2} H(c / p)(1+\epsilon)}-\frac{I\left(G ; \mathbf{X}^{n} \mid G \in \mathcal{T}_{\epsilon}^{p}\right)}{\binom{p}{2} H(c / p)(1+\epsilon)}-\frac{1}{\binom{p}{2} H(c / p)(1+\epsilon)} \tag{27}
\end{align*}
$$

Now, we upper bound $I\left(G ; \mathbf{X}^{n} \mid G \in \mathcal{T}_{\epsilon}^{p}\right)$. Now, use a result by Yang and Barron [20] to bound this term.

$$
\begin{align*}
I\left(G ; \mathbf{X}^{n} \mid G \in \mathcal{T}_{\epsilon}^{p}\right)= & \sum_{G} P_{G(p, c / p) \mid G \in \mathcal{T}_{\epsilon}^{p}}(G) D\left(f_{G}\left(\mathbf{x}^{n}\right) \| f_{X}\left(\mathbf{x}^{n}\right)\right) \\
& \leq \sum_{G} P_{G(p, c / p) \mid G \in \mathcal{T}_{\epsilon}^{p}}(G) D\left(f_{G}\left(\mathbf{x}^{n}\right) \| Q\left(\mathbf{x}^{n}\right)\right) \tag{28}
\end{align*}
$$

where $Q(\cdot)$ is any distribution on $\{-1,1\}^{n p}$. Now, we choose this distribution to be the average of $\left\{f_{G}(),. G \in S\right\}$ where the set $S \subseteq \mathcal{T}_{\epsilon}^{p}$ is a set of graphs that is used to 'cover' all the graphs in $\mathcal{T}_{\epsilon}^{p}$. Now, we describe the set S together with the covering rules when $c=\Omega\left(p^{3 / 4}+\epsilon^{\prime}\right), \epsilon^{\prime}>0$.

10.2 The covering set S : dense case

First, we discuss certain properties that most graphs in $\mathcal{T}_{\epsilon}^{p}$ possess building on Lemma 3 Using these properties, we describe the covering set S.

Consider a graph G on p nodes. Divide the node set into three equal parts A, B and C of equal size $(p / 3)$. Two nodes $a \in A$ and $c \in C$ are $(2, \gamma)$ connected through B if there are at least γ nodes in B which are connected to both a and c (with parameter γ as defined in Section4.3. Let $\mathcal{D}(G) \subseteq A \times C$ be the set of all pairs $(a, c): a \in A, c \in C$ such that nodes a and c are $(2, \gamma)$ connected. Let $|\mathcal{D}(G)|=m_{A, C}$. Let $E(G)$ denote the edge in graph G.

10.2.1 Technical results on $\mathcal{D}(G)$

Nodes $a \in A$ and $c \in C$ are clearly $(2, d)$-connected if there are d nodes in B which are connected to both a and b as it will mean d disjoint paths connecting a and b through the partition B. Now if $G \sim G(p, c / p)$, then expected number of disjoint paths between a and c through B is $\frac{p}{3} \frac{c^{2}}{p^{2}}$ since
the probability of a path existing through a node $b \in B$ is $\frac{c^{2}}{p^{2}}$. Let $n_{a, c}$ be the number of such paths between a and c. The event that there is a path through $b_{1} \in B$ is independent of the event that there is a path through $b_{2} \in B$, applying chernoff bounds (see [12]) for $p / 3$ independent bernoulli variables we have:
Lemma 6. $\operatorname{Pr}\left(n_{a, c} \leq \frac{c^{2}}{3 p}-\sqrt{4 p \log p}\right) \leq \frac{1}{p^{2}}$ for any two nodes $a \in A$ and $c \in C$ when $G \sim$ $G(p, c / p)$. The bound is useful for $c=\Omega\left(p^{\frac{3}{4}+\epsilon^{\prime}}\right), \epsilon^{\prime}>0$.

Therefore, in this regime of dense graphs, any two nodes in partitions A and C are $\left(2, \gamma=c^{2} / 6 p\right)$ connected with probability $1-\frac{1}{p^{2}}$.
Given $a \in A$ and $c \in C$, the probability that a and c are $(2, \gamma)$ connected is $1-\frac{1}{p^{2}}$. The expected number of pairs in $A \times C$ that are $(2, \gamma)$ connected is $(p / 3)^{2}\left(1-\frac{1}{p^{2}}\right)$. Let $\mathcal{D}(G) \subseteq A \times C$ be the set of all pairs $(a, c): a \in A, c \in C$ such that nodes a and c are $(2, \gamma)$ connected. Let $m_{A, C}=|\mathcal{D}|$. Then we have the following concentration result on $m_{A, C}$:
Lemma 7. $\operatorname{Pr}\left(m_{A, C} \leq \frac{1}{2}(p / 3)^{2}\right) \leq b_{p}=p / 3 \exp (-(p / 36))$ when $G \sim G(p, c / p), c=$ $\Omega\left(p^{\frac{3}{4}+\epsilon^{\prime}}\right), \epsilon^{\prime}>0$.

Proof. The event that the pair $\left(a_{1}, c_{1}\right) \in A \times C$ is $(2, \gamma)$ connected and the event that the pair $\left(a_{2}, c_{2}\right) \in A \times C$ are dependent if $a_{1}=a_{2}$ or $c_{1}=c_{2}$. Therefore, we need to obtain a concentration result for the case when you have $(p / 3)^{2}$ Bernoulli variables (each corresponding to a pair in $A \times C$ being $(2, \gamma)$ connected) which are dependent.
Consider a complete bipartite graph between A and C. Since, $|A|=|C|=p / 3$. Edges of every complete bipartite graph $K_{p / 3, p / 3}$ can be decomposed into a disjoint union of $p / 3$ perfect matchings between the partitions (this is due to Hall's Theorem repeatedly applied on graphs obtained by removing perfect matchings. See [9]). Therefore, the set of pairs $A \times C=\bigcup_{1=1}^{p / 3} \mathcal{M}_{i}$ where $\mathcal{M}_{i}=$ $\left\{\left(a_{i_{1}}, c_{i_{1}}\right), \ldots\left(a_{i_{p / 3}}, c_{i_{p / 3}}\right)\right\}$ where all for any $j \neq k, a_{i_{k}} \neq a_{i_{j}}$ and $c_{i_{k}} \neq c_{i_{j}}$.

Let us focus on the number of pairs which are $(2, \gamma)$ connected between A and C in a random graph $G \sim G(p, c / p)$. If $m_{A, C} \leq \frac{1}{2}(p / 3)^{2}$, then at least for one i, the number of pairs in G among the pairs in \mathcal{M}_{i} that are $(2, \gamma)$ is at most $\frac{1}{2}(p / 3)$. This is because $(p / 3)^{2}=\sum_{i}\left|\mathcal{M}_{i}\right|$. Let E_{i}^{c} denote the event that number of edges in G among pairs in \mathcal{M}_{i} is at most $\frac{1}{2}(p / 3)$.

$$
\begin{equation*}
\operatorname{Pr}\left(m_{A, C} \leq \frac{1}{2}(p / 3)^{2}\right) \leq \operatorname{Pr}\left(\bigcup_{i} E_{i}^{c}\right) \leq \sum_{i} \operatorname{Pr}\left(E_{i}^{c}\right) \tag{29}
\end{equation*}
$$

The last inequality is due to union bound. A pair in \mathcal{M}_{i} being $(2, \gamma)$ connected happens with probability $1-1 / p^{2}$ from Lemma 6 . Since it is a perfect matching, all these events are independent. Let $c_{G}\left(\mathcal{M}_{i}\right)$ be the number of pairs in \mathcal{M}_{i} which are $(2, \gamma)$ connected. Therefore, applying a chernoff bound (see [12] Theorem 18.22) for independent Bernoulli variables, we have:

$$
\begin{aligned}
\operatorname{Pr}\left(E_{i}^{c}\right) & =\operatorname{Pr}\left(c_{G}\left(\mathcal{M}_{i}\right) \leq \mathbb{E}[(p / 3)(1 / 2))\right. \\
& =\operatorname{Pr}\left(c_{G}\left(\mathcal{M}_{i}\right) \leq \mathbb{E}\left[c_{G}\left(\mathcal{M}_{i}\right)\right]-(p / 3)\left(1 / 2-1 / p^{2}\right)\right) \\
& (\text { (chernoff) } \\
& \quad \leq \quad \exp \left(-(p / 3)^{2}\left(1 / 2-1 / p^{2}\right)^{2} / 2(p / 3)\right) \\
& \stackrel{a}{\leq} \exp (-(p / 36))
\end{aligned}
$$

(a) holds for large p, i.e. for $p \geq p_{0}$ such that $\left(1 / 2-1 / p_{o}^{2}\right)^{2} \geq 1 / 6$. Simple calculation shows that p_{0} can be taken to be greater than or equal to 10 .
Now, applying this to 29, we have $\forall p \geq 10$:

$$
\begin{equation*}
\operatorname{Pr}\left(m_{A, C} \leq \frac{1}{2}(p / 3)^{2}\right) \leq b_{p}=p / 3 \exp (-(p / 36)) \tag{30}
\end{equation*}
$$

Let $E(G)$ be the set of edges in G.
Lemma 8. $\operatorname{Pr}\left(\left.\left|\frac{\| E(G) \cap \mathcal{D}(G) \mid}{|\mathcal{D}(G)|}-\frac{c}{p}\right| \geq \frac{c}{p} \epsilon \right\rvert\, m_{A, C} \geq \frac{1}{2}(p / 3)^{2}\right) \leq 2 \exp \left(-\frac{c^{2} \epsilon^{2}}{36}\right)=r_{c}$ when $G \sim$ $G(p, c / p), c=\Omega\left(p^{\frac{3}{4}+\epsilon^{\prime}}\right), \epsilon^{\prime}>0$.

Proof. The presence of an edge between a pair on nodes in $A \times C$ is independent of the value of $m_{A, C}$ or whether the pair belongs to \mathcal{D}. This is because a pair of nodes being $(2, \gamma)$ connected depends on the rest of the graph and not on the edges in $\mathcal{D}(G)$. Given $|\mathcal{D}| \geq \frac{1}{2}(p / 3)^{2}$, $|\mathcal{E}(\mathcal{G}) \bigcap \mathcal{D}(G)|=\sum_{(i, j) \in \mathcal{D}} \mathbf{1}_{(i, j) \in E(G)}$ is the sum of least $\frac{1}{2}(p / 3)^{2}$ bernoulli variables each with success probability c / p. Therefore, applying chernoff bounds we have:

$$
\begin{align*}
\operatorname{Pr}\left(\left|\frac{\| E(G) \bigcap \mathcal{D}(G) \mid}{|\mathcal{D}(G)|}-\frac{c}{p}\right| \leq \frac{c}{p}| | m_{A, C} \geq \frac{1}{2}(p / 3)^{2}\right) & \leq 2 \exp \left(-\frac{c^{2} \epsilon^{2}}{p^{2} 2|\mathcal{D}|}|\mathcal{D}|^{2}\right) \\
& \leq 2 \exp \left(-\frac{c^{2} \epsilon^{2}}{4}(1 / 3)^{2}\right) \tag{31}
\end{align*}
$$

(a)- This is because $|\mathcal{D}| \geq \frac{1}{2}(p / 3)^{2}$.

Lemma 9. $\operatorname{Pr}\left(\left(\left|\frac{\| E(G) \cap \mathcal{D}(G) \mid}{|\mathcal{D}(G)|}-\frac{c}{p}\right| \geq \frac{c}{p} \epsilon\right) \bigcup\left(m_{A, C} \leq \frac{1}{2}(p / 3)^{2}\right)\right) \leq \quad b_{p}+r_{c}, \quad c=$ $\Omega\left(p^{\frac{3}{4}+\epsilon^{\prime}}\right), \epsilon^{\prime}>0$.

Proof.

$$
\begin{array}{r}
\operatorname{Pr}\left(\left(\left|\frac{||E(G) \bigcap \mathcal{D}(G)|}{|\mathcal{D}(G)|}-\frac{c}{p}\right| \geq \frac{c}{p} \epsilon\right) \bigcup\left(m_{A, C} \leq \frac{1}{2}(p / 3)^{2}\right)\right) \stackrel{a}{\leq} \operatorname{Pr}\left(m_{A, C} \leq \frac{1}{2}(p / 3)^{2}\right) \\
+\operatorname{Pr}\left(\left.\left|\frac{\| E(G) \bigcap \mathcal{D}(G) \mid}{|\mathcal{D}(G)|}-\frac{c}{p}\right| \geq \frac{c}{p} \epsilon \right\rvert\, m_{A, C} \geq \frac{1}{2}(p / 3)^{2}\right) \leq b_{p}+r_{c} \tag{33}
\end{array}
$$

(a)- is because $\operatorname{Pr}(A \bigcup B) \leq \operatorname{Pr}(A)+\operatorname{Pr}\left(A^{c}\right) \operatorname{Pr}\left(B \mid A^{c}\right) \leq \operatorname{Pr}(A)+\operatorname{Pr}\left(B \mid A^{c}\right)$.

10.2.2 Covering set S and its properties

For any graph G, let $G_{\mathcal{D}=\emptyset}$ be the graph obtained by removing any edge (if present) between the pairs of nodes in $\mathcal{D}(G)$. Let \mathcal{V} be the set of graphs on p nodes such that $|\mathcal{D}|=m_{A, C} \geq \frac{1}{2}(p / 3)^{2}$ and $\left|\frac{|E(G) \cap \mathcal{D}(G)|}{|\mathcal{D}(G)|}-\frac{c}{p}\right| \leq \frac{c \epsilon}{p}$. Define $\mathcal{R}_{\epsilon}^{p}=\mathcal{T}_{\epsilon}^{p} \bigcap \mathcal{V}$ to be the set of graphs that are in the ϵ typical set and also belongs to \mathcal{V}. We have seen high probability estimates on $m_{A, C}$ when $G \sim G(p, c / p)$. Now, we state an estimate for $\operatorname{Pr}\left(\mathcal{R}_{\epsilon}^{p}\right)$ when $G \sim G(p, c / p) \mid \mathcal{T}_{\epsilon}^{p}$.
Lemma 10. $\operatorname{Pr}_{G(p, c / p)}\left(\left(\mathcal{R}_{\epsilon}^{p}\right)^{c} \mid G \in \mathcal{T}_{\epsilon}^{p}\right) \leq \frac{b_{p}+r_{c}}{1-a_{p}} \leq 2\left(b_{p}+r_{c}\right)$ for large $p, c=\Omega\left(p^{\frac{3}{4}+\epsilon^{\prime}}\right), \epsilon^{\prime}>0$.
Proof. Expanding the probability expression in Lemma 9 through conditioning on the events $G \in$ $\mathcal{T}_{\epsilon}^{p}$ and $G \in\left(\mathcal{T}_{\epsilon}^{p}\right)^{c}$, we have:

$$
\begin{equation*}
\operatorname{Pr}\left(\left.\left(\left|\frac{|E(G) \bigcap \mathcal{D}(G)|}{|\mathcal{D}(G)|}-\frac{c}{p}\right| \geq \frac{c}{p} \epsilon\right) \bigcup\left(m_{A, C} \leq \frac{1}{2}(p / 3)^{2}\right) \right\rvert\, G \in \mathcal{T}_{\epsilon}^{p}\right) \operatorname{Pr}\left(G \in \mathcal{T}_{\epsilon}^{p}\right) \leq b_{p}+r_{c} \tag{34}
\end{equation*}
$$

This implies:

$$
\begin{align*}
\operatorname{Pr}\left(\left.\left(\left|\frac{||E(G) \bigcap \mathcal{D}(G)|}{|\mathcal{D}(G)|}-\frac{c}{p}\right| \geq \frac{c}{p} \epsilon\right) \bigcup\left(m_{A, C} \leq \frac{1}{2}(p / 3)^{2}\right) \right\rvert\, G \in \mathcal{T}_{\epsilon}^{p}\right) & \stackrel{a}{\leq} \frac{b_{p}+r_{c}}{1-a_{p}} \\
& \leq 2\left(b_{p}+r_{c}\right) \tag{35}
\end{align*}
$$

(a) is because of estimate 1 in Lemma 5 (b)- For large p, a_{p} can be made smaller than $1 / 2$.

Lemma 11. 8$]$ (Size of a Typical set) For any $0 \leq p \leq 1, m \in \mathbb{Z}^{+}$and a small $\epsilon>0$, let $\mathcal{N}_{\epsilon}^{m, p}=\left\{\mathbf{x} \in\{0,1\}^{m}:\left|\frac{\left|\left\{i: x_{i}=1\right\}\right|}{m}-p\right| \leq p \epsilon\right\}$. Then, $\left|\mathcal{N}_{\epsilon}^{m}, p\right|=\sum_{m p(1-\epsilon) \leq q \leq m p(1+\epsilon)}\binom{m}{q}$. Further, $\left|\mathcal{N}_{\epsilon}^{m, p}\right| \geq(1-\epsilon) 2^{m H(p)(1-\epsilon)}$.
Definition 4. (Covering set) $S=\left\{G_{\mathcal{D}=\emptyset} \mid G \in \mathcal{R}_{\epsilon}^{p}\right\}$.
Now, we describe the covering rule for the set $\mathcal{R}_{\epsilon}^{p}$. For any $G \in \mathcal{R}_{\epsilon}^{p}$, we cover G by $G_{\mathcal{D}=\emptyset}$. Note that, given G, by definition, $G_{\mathcal{D}=\emptyset}$ is unique. Therefore, there is no ambiguity and no necessity to break ties. Since, the set $\mathcal{D}(G)$ is dependent only on the edges outside the set of pairs $A \times C$, $\mathcal{D}\left(G_{\mathcal{D}=\emptyset}\right)=\mathrm{D}(\mathrm{G})$. Therefore, from a given $G^{\prime} \in \mathcal{R}_{\epsilon}^{p}$, by adding different sets of edges in $\mathcal{D}\left(G^{\prime}\right)$, it is possible to obtain elements in \mathcal{R}^{p} covered by G^{\prime}. We now estimate the size of the covering set S relative to the size of $\mathcal{T}_{\epsilon}^{p}$. We show that it is small.
Lemma 12. $\frac{\log |S|}{\log \left|\mathcal{T}_{\epsilon}^{P}\right|} \leq \frac{9}{10}\left(\frac{1+\frac{11}{9} \epsilon}{1+\epsilon}\right)-O(1 / p)$ for large p.

Proof. By definition of $\mathcal{R}_{\epsilon}^{p}$, for every $G \in \mathcal{R}_{\epsilon}^{p},|\mathcal{D}| \geq \frac{1}{2}(p / 3)^{2}$ and the number of edges is in \mathcal{D} is at least $\frac{1}{2}(p / 3)^{2}(c / p)(1+\epsilon)$. And the graph that covers G is $G_{\mathcal{D}=\emptyset}$ where all edges from \mathcal{D} are removed if present in G. Let any set of q edges be added to $G_{\mathcal{D}=\emptyset}$ among the pairs of nodes in \mathcal{D} to form G^{\prime} such that $|\mathcal{D}|(c / p)(1-\epsilon) \leq q \leq|\mathcal{D}|(c / p)(1+\epsilon)$. Then, any such G^{\prime} belongs to $\mathcal{R}_{\epsilon}^{p}$. This follows from the definition of the $\mathcal{R}_{\epsilon}^{p}$. And G^{\prime} is still uniquely covered by $G_{\mathcal{D}=\emptyset}$. Uniqueness follows from the discussion that precedes this Lemma. For every covering graph $G_{c} \in S$, there are at least $\sum_{\left|\mathcal{D}\left(G_{c}\right)\right|(c / p)(1-\epsilon) \leq q \leq\left|\mathcal{D}\left(G_{c}\right)\right|(c / p)(1+\epsilon)}\binom{\left|\mathcal{D}\left(G_{c}\right)\right|}{q}$ distinct graphs $G \in \mathcal{R}_{\epsilon}^{p}$ uniquely covered by G_{c}. Using these observations, we upper bound $|S|$ as follows:

$$
\begin{align*}
\log \left|\mathcal{T}_{\epsilon}^{p}\right| & \geq \log \left(\sum_{G_{c} \in S} \mid\left\{G \in \mathcal{R}_{\epsilon}^{p}: G \text { is covered by } G_{c}\right\} \mid\right. \\
& \geq \log \left(\sum_{G_{c} \in S} \sum_{\left|\mathcal{D}\left(G_{c}\right)\right|(c / p)(1-\epsilon) \leq q \leq\left|\mathcal{D}\left(G_{c}\right)\right|(c / p)(1+\epsilon)}\binom{\left|\mathcal{D}\left(G_{c}\right)\right|}{q}\right) \\
& \quad \geq \log \left(\sum_{G_{c} \in S} \mid \mathcal{N}_{\epsilon}^{\left|\mathcal{D}\left(G_{c}\right)\right|,(c / p) \mid}\right) \\
& \quad \geq \log |S|+\log \left((1-\epsilon) 2^{\frac{1}{2}(p / 3)^{2} H(c / p)(1-\epsilon)}\right) \tag{36}
\end{align*}
$$

(a)- This is due to Lemma 11 and the fact that $|\mathcal{D}| \geq \frac{1}{2}(p / 3)^{2}$. Using 36, we have the following chain of inequalities:

$$
\begin{align*}
\frac{\log |S|}{\log \left|\mathcal{T}_{\epsilon}^{p}\right|} & \stackrel{a}{\leq} 1-\frac{\log (1-\epsilon)+\frac{1}{2}(1-\epsilon)(p / 3)^{2} H(c / p)}{\binom{p}{2} H(c / p)(1+\epsilon)} \\
& =1-O(1 / p)-\frac{(1-\epsilon)}{9(1+\epsilon)}(p / p-1) \\
& \stackrel{b}{\leq} 1-O(1 / p)-\frac{(1-\epsilon)}{10(1+\epsilon)} \\
& =\frac{9}{10}\left(\frac{1+\frac{11}{9} \epsilon}{1+\epsilon}\right)-O(1 / p) \tag{37}
\end{align*}
$$

(a)- Upper bound is used from Lemma 5 . (b)- This is valid for $p \geq 10$.

10.3 Completing the covering argument:dense case

We now resume the covering argument from Section 10.1. Having specified the covering set S, let the distribution $Q\left(\mathbf{x}^{n}\right)=\frac{1}{|S|} \sum_{G \in S} f_{G}\left(\mathbf{x}^{n}\right)$. Let $G_{1} \in S$ be some arbitrary graph. Recalling the
upper bound on $I\left(G ; \mathbf{X}^{n} \mid G \in \mathcal{T}_{\epsilon}^{p}\right)$ from 28, we have:

$$
\begin{align*}
I\left(G ; \mathbf{X}^{n} \mid G \in \mathcal{T}_{\epsilon}^{p}\right) & \leq \sum_{G \in \mathcal{T}_{\epsilon}^{p}} P_{G(p, c / p) \mid G \in \mathcal{T}_{\epsilon}^{p}}(G) D\left(f_{G}\left(\mathbf{x}^{n}\right) \| Q\left(\mathbf{x}^{n}\right)\right) \\
& =\sum_{G \in \mathcal{T}_{\epsilon}^{p}} P_{G(p, c / p) \mid G \in \mathcal{T}_{\epsilon}^{p}}(G) \sum_{\mathbf{x}^{n}} f_{G}\left(\mathbf{x}^{n}\right) \log \frac{f_{G}\left(\mathbf{x}^{n}\right.}{\frac{1}{|S|} \sum_{G \in S} f_{G}\left(\mathbf{x}^{n}\right)} \\
& \leq \log |S|+\sum_{G \in\left(\mathcal{R}_{\epsilon}^{p}\right) c} P_{G(p, c / p) \mid G \in \mathcal{T}_{\epsilon}^{p}}(G) D\left(f_{G}\left(\mathbf{x}^{n}\right) \| f_{G_{1}}\left(\mathbf{x}^{n}\right)\right) \\
& +\sum_{G \in \mathcal{R}_{\epsilon}^{p}} P_{G(p, c / p) \mid G \in \mathcal{T}_{\epsilon}^{p}}(G) D\left(f_{G}\left(\mathbf{x}^{n}\right) \| f_{G_{\mathcal{D}=\emptyset}}\left(\mathbf{x}^{n}\right)\right) \\
& \leq \log |S|+2 n \lambda\binom{p}{2}\left(2 b_{p}+2 r_{c}\right)+n 2 \lambda(p / 3)^{2} \frac{1}{1+\frac{\left(1+(\tanh (\lambda))^{2}\right)^{\gamma}}{\left(1-\tanh (\lambda)^{2}\right)^{\gamma}}} \tag{38}\\
& \leq \log |S|+n\left(2 \lambda\binom{p}{2}\left(2 b_{p}+2 r_{c}\right)+\frac{2 \lambda(p / 3)^{2}}{1+(\cosh (2 \lambda))^{\gamma}}\right) \tag{39}
\end{align*}
$$

Justifications are:
(a) $D\left(f_{G}\left(\mathbf{x}^{n}\right) \| f_{G_{1}}\left(\mathbf{x}^{n}\right)\right)=n D\left(f_{G}(\mathbf{x}) \| f_{G_{1}}(\mathbf{x})\right)$ (due to independence of the n samples) and $D\left(f_{G}(\mathbf{x}) \| f_{G_{1}}(\mathbf{x})\right) \leq \sum_{s, t \in V, s \neq t}\left(\theta_{s, t}-\theta_{s, t}^{\prime}\right)\left(\mathbb{E}_{G}\left[x_{s} x_{t}\right]-\mathbb{E}_{G^{\prime}}\left[x_{s} x_{t}\right]\right) \leq \lambda(2)\binom{p}{2}$. This is because there are $\binom{p}{2}$ edges and correlation is at most 1 . Upper bound for $P\left(\left(\mathcal{R}^{p} \epsilon\right)^{c}\right)$ is from Lemma $10, G$ and $G_{\mathcal{D}=\emptyset}$ differ only in the edges present in \mathcal{D} and irrespective of the edges in \mathcal{D}, all node pairs in \mathcal{D} are $(2, \gamma)$ connected by definition of \mathcal{D}. Therefore, the second set of terms in (38) is bounded using Lemma 3.

Substituting the upper bound $\sqrt{39}$ in $\sqrt{27}$ and rearranging terms, we have the following lower bound for the number of samples needed when $c=\Omega\left(p^{3 / 4+\epsilon^{\prime}}\right), \epsilon^{\prime}>0$:

$$
\begin{align*}
& n \geq \frac{\binom{p}{2} H(c / p)(1+\epsilon)}{\left(2 \lambda\binom{p}{2}\left(2 b_{p}+2 r_{c}\right)+\frac{2 \lambda(p / 3)^{2}}{1+(\cosh (2 \lambda))^{\gamma}}\right)}\left(\frac{1}{1+\epsilon}-\frac{p_{\mathrm{avg}}}{1-a_{p}}-\frac{\log |S|}{\binom{p}{2} H(c / p)(1+\epsilon)}-\frac{1}{\binom{p}{2} H(c / p)(1+\epsilon)}\right) \\
& \stackrel{a}{\geq} \frac{H(c / p)(1+\epsilon)}{\left((4 \lambda p / 3) \exp \left(-(p / 36)+4 \exp \left(-\frac{c^{2} \epsilon^{2}}{36}\right)\right)+\frac{(4 / 9) \lambda}{1+(\cosh (2 \lambda))^{\gamma}}\right)}\left(\frac{1}{10}\left(\frac{1-\frac{11}{9} \epsilon}{1+\epsilon}\right)-\frac{p_{\text {avg }}}{1-a_{p}}-O(1 / p)\right) \\
& \stackrel{\epsilon=1 / 2}{\geq} \frac{H(c / p)(3 / 2)}{\left((4 \lambda p / 3) \exp \left(-(p / 36)+4 \exp \left(-\frac{c^{2}}{144}\right)\right)+\frac{(4 / 9) \lambda}{1+(\cosh (2 \lambda))^{\gamma}}\right)}\left(\frac{1}{40}-\frac{p_{\text {avg }}}{1-a_{p}}-O(1 / p)\right) \\
& \stackrel{H(c / p)(3 / 2)}{\stackrel{\text { large }}{\geq}} \frac{H}{\left((4 \lambda p / 3) \exp \left(-(p / 36)+4 \exp \left(-\frac{c^{2}}{144}\right)\right)+\frac{(4 / 9) \lambda}{1+(\cosh (2 \lambda))^{\gamma}}\right)}\left(\frac{1}{40}-2 p_{\text {avg }}-O(1 / p)\right) \\
& \stackrel{c=\Omega\left(p^{3 / 4}\right), \gamma=\frac{c^{2}}{6 p}}{\left((4 \lambda p / 3) \exp (-(p / 36))+4 \exp \left(-\frac{p^{\frac{3}{2}}}{144}\right)+\frac{(4 / 9) \lambda}{1+(\cosh (2 \lambda))^{\frac{c^{2}}{6 p}}}\right)} \frac{1}{40}\left(1-80 p_{\text {avg }}-O(1 / p)\right) \tag{41}
\end{align*}
$$

(a)- This is obtained by substituting all the bounds for b_{p} and r_{c} and $\log |S|$ from Section 10.2 .

From counting arguments in [1], we have the following lower bound for $G(p, c / p)$.
Lemma 13. [1] Let $G \sim G(p, c / p)$. Then the average error p_{avg} and the number of samples for this random graph class must satisfy:

$$
\begin{equation*}
n \geq \frac{\binom{p}{2}}{p} H(c / p)\left(1-\epsilon-p_{\mathrm{avg}}(1+\epsilon)\right)-O(1 / p) \tag{43}
\end{equation*}
$$

for any constant $\epsilon>0$.
Combining Lemma 13 with $\epsilon=1 / 2$ and 41, we have the result in Theorem 6

