
A LPMRF Gibbs Sampling Derivation

As described in the main paper, we develop an LPMRF Gibbs sampler by considering the most common
form of Multinomial sampling, namely by taking the sum of a sequence of L Categorical variables. Thus,
if w1,w2, . . . ,wL ∼ Categorical(θ) and x =

∑L
`=1w` ∼ Multinomial(θ|L), then the probability of any

particular sequence is merely the Multinomial probability scaled by the inverse of the multinomial coefficient:

Pr(w1,w2, . . . ,wL |θ) =

(
L

x1, x2, . . . , xp

)−1

Pr
Mult

(x =

L∑
`=1

w` |θ, L). (4)

In a similar way, we can implicitly derive the probability for a particular sequence of words whose sum is
distributed as an LPMRF:

Pr(w1,w2, . . . ,wL |θ,Φ) =

(
L

x1, x2, . . . , xp

)−1

Pr
LPMRF

(x =

L∑
`=1

w` |θ,Φ, L) (5)

= exp(θTx+ xT Φx− AL(θ,Φ)− log(L!)). (6)

To develop a Gibbs sampler, we simply need to compute the conditional probability of one of these words given
all the other words. Letting x−` ≡

∑
m 6=`wm, then x = x−` +w`. Thus, using the fact that the conditional

distribution is proportional to the joint distribution, we can derive the form of the conditional distribution:

Pr(w` = es |w1, . . . ,w`−1,w`+1, . . . ,wL,θ,Φ) (7)

∝ exp(θT (x−` +w`) + (x−` +w`)
T Φ(x−` +w`)) (8)

∝ exp(θs + 2Φsx−`). (9)

Thus, each word can be sampled given the state of all the other words thus producing an LPMRF Gibbs sampler.

B Derivation of LPMRF Log Partition Upper Bound

AL(θ,Φ) ≤ log
[(

sup
x∈XL

exp(xT Φx)

) ∑
x∈XL

exp(θTx−
∑

s log(xs!))
]

(10)
Hölder’s Inequality

= log
[(

sup
x∈XL

exp(xT Φx)

)
exp(L log(

∑
s exp(θs))− log(L!))

]
(11)

Derived from Multinomial

≤ log
[

exp(L2λΦ,1) exp(L log(
∑

s exp θs)− log(L!))
]

(12)
Convex Relaxation of XL

= L2λΦ,1 + Llog(
∑

s exp θs)− log(L!), (13)

where λΦ,1 is the maximum eigenvalue of Φ. See next section for derivation of Eqn. 11.

B.1 Derivation of Multinomial Partition Function

Lemma 1.
∑

x∈XL
exp(θTx−

∑p
s=1 log(xs!)) = exp(L log(

∑
s exp θs)− log(L!))

The derivation is based primarily on the fact that the above expression can be seen as the normalizing factor of
a reparameterized Multinomial (or as a scaled version of a standard Multinomial parameterization).
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Proof.∑
x∈XL

exp(θTx−
p∑

s=1

log(xs!))

=
∑

x∈XL

exp(θTx−
p∑

s=1

log(xs!) + ceTx− ceTx+ log(L!)− log(L!))

(where e = [1, 1, . . . , 1]T and c is a constant)

=
1

L!

∑
x∈XL

exp((θ − c)Tx−
p∑

s=1

log(xs!) + ceTx+ log(L!))

=
1

L!

∑
x∈XL

exp((θ − c)Tx−
p∑

s=1

log(xs!) + Lc+ log(L!))

=
1

L!
exp(cL)

∑
x∈XL

exp((θ − c)Tx−
p∑

s=1

log(xs!) + log(L!))

= exp(Lc− log(L!))
∑

x∈XL

exp((θ − c)Tx−
p∑

s=1

log(xs!) + log(L!))

(Letting c = log
( p∑

s

exp(θs)
)
)

= exp(Llog
( p∑

s

exp(θs)
)
− log(L!))

∑
x∈XL

exp((θ − log
( p∑

s

exp(θs)
)
)Tx−

p∑
s=1

log(xs!) + log(L!))

= exp(Llog
( p∑

s

exp(θs)
)
− log(L!))

∑
x∈XL

exp(log(ρ)Tx−
p∑

s=1

log(xs!) + log(L!))︸ ︷︷ ︸
Partition function of Multinomial = 1

(14)

= exp(Llog
( p∑

s

exp(θs)
)
− log(L!))

∑
x∈XL

L!∏p
s=1 xs!

p∏
s=1

ρxs
s︸ ︷︷ ︸

Partition function of Multinomial = 1

= exp(Llog
( p∑

s

exp(θs)
)
− log(L!))

where 14 is derived by showing that ρ = exp(θ−log
(∑p

s exp(θs)
)
) is a valid standard Multinomial parameter

vector because the vector is positive and sums to 1:
p∑

t=1

exp
(
θt − log

( p∑
s

exp(θs)
))

=
1∑p

s=1 exp(θs)

p∑
t=1

exp(θt) =

∑p
t=1 exp(θt)∑p
s=1 exp(θs)

= 1.
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C Example of Log Partition Estimation
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Figure 5: Example of log partition estimation for all values of L.
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