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A Dirty Model for Multiple Sparse Regression
Ali Jalali, Pradeep Ravikumar, and Sujay Sanghavi, Member

Abstract—The task of sparse linear regression consists of
finding an unknown sparse vector from linear measurements.
Solving this task even under “high-dimensional” settings, where
the number of samples is fewer than the number of variables, is
now known to be possible via methods such as the LASSO. We
consider the multiple sparse linear regression problem, where
the task consists of recovering several related sparse vectors
at once. A simple approach to this task would involve solving
independent sparse linear regression problems, but a natural
question is whether one can reduce the overall number of samples
required by leveraging partial sharing of the support sets, or non-
zero patterns, of the signal vectors. A line of recent research has
studied the use of `1/`q norm block-regularizations with q > 1
for such problems. However, depending on the level of sharing,
these could actually perform worse in sample complexity when
compared to solving each problem independently.

We present a new “adaptive” method for multiple sparse linear
regression that can leverage support and parameter overlap when
it exists, but not pay a penalty when it does not. We show
how to achieve this using a very simple idea: decompose the
parameters into two components and regularize these differently.
We show, theoretically and empirically, that our method strictly
and noticeably outperforms both `1 or `1/`q methods, over the
entire range of possible overlaps (except at boundary cases, where
we match the best method), even under high-dimensional scaling.

Index Terms—Multi-task Learning, High-dimensional Statis-
tics, Multiple Regression.

I. INTRODUCTION: MOTIVATION AND SETUP

High-dimensional scaling. In fields across science and engi-
neering, we are increasingly faced with problems where the
number of variables or features p is larger than the number
of observations n. For any hope of statistically consistent
estimation under such high-dimensional scaling, it becomes
vital to leverage any potential structure in the problem such as
sparsity (e.g. in compressed sensing [1] and LASSO [2]), low-
rank structure [3, 4], or sparse graphical model structure [5].
It is in such high-dimensional contexts in particular that multi-
task learning [6] could be most useful. Here, multiple tasks
share some common structure such as sparsity, and estimating
these tasks jointly by leveraging this common structure could
be more statistically efficient.
Block-sparse Multiple Regression. A common multiple task
learning setting, and which is the focus of this paper, is that of
multiple regression, where we have r > 1 response variables,
and a common set of p features or covariates. The r tasks could
share certain aspects of their underlying distributions, such as
common variance, but the setting we focus on in this paper
is where the response variables have shared sparse structure:

The authors are with the Departments of Electrical and Computer
Engineering (Jalali and Sanghavi) and Computer Science (Ravikumar),
The University of Texas at Austin, Austin, TX 78712 USA email:
(alij@mail.utexas.edu; pradeepr@cs.utexas.edu; sanghavi@mail.utexas.edu).
Preliminary results were published in NIPS 2010.

the index set of relevant features for each task is individually
sparse; but there is also a large overlap of these relevant
features across the different regression problems. Such “shared
sparsity” arises in a variety of contexts; most applications
of sparse signal recovery in contexts ranging from graphical
model learning, kernel learning, and function estimation have
natural extensions to the shared-sparse setting [5, 7, 8, 9].

It is conceptually useful to collate the multiple regression
parameters into a matrix, with columns corresponding to tasks,
and the rows corresponding to features. Having shared sparse
structure then corresponds to this matrix being largely “block-
sparse,” where due to shared sparsity structure most rows are
either exactly zero, or with a few non-zero entries, there are
only a few rows with a large number of non-zero entries. A line
of recent research in this setting has focused on `1/`q norm
regularizations, for q > 1, which encourage the parameter
matrix to be strictly row-sparse, starting from the work by
Yuan and Lin [10] who termed the case with q = 2 as “Group
Lasso”. Examples of other recent results include those using
the `1/`∞ norm [11, 12, 13], as well as the `1/`2 norm [10,
14, 15].
Our Model. Such block-regularization is “heavy-handed” in
two ways. They strictly encourage block or row-sparsity, so
that any row is either exactly zero or has all its entries
being non-zero. This assumes that all relevant features are
exactly shared, and hence suffers under settings, arguably more
realistic, where each task depends on features specific to itself
in addition to the ones that are common. The second concern
with such block-sparse regularizers is that the `1/`q norms
for q > 2 can be shown to encourage the entries in the non-
sparse rows taking nearly identical values. Thus we are far
away from the original goal of multitask learning: not only do
the set of relevant features have to be exactly the same, but
their values have to as well. Indeed recent research into such
regularized methods [13, 15] caution against the use of block-
regularization in regimes where the supports and values of
the parameters for each task can vary widely. Since the true
parameter values are unknown, that would be a worrisome
caveat.

We thus ask the question: can we learn multiple regression
models by leveraging whatever overlap of features there exist,
and without requiring the parameter values to be near iden-
tical? Indeed this is an instance of a more general question
on whether we can estimate statistical models where the data
may not fall cleanly into any one structural bracket (sparse,
block-sparse and so on). With the explosion of complex and
dirty high-dimensional data in modern settings, it is vital to
investigate estimation of corresponding dirty models, which
might require new approaches to biased high-dimensional
estimation. In this paper we take a first step, focusing on such
dirty models for a specific problem: simultaneously sparse
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multiple regression.
Our approach uses a simple idea: while any one structure

might not capture the data, a superposition of structural classes
might. Our method thus searches for a parameter matrix that
can be decomposed into a row-sparse matrix (corresponding
to the overlapping or shared features) and an elementwise
sparse matrix (corresponding to the non-shared features). As
we show both theoretically and empirically, with this simple
fix we are able to leverage any extent of shared features, while
allowing disparities in support and values of the parameters, so
that we are always better than both the Lasso or block-sparse
regularizers, at times remarkably so.

The rest of the paper is organized as follows: In Section 2,
we present basic definitions and the setup of the problem.
We then discuss the main results of the paper in Section
3. Experimental results and simulations are demonstrated in
Section 4.

Notation: For any matrix M , we denote its jth row as mj ,
and its k-th column as m(k). The set of all non-zero rows
(i.e. all rows with at least one non-zero element) is denoted
by RowSupp(M) and its support by Supp(M). Also, for
any matrix M , let ‖M‖1,1 :=

∑
j,k |m

(k)
j |, i.e. the sums of

absolute values of the elements, and ‖M‖1,∞ :=
∑
j ‖mj‖∞

where, ‖mj‖∞ := maxk |m(k)
j |.

II. PROBLEM SET-UP AND OUR METHOD

Multiple linear regression: We consider the following stan-
dard multiple linear regression model:

y(k) = X(k)θ̄(k) + w(k), k = 1, . . . , r, (1)

where, y(k) ∈ Rn is the response for the k-th task, regressed
on the design matrix X(k) ∈ Rn×p (possibly different across
tasks), while w(k) ∈ Rn is the noise vector. We assume each
w(k) is drawn independently from N (0, σ2). The total number
of tasks or target variables is r, the number of features is
p, while the number of samples we have for each task is n.
For notational convenience, we collate these quantities into
matrices Y ∈ Rn×r for the responses, Θ̄ ∈ Rp×r for the
regression parameters and W ∈ Rn×r for the noise.

Our Model: In this paper we are interested in the setting
where the true parameter Θ̄ from data {y(k), X(k)} has
partially shared-sparsity, as detailed in the introduction.
In particular, for any fixed integer d, suppose we denote
rows of Θ̄ with greater than or equal to d non-zero entries,
corresponding to features shared by several tasks, as “shared
rows”; and those rows with less than d non-zero entries,
corresponding to those features which are relevant for some
tasks but not all, as “non-shared rows.” The latter includes
rows with all zero entries, corresponding to those features
that are not relevant to any task. The true parameter can
then be split as Θ̄ = B̄ + S̄, where, B̄ contains the shared
rows and S̄ contains non-shared rows, with respect to the
integer d. We are interested in estimators (B̌, Š) that separate
the shared and non-shared rows, and enjoy the following
statistical guarantees.

Support recovery: We say an estimator (B̂, Ŝ) successfully
recovers the true support if Supp(B̂+Ŝ) = Supp(Θ̄). We note
that this is stronger than merely recovering the row-support
of Θ̄, which is union of its supports for the different tasks.
Support recovery is often also referred to as variable selection.

Error bounds: We are also interested in providing bounds on
the element-wise `∞ norm error of the estimator Θ̂ = B̌ + Š
defined as

‖Θ̂− Θ̄‖∞ = max
j=1,...,p

max
k=1,...,r

∣∣∣Θ̂(k)
j − Θ̄

(k)
j

∣∣∣ .
Our Method: We model the unknown parameter Θ as a super-
position of a block-sparse parameter matrix B (corresponding
to the features shared across many tasks) and a sparse pa-
rameter matrix S (corresponding to the features shared across
few tasks). We thus have two parameter matrices, B and S,
and we regularize these two matrices differently, encouraging
block-structured row-sparsity in B, and elementwise sparsity
in S. This can be contrasted with the “clean” standard models
that use a single parameter matrix, and either use just block-
sparse regularizations [13, 15] or just elementwise sparsity
regularizations [2, 16]. Interestingly, as we will see in the
main results, by explicitly allowing to have both block-sparse
and elementwise sparse components (see Algorithm II), we
are able to outperform both classes of these “clean models”,
for all regimes of the parameter matrix Θ̄. Notice that our
algorithm has a post processing step that combines the rows
of Ŝ and B̂ on the row support of B̂. This post processing
does not change the sum of the two, i.e., Θ̂ = B̂+ Ŝ = B̌+ Š.

III. MAIN RESULTS AND THEIR CONSEQUENCES

We now provide precise statements of our main results. A
number of recent results have shown that the Lasso [2, 16] and
`1/`∞ block-regularization [13] methods succeed in model
selection, i.e., recovering signed supports with controlled error
bounds under high-dimensional scaling regimes. Our first two
theorems extend these results to our M-estimator. In Theorem
1, we consider the case of deterministic design matrices X(k),
and provide sufficient conditions guaranteeing signed support
recovery, and elementwise `∞ norm error bounds. In Theorem
2, we specialize this theorem to the case where the rows of
the design matrices are random from a general zero mean
Gaussian distribution: this allows us to provide scaling on the
number of observations required in order to guarantee signed
support recovery and bounded elementwise `∞ norm error.

Our third result is the most interesting in that it explicitly
quantifies the performance gains of our method vis-a-vis Lasso
and the `1/`∞ block-regularization method. Since this entailed
deriving precise constants underlying earlier theorems, and a
correspondingly more delicate analysis, we follow Negahban
and Wainwright [13] and focus on the case where there are
two-tasks (i.e. r = 2), and where we have standard Gaussian
design matrices as in Theorem 2. Further, while each of two
tasks depends on s features, only a fraction α of these are
common. It is then interesting to see how the behaviors of
the different regularization methods vary with the extent of
overlap α.
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Algorithm 1 Dirty Multitask Learner

Pick λs and λb such that bλsλb c = d and λs
λb

is not integer.

Solve the following convex optimization problem:

(Ŝ, B̂) ∈ arg min
S,B

1

2n

r∑
k=1

∥∥∥y(k) −X(k)
(
s(k) + b(k)

)∥∥∥2
2

+ λs‖S‖1,1 + λb‖B‖1,∞. (2)

For all j ∈ RowSupp(B̂), let B̌j = B̂j + Ŝj .

Let Š = B̂ + Ŝ − B̌.

Output (B̌, Š).

Comparisons: Negahban and Wainwright [13] show that there
is actually a “phase transition” in the scaling of the probability
of successful signed support-recovery with the number of
observations. Consider the specific rescaling of the sample-size
θLasso(n, p, α) := n

s log(p−s) . Then Wainwright [16] show that
when the rescaled number of samples scales as θLasso > 2+δ
for any δ > 0, then Lasso succeeds in recovering the signed
support of all columns with probability converging to one.
But when the sample size scales as θLasso < 2 − δ for
any δ > 0, Lasso fails with probability converging to one.
For the `1/`∞-regularized multiple linear regression, define a
similar rescaled sample size θ1,∞(n, p, α) := n

s log(p−(2−α)s) .
Then as Negahban and Wainwright [13] show there is again
a transition in probability of success from near zero to near
one, as the rescaled sample size of θ1,∞ is either less or
greater than (4 − 3α). These phase transitions provide a
natural means for comparing competing M-estimators. Thus,
if θLasso(n, p, α) < θ1,∞(n, p, α), which can be shown to be
equivalent to α < 2/3, the phase transition for Lasso occurs
at a smaller sample size than the `1/`∞ regularized method,
so that the Lasso can be seen to be the more efficient method.
Note that α < 2/3 corresponds to the “less sharing” setting,
so that it is not surprising that Lasso would perform better.
Conversely, when θLasso(n, p, α) > θ1,∞(n, p, α), equivalent
to α > 2/3 and which corresponds to the “more sharing”
setting, the `1/`∞ regularized method performs better in that
its phase transition occurs at a smaller sample size.

As we show in our third theorem, the phase transition for our
method occurs when the rescaled sample size θ1,∞ is equal to
(2−α), which is strictly before either the Lasso or the `1/`∞
regularized method except for the boundary cases: α = 0,
i.e. the case of no sharing, where we match Lasso, and for
α = 1, i.e. full sharing, where we match `1/`∞. Everywhere
else, we strictly outperform both methods. Figure III shows the
empirical performance of each of the three methods; as can
be seen, they agree very well with the theoretical analysis.
(Further details in the experiments Section IV).

A. Sufficient Conditions for Deterministic Designs

We first consider the case where the design matrices X(k)

for k = 1, · · ·, r are deterministic, and start by specifying
the assumptions we impose on the model. We note that

similar sufficient conditions for the deterministic X(k)’s
case were imposed in papers analyzing Lasso [16] and
block-regularization methods [13, 15].

A0 Column Normalization: ‖X(k)
j ‖2 ≤

√
2n for all

j = 1, . . . , p and k = 1, . . . , r.

A1 Incoherence Conditions:

γb := 1−max
j∈Uc

r∑
k=1

∥∥∥∥〈X(k)
j , X

(k)
Uk

(〈
X

(k)
Uk , X

(k)
Uk

〉)−1
〉∥∥∥∥

1

> 0,

where, Uk denotes the support of the k-th column of Θ̄, and
U =

⋃
k Uk denotes the union of the supports of all tasks, and

〈A,B〉 = ATB. We also require

γs := 1− max
1≤k≤r

max
j∈Uc

k

∥∥∥∥〈X(k)
j , X

(k)
Uk

(〈
X

(k)
Uk , X

(k)
Uk

〉)−1
〉∥∥∥∥

1

> 0.

A2 Minimum Curvature Condition:

Cmin := min
1≤k≤r

λmin

(
1

n

〈
X

(k)
Uk , X

(k)
Uk

〉)
> 0,

where, λmin(·) is the minimum eigenvalue of the matrix.

Also, define Dmax := max
1≤k≤r

∥∥∥∥∥
(

1

n

〈
X

(k)
Uk , X

(k)
Uk

〉)−1
∥∥∥∥∥
∞,1

. As a

consequence of A2, we have that Dmax is finite.

A3 Regularizers: We require the regularization parameters
satisfy

A3-1 λs >
2(2−γs)σ

√
log(pr)

γs
√
n

.

A3-2 λb >
2(2−γb)σ

√
log(pr)

γb
√
n

.
A3-3 1 ≤ λb

λs
≤ r and λb

λs
is not an integer (See Lemmas 2

and 3 for intuition on these conditions).

Theorem 1. Consider the multiple linear regression model
in (1), and which satisfies assumptions A0-A3. Suppose we
obtain estimate Θ̂ = B̌ + Š from Algorithm AlgDirtyModel.
Then, with probability at least 1 − c1 exp(−c2n), we are
guaranteed that the convex program (2) has a unique optimum,
and that
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Fig. 1. Probability of success in recovering the true signed support using dirty model, Lasso and `1/`∞ regularizer. For a 2-task problem,
the probability of success for different values of feature-overlap fraction α is plotted. As we can see in the regimes that Lasso is better than,
as good as and worse than `1/`∞ regularizer ((a), (b) and (c) respectively), the dirty model outperforms both of the methods, i.e., it requires
less number of observations for successful recovery of the true signed support compared to Lasso and `1/`∞ regularizer. Here s = b p

10
c

always.

(a) the estimate has no false inclusions, and has bounded `∞
norm error:

Supp(Š) ⊆ Supp(S̄), and

RowSupp(B̌) ⊆ RowSupp(B̄), and

‖Θ̂− Θ̄‖∞,∞ ≤

√
4σ2 log (pr)

nCmin
+ λsDmax︸ ︷︷ ︸

bmin

.

(b) The estimate has no false exclusions, i.e.,
sign(Supp(Š)) = sign

(
Supp(S̄)

)
and RowSupp(B̌) =

RowSupp(B̄) with the property that if B̄
(k)
j 6= 0,

then sign(B̌
(k)
j ) = sign

(
B̄

(k)
j

)
, provided that

min
(j,k)∈Supp(Θ̄)

∣∣∣θ̄(k)
j

∣∣∣ > bmin.

The positive constants c1, c2 depend only on γs, γb, λs, λb
and σ, but are otherwise independent of n, p, r, the problem
dimensions of interest.

Remark: Condition (a) guarantees that the estimate will have
no false inclusions; i.e. all included features will be relevant.
If in addition, we require that it have no false exclusions
and that recover the support exactly, we need to impose the
assumption in (b) that the non-zero elements are large enough
to be detectable above the noise.

B. General Gaussian Designs

In many applications, the design matrices consist of samples
from a Gaussian ensemble (e.g. in Gaussian graphical model
structure learning). Suppose that for each task k = 1, . . . , r
the design matrix X(k) ∈ Rn×p is such that each row
X

(k)
i ∈ Rp is a zero-mean Gaussian random vector with

covariance matrix Σ(k) ∈ Rp×p, and is independent of every
other row. Let Σ

(k)
V,U ∈ R|V|×|U| be the sub-matrix of Σ(k)

with corresponding rows to V and columns to U . We require
these covariance matrices to satisfy the following conditions:

C1 Incoherence Conditions:

γb := 1−max
j∈Uc

r∑
k=1

∥∥∥∥Σ
(k)
j,Uk

(
Σ

(k)
Uk,Uk

)−1
∥∥∥∥

1

> 0

and

γs := 1− max
1≤k≤r

max
j∈Uc

k

∥∥∥∥Σ
(k)
j,Uk

(
Σ

(k)
Uk,Uk

)−1
∥∥∥∥

1

> 0 .

C2 Minimum Curvature Condition:

Cmin := min
1≤k≤r

λmin
(

Σ
(k)
Uk,Uk

)
> 0

and let Dmax :=

∥∥∥∥(Σ
(k)
Uk,Uk

)−1
∥∥∥∥
∞,1

.

These conditions are analogous to the sufficient conditions
A1-A2 in the previous theorem. Those earlier conditions
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were imposed on the design matrices themselves, whereas
conditions C1-C2 are imposed on the covariance matrix of
the (randomly generated) rows of the design matrix.

C3 Regularizers: Defining s := maxk |Uk|, we require the
regularization parameters satisfy

C3-1 λs ≥
(4σ2Cmin log(pr))

1/2

γs
√
nCmin−

√
2s log(pr)

.

C3-2 λb ≥
(4σ2Cminr(r log(2)+log(p)))

1/2

γb
√
nCmin−

√
2sr(r log(2)+log(p))

.

C3-3 1 ≤ λb
λs
≤ r and λb

λs
is not an integer.

Theorem 2. Suppose assumptions C1-C3 hold, and that the
number of samples scale as

n > max

(
2s log(pr)

Cminγ2s
,

2sr
(
r log(2) + log(p)

)
Cminγ2b

)
.

Suppose we obtain estimate Θ̂ = B̌ + Š from our algorithm.
Then, with probability at least

1−c1 exp (−c2 (r log(2) + log(p)))−c3 exp(−c4 log(rs))→ 1,

for some positive numbers c1−c4, we are guaranteed that the
convex program (2) has a unique optimum and

(a) The estimate has no false inclusions, and has bounded
`∞ norm error so that

Supp(Š) ⊆ Supp(S̄),

RowSupp(B̌) ⊆ RowSupp(B̄),

‖Θ̂− Θ̄‖∞,∞ ≤
√

50σ2 log(rs)

nCmin
+ λs

( 4s

Cmin
√
n

+Dmax
)

︸ ︷︷ ︸
gmin

.

(b) The estimate has no false exclusions, i.e.,
sign(Supp(Š)) = sign

(
Supp(S̄)

)
and RowSupp(B̌) =

RowSupp(B̄) with the property that if B̄
(k)
j 6= 0,

then sign(B̌
(k)
j ) = sign

(
B̄

(k)
j

)
, provided that

min
(j,k)∈Supp(Θ̄)

∣∣∣θ̄(k)
j

∣∣∣ > gmin.

C. Quantifying the gain for 2-Task Gaussian Designs
This is one of the most important results of this paper. Here,

we perform a more delicate and finer analysis to establish
precise quantitative gains of our method. We focus on the
special case where r = 2 and the design matrix has rows
generated from the standard Gaussian distributionN (0, In×n).
As we will see both analytically and experimentally, our
method strictly outperforms both Lasso and `1/`∞-block-
regularization over for all cases, except at the extreme end-
points of no support sharing (where it matches that of Lasso)
and full support sharing (where it matches that of `1/`∞). We
now present our analytical results; the empirical comparisons
are presented next in Section IV. The results will be in terms
of a particular rescaling of the sample size n as

θ(n, p, s, α) :=
n

(2− α)s log (p− (2− α)s)
.

We also require that the regularizers satisfy

F1 λs >

(
4σ2(1−

√
s/n)(log(2) + log(p− (2− α)s))

)1/2

√
n−
√
s− ((2− α) s (log(2) + log(p− (2− α)s)))1/2

.

F2 λb >

(
8σ2(1−

√
s/n)(2 log(2) + log(p− (2− α)s))

)1/2

√
n−
√
s− ((2− α) s (2 log(2) + log(p− (2− α)s)))1/2

.

F3 λb
λs

=
√

2.

Notice that F1 and F2 only impose lower-bounds on λb
and λs. Hence, while F3 fixes the ratio of the two to be

√
2,

there are always infinitely many pairs (λb, λs) that satisfy these
conditions.

We also note that F3 is not essential for the analysis, but
it provides the tightest bounds. In the proofs, we actually
analyze the case with any general value for the ratio κ = λb

λs
,

and provide the phase transition threshold for the number
of samples in terms of this ratio; please see Theorem 4 on
page 15. While the sample complexity threshold depends in
a complicated way on the ratio, as we show there, it is
minimized when κ =

√
2. However, in practice, when the

assumptions in the theorem need not hold, or when we are
interested in prediction error in contrast to support recovery
as in Theorem 3, it might be useful to search for different
ratios. The next theorem provides a sharp transition for the
two task case with these assumptions.

Theorem 3. Consider a 2-task regression problem (n, p, s, α),
where the design matrix has rows generated from the standard
Gaussian distribution N (0, In×n). Suppose

max
j∈B∗

∣∣ |Θ∗(1)j | − |Θ∗(2)j |
∣∣ ≤ cλs,

where, B∗ is the submatrix of Θ∗ with rows where both entries
are non-zero and c is a constant specified in Lemma 10. Then
the estimate Θ̂ = B̌ + Š of the problem (2) satisfies the
following:

(Success). Suppose the regularization coefficients satisfy
F1− F3. Further, assume that the number of samples
scales as θ(n, p, s, α) > 1. Then, with probability at least
1 − c1 exp(−c2n) for some positive numbers c1 and c2,
we are guaranteed that sign

(
Supp(Θ̂)

)
= sign

(
Supp(Θ̄)

)
and `∞ error bound conditions (a-b) in Theorem 2 are hold.

(Failure). If θ(n, p, s, α) < 1 there is no
solution (B̌, Š) for any choices of λs and λb
such that sign

(
Supp(Š)

)
= sign

(
Supp(S̄)

)
and

RowSupp(B̌) = RowSupp(B̄) with the property that
if B̄(k)

j 6= 0 then sign
(
B̌

(k)
j

)
= sign

(
B̄

(k)
j

)
.

Remark: The assumption on the gap
∣∣∣ ∣∣∣Θ∗(1)

j

∣∣∣− ∣∣∣Θ∗(2)
j

∣∣∣ ∣∣∣ ≤ cλs
requires that most values of Θ∗ to be balanced on both tasks
on the shared support. But as we show in a more general
theorem (Theorem 4) in Section VI-C, even in the case where
the gap is large, the dependence of the sample scaling on the
gap is quite weak.
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IV. SIMULATION RESULTS

In this section, we provide some simulation results. First,
using our synthetic data set, we investigate the consequences
of Theorem 3 when we have r = 2 tasks to learn. As we
see, the empirical result verifies our theoretical guarantees.
Next, we apply our method to a real dataset: a hand-written
digit classification dataset with r = 10 tasks (equal to the
number of digits 0 − 9). For this dataset, we show that our
method outperforms both LASSO and `1/`∞ practically. For
each method, the parameters are chosen via cross-validation;
see supplemental material for more details.

A. Synthetic Data Simulation

Consider a two-task regression model, so that r = 2,
as discussed in Theorem 3. As detailed in this section, we
compare the performance our dirty M-estimator, `1/`∞ reg-
ularization based method, and LASSO in recovering the true
signed support.
Data Generation: We ran the algorithms for multiple
instances of the parameters (n, p, s, α). We used three different
number of features p ∈ {128, 256, 512}, and five different
values of the overlap ratio α ∈ {0.05, 0.3, 23 , 0.8, 0.9}. For
different values of p, we set s = b0.1pc, and for different
values of (s, p, α), we let n = c s log(p − (2 − α)s) for
different values of c. We generated the parameter matrix
in two steps. We first generated a random sign matrix
Θ̃∗ ∈ Rp×2 (each entry is either 0, 1 or −1) with column
support size s and row support size (2 − α)s as required by
Theorem 3. We then multiplied each row by a real random
number with magnitude greater than the minimum required
for sign support recovery by Theorem 3. We generate two sets
of the matrix tuple (X(1), X(2),W ); we used one of them
for training and the other for cross validation, subscripted
Tr and Ts, respectively. Each entry of the noise matrices
WTr,WTs ∈ Rn×2 is drawn independently according to
N (0, σ2) where σ = 0.1. Each row of a design matrix
X

(k)
Tr , X

(k)
Ts ∈ Rn×p is sampled, independent of any other

rows, from N (0, I2×2) for all k = 1, 2. Having X(k), ¯Theta
and W in hand, we can calculate YTr, YTs ∈ Rn×2 using the
model y(k) = X(k)θ(k) + w(k) for all k = 1, 2 for both train
and test set of variables.

Coordinate Descent Algorithm: Given the generated data
X

(k)
Tr for k = 1, 2 and YTr in the previous section, we

solve the M-estimation problem in (2) to obtain matrices
B̂ and Ŝ. To numerically solve the problem, we use the
coordinate descent algorithm outlined in Appendix D.
The co-ordinate descent algorithm takes as input the tuple
(X

(1)
Tr , X

(2)
Tr , YTr, λs, λb, ε, B, S) and outputs a matrix pair

(B̂, Ŝ) as the solution of the M-estimation problem (2). The
inputs (B,S) are initial guesses and can be set to zero.
However, when we search over the regularizer coefficients,
we can use the M-estimate for the previous set of coefficients
(λb, λs) as a good initial guess for the corresponding
M-estimation problem with the next set of coefficients
(λb + ξ, λs + ζ). The parameter ε is the stopping criterion
threshold of the co-ordinate descent algorithm, which is set

to iterate until the relative update change of the objective
function is less than ε.

Choosing penalty regularizer coefficients: Our optimality
conditions entail that 1 > λs

λb
> 1

2 . Thus, given one of the
regularization coefficients, the search-range for the other is

bounded and known. We set λb = c
√

rlog(p)
n and search for

the constant c over a logarithmic partition of the interval
[0.01, 100]. For any pair (λb, λs), we first compute our
M-estimate (B̂, Ŝ) from the coordinate descent algorithm run
over the training data; and then compute the unregularized
parameter estimate Θ̂λ, that minimizes the un-regularized
squared error loss function over the training data, but with
support restricted to that of B̂ + Ŝ. We then pick the pair
(λb, λs) for which the corresponding parameter Θ̂λ has the
least unregularized loss over the test data {YTs, X

(k)
Ts }k=1,2.

Finally we let Θ̂ = B̂ + Ŝ for the M-estimate (B̂, Ŝ)
corresponding to the optimal (λb, λs).

Performance Analysis: For any instance of the problem
(n, p, s, α), we generate 100 batches of samples from the
corresponding problem instance. We then solve these problem
instances using our “dirty” M-estimator, the `1/`∞ regularized
method, and LASSO, where we set the penalty regularizer
coefficients independently for each one of these programs via
cross validation. For any method, if the recovered matrix Θ̂
has the same sign support as the true Θ̄, then we count it
as a success, or as a failure otherwise (note that even if one
element has different sign, we count it as failure).

As Theorem 3 predicts and Fig III in Section III shows, the
number of observations rescaled as n

s log(p−(2−α)s) is the key
control parameter driving the probability of success of our
method, since the curves for different problem sizes p stack
on the top of each other. It can also be seen that the number of
observations required by our method for true signed support
recovery is always less than both the LASSO and the `1/`∞
regularized method. Fig 1(a) shows the probability of success
for the case α = 0.3, where LASSO is better than the `1/`∞
regularized method, while our dirty M-estimator outperforms
both methods. Fig 1(b) shows the case with α = 2

3 , where
the LASSO and the `1/`∞ regularized method performs the
same, but our method require almost 33% less observations
for the same probability of success. As α grows toward 1,
e.g. α = 0.8 as shown in Fig 1(c), `1/`∞ regularization
performs better than the LASSO. Our M-estimator performs
better than both methods in this case as well.

Scaling Verification: To verify that the phase transition
threshold changes linearly with α as predicted by Theorem
3, we plot the phase transition threshold versus α. For five
different values of α ∈ {0.05, 0.3, 23 , 0.8, 0.95} and three
different values of p ∈ {128, 256, 512}, we first compute
the phase-transition sample-size n as the point where
the probability of success in recovery of signed support
exceeds 50% (which we find by interpolating the closest two
points). In Fig 2, we then plot the rescaled phase-transition
sample-size θ = n

s log(p−(2−α)s) vs α, for three methods;
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Fig. 2. Verification of the result of the Theorem 3 on the behavior of
phase transition threshold by changing the parameter α in a 2-task
(n, p, s, α) problem for our method, LASSO and `1/`∞ regularizer.
The y-axis is n

s log(p−(2−α)s)
, where n is the number of samples at

which threshold was observed. Here s = b p
10
c. Our method shows

a gain in sample complexity over the entire range of sharing α. The
pre-constant in Theorem 3 is also validated.
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Fig. 3. Phase transition threshold by changing the parameter α in
a 10-task (n, p, s, α) problem for our method, LASSO and `1/`∞
regularizer. Here, we assume that each of 10 tasks has a support of
size s and α portion of that support is shared across all 10 tasks and
the rest is distributed randomly. The y-axis is n

s log(p)
, where n is the

number of samples at which threshold was observed. Here s = b p
10
c.

Our method shows a gain in sample complexity over the entire range
of sharing α.

our M-estimator, LASSO and the `1/`∞ regularized method.
As the figure shows, the phase transition threshold for our
method is always lower than the phase transition for the other
two methods.

10-task Experiment: Although we do not have a theoretical
analysis for sharp phase transitions in the problem beyond
r = 2, we now present some empirical observations of the
behavior of our method for r > 2. We run the same experiment
as the earlier two task case for this 10-task case, where we
assume each task has a support of size s and α portion of this
support is shared across all tasks. The non-shared portion of
the task supports is distributed randomly for each task. Fig 3
shows the phase transition for different methods. It can be seen
that our algorithm outperforms other methods for all regimes
of α.

Fig. 4. An instance of images of the ten digits extracted from the dataset

B. Handwritten Digits Dataset

We use a handwritten digit dataset to illustrate the
performance of our method. According to the description of
the dataset, this dataset consists of features of handwritten
numerals (0-9) extracted from a collection of Dutch utility
maps [17]. This dataset has been used in a number of papers
[18, 19] as a reliable dataset for handwriting recognition
algorithms.

Structure of the Dataset: The dataset has 200 handwritten
instances of the digits 0-9, so that there are 2000 digit
instances in total. Each instance of each digit is scanned
to an image of the size 30 × 48 pixels. Instead of the raw
image, the dataset provides six different classes of features
drawn from the full resolution image of each digit. A total
of 649 features are provided for each instance of each digit.
The information about each class of features is provided in
Table I. The combined set of handwritten images of record
number 100 are shown in Fig 4 (ten images are concatenated
together with space between any two).

Fitting the dataset to our model: We have 649 features for
each of 200 instance of each digit. We need to learn K = 10
different tasks corresponding to ten different digits. To make
the associated numbers of features comparable, we shrink the
dynamic range of each feature to the interval −1 and 1.

Out of the 200 samples provided for each digit, we select
n ≤ 200 samples for the training dataset. We then follow the
typical binary classification setup for this problem. For any
0 ≤ k ≤ 9, let X(k) = X ∈ R10n×649 be the matrix whose
first n rows correspond to the features of the digit 0, the second
n rows correspond to the features of the digit 1 and so on. Let
the vector y(k) ∈ {0, 1}10n be the vector such that y(k)j = 1 if
and only if the jth row of the feature matrix X corresponds
to the digit k.

We then solve the M-estimation problem (2) to get a
block-sparse matrix B̂ ∈ R649×10, and a sparse matrix
Ŝ ∈ R649×10. Given any feature vector x ∈ R649 extracted
from the image of a handwritten digit, we then classify the
image as digit k∗ = arg maxk∈{0,...,9}[x

T
(
B̂ + Ŝ

)
]k. We

set the regularization parameters λb and λs as before. We
first solve (2) for each pair of regularization parameters, and
then minimize the unregularized loss function on the support
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Feature Size Type Dynamic Range
1 Pixel Shape (15× 16) 240 Integer 0-6
2 2D Fourier Transform Coefficients 74 Real 0-1
3 Karhunen-Loeve Transform Coeficients 64 Real -17:17
4 Profile Correlation 216 Integer 0-1400
5 Zernike Moments 46 Real 0-800

3 Integer 0-6
6 Morphological Features 1 Real 100-200

1 Real 1-3
1 Real 1500-18000

TABLE I
SIX DIFFERENT CLASSES OF FEATURES PROVIDED IN THE DATASET. THE DYNAMIC RANGES ARE APPROXIMATE NOT EXACT. THE DYNAMIC RANGE OF

DIFFERENT MORPHOLOGICAL FEATURES ARE COMPLETELY DIFFERENT. FOR THOSE 6 MORPHOLOGICAL FEATURES, WE PROVIDE THEIR DIFFERENT
DYNAMIC RANGES SEPARATELY.

recovered by that choice of parameters. We then evaluate
the prediction error using this reoptimized solution over the
test set. Since we have 10 tasks, we search for λs

λb
∈
[

1
10 , 1

]
and let λb = c

√
2log(649)

n ≈ 5c√
n

, where we search over the
constant c in the interval [0.01, 10]

Performance Analysis: Table II shows the results of our
analysis for different sizes of the training set n. We measure
the classification error on the test set for each digit to get
the error vector of length ten. We then find the average
and variance of the error vector to show how the error is
distributed over all tasks. We compare our method with the
`1/`∞ reguralized method and LASSO.

V. PROOF OF MAIN RESULTS

In this section, we first recall some notations and definitions,
and then provide a proof outline of all three theorems, which
follow along similar lines. We then follow with the detailed
proofs in the next Section VI.

A. Definitions and Preliminaries

We first collate the terms and notation we use throughout
the proofs.

General Notations: For a vector v, the norms `1, `2 and
`∞ are denoted as ‖v‖1 =

∑
k

∣∣v(k)∣∣, ‖v‖2 =

√∑
k

∣∣v(k)∣∣2
and ‖v‖∞ = maxk

∣∣v(k)∣∣, respectively. Also, for a matrix
Q ∈ Rp×r with rows denoted by q(i), the norm `ζ/`ρ
is denoted as ‖Q‖ρ,ζ = ‖

(
‖q(1)‖ζ , · · ·, ‖q(p)‖ζ

)
‖ρ. The

maximum singular value of Q is denoted as λmax(Q). For
a matrix X ∈ Rn×p and a set of indices U ⊆ {1, · · ·, p},
the matrix XU ∈ Rn×|U| represents the sub-matrix of X
consisting of Xj’s where j ∈ U .

Sparse Matrix Notations: For any matrix S, define
Supp(S) = {(j, k) : s

(k)
j 6= 0}, and let Us = {S ∈

Rp×r : Supp(S) ⊆ Supp(S∗)} be the subspace of matrices
whose support is the subset of the matrix S∗. The orthogonal
projection to the subspace Us can be defined as follows:

(PUs(S))j,k =

{
s
(k)
j (j, k) ∈ Supp(S∗)

0 ow.

We can define the orthogonal complement space of Us
to be U cs = {S ∈ Rp×r : Supp(S) ∩ Supp(S∗) = ∅}.
The orthogonal projection to this space can be defined as
PUcs (S) = S − PUs(S). Since the type of the block-sparsity
we consider is a block-sparsity assumption on the rows of
matrices, we need to characterize the sparsity of the rows of
the matrix S∗.

As an important piece of notation, we denote
D(S) = max1≤j≤p ‖sj‖0 denoting the maximum number of
non-zero elements in any row of the sparse matrix S.

Row-Sparse Matrix Notations: For any matrix B, define
RowSupp(B) = {j : ∃k s.t. b

(k)
j 6= 0}, and let Ub = {B ∈

Rp×r : RowSupp(B) ⊆ RowSupp(B∗)} be the subspace of
matrices whose their row support is the subset of the row
support of the matrix B∗. The orthogonal projection to the
subspace Ub can be defined as follows:

(PUb(B))j =

{
bj j ∈ RowSupp(B∗)

0 ow.

We can define the orthogonal complement space of Ub to be
U cb = {B ∈ Rp×r : RowSupp(B) ∩ RowSupp(B∗) = φ}.
The orthogonal projection to this space can be defined as
PUcb (B) = B − PUb(B).
As an important piece of notation, we denote
Mj(B) = {k : |b(k)j | = ‖bj‖∞ > 0}, for any matrix
B ∈ Rp×r, as the set of indices corresponding to elements
that achieve the maximum magnitude on the jth row
with positive or negative signs. We set Mj(B) = ∅ if
j /∈ RowSupp(B∗). Also, let M(B) = min1≤j≤p |Mj(B)| be
the minimum number of elements who achieve the maximum
absolute value in each row of the matrix B.

Splitting a Matrix: We now develop some machinery for
analyzing the splits of any matrix into sparse and block-sparse
components. For (2), let d = bλbλs c; we will always ensure
1 ≤ d ≤ r, where r is the number of tasks. Given this d, we
now define two matrices B∗, S∗, such that B∗ + S∗ = Θ̄, as
follows.

1) In each row Θ̄j , let vj be the (d+1)th largest magnitude
of the elements in Θj . Then, set the (j, k)th element
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n
200 Our Model `1/`∞ LASSO `1/`2

5% Average Classification Error 8.8% 11.6% 12.8% 10.8%
Variance of Error 0.58% 0.69% 0.58% 0.61%

Average Row Support Size B:159 B + S:170 170 123 145
Average Support Size S:18 B + S:1631 1700 539 832

10% Average Classification Error 3.3% 4.8% 5.7% 4.7%
Variance of Error 0.43% 0.52% 0.58% 0.49%

Average Row Support Size B:211 B + S:226 217 173 195
Average Support Size S:34 B + S:2118 2165 821 1432

20% Average Classification Error 2.2% 3.2% 4.2% 2.9%
Variance of Error 0.26% 0.38% 0.35% 0.24%

Average Row Support Size B:270 B + S:299 368 354 350
Average Support Size S:67 B + S:2761 3669 2053 2213

TABLE II
SIMULATION RESULTS FOR OUR MODEL, `1/`∞ AND LASSO.

s
∗(k)
j of the matrix S∗ as

s
∗(k)
j = sign(θ

(k)
j ) max

{
0,
∣∣∣θ(k)j

∣∣∣− vj}
2) Given the matrix S∗, set B∗ as the residual

B∗ = Θ̄− S∗.

We use the transform Hd(Θ̄) = (B∗, S∗) to denote the output
of this procedure.
Note that for each row of the matrix Θ̄, we set the correspond-
ing row in S∗ by taking the clipped excess over the (d+ 1)th

largest magnitude element in that row of Θ̄. S∗ will thus have
at most d non-zero elements in each row. Correspondingly,
each row of B∗ is either identically 0, or has at least d non-
zero elements of the same magnitude (equal to (d + 1)th

largest magnitude element in that row of Θ̄). Note also that
if any element (j, k) is non-zero in both S∗ and B∗, then
its sign is the same in both. S∗ thus takes on the role of
the “true sparse matrix”, and B∗ the role of the “true block-
sparse matrix”. As we will see, such a split (B∗, S∗) has the
following significance: our results will imply that if we have
infinite samples, then (B∗, S∗) will be the solution to (2).

The following technical lemma is useful in the proof of all
three theorems and summarizes the properties of Hd(·).

Lemma 1. If (B,S) = Hd(Θ) then

(P1) M(B) ≥ d+ 1 and D(S) ≤ d.
(P2) sign(s

(k)
j ) = sign(b

(k)
j ) for all j ∈ RowSupp(B) and

k ∈Mj(B).
(P3) s

(k)
j = 0 for all j ∈ RowSupp(B) and k /∈Mj(B).

Proof: The proof follows from the definition of H.

Necessary Conditions for Optimality: Before we proceed,
we characterize the properties of the solution of 2 in the
following lemma.

Lemma 2. If (Ŝ, B̂) is a solution (uniqueness is NOT re-
quired) of (2) then the following properties hold

(P1) sign(ŝ
(k)
j ) = sign(b̂

(k)
j ) for all (j, k) ∈ Supp(Ŝ) with

j ∈ RowSupp(B̂).
(P2) if λb

λs
is not an integer, 1

D(Ŝ)
> λs

λb
> 1

M(B̂)
.

(P3)
∣∣∣b̂(k)j

∣∣∣ =
∥∥∥b̂j∥∥∥

∞
for all (j, k) ∈ Supp(Ŝ).

(P4) if λb
λs

is not an integer, ∀j ∃k such that (j, k) /∈ Supp(Ŝ)

and
∣∣∣b̂(k)j

∣∣∣ =
∥∥∥b̂j∥∥∥

∞
.

This lemma shows that (Ŝ, B̂) = Hd(Θ̂), for d = bλbλs c,
which was our motivation behind the definition of the trans-
formation Hd(·). The next lemma shows why the assumption
that the ratio of penalty regularizer parameters is crucial for
our analysis.

Lemma 3. If (Ŝ, B̂) with B̂ 6= 0 is a solution to (2) and
d = λb

λs
is an integer then (Ŝ, B̂) is not the unique solution.

For the sake of completeness, we revisit the necessary first-
order optimality condition in the next lemma.

Lemma 4 (Convex Optimality). If (B̂, Ŝ) is a solution of (2),
then there exists a dual matrix Ẑ ∈ Rp×r, such that Ẑ ∈
λs∂‖Ŝ‖1,1 and Ẑ ∈ λb∂‖B̂‖1,∞ and for all k = 1, . . . , r,

1

n

〈
X(k), X(k)

〉(
ŝ(k) + b̂(k)

)
− 1

n
(X(k))T y(k) + ẑ(k) = 0.

(3)

B. Proof Overview

The proofs of all three of our theorems follow a primal-dual
witness technique, and consist of two steps, as detailed in
this section. The first step constructs a primal-dual witness
candidate, and is common to all three theorems. The second
step consists of showing that the candidate constructed in the
first step is indeed a dual witness. The theorem proofs differ
only in this second step, and show that under the respective
conditions imposed in the theorems, the construction succeeds
with high probability. These steps are as follows:

STEP 1: Considering Lemma 2, it is clear that the solution
of (2) Θ̂ = Ŝ + B̂ for (Ŝ, B̂) satisfies (Ŝ, B̂) = Hd(Θ̂),
where Hd(·) is defined in Section V-A for d = bλbλs c. Let
(B∗, S∗) = Hd(Θ̄) with properties summarized in Lemma 1.
Now, if we construct a primal pair (S̃, B̃) whose signs agree
with those of (S∗, B∗), and show that this is a unique solution
of the M-estimation problem in (2) with high probability,
then it follows that the sparsity patterns of the M-estimate (2)
and (S∗, B∗) agree, and hence and so do the sparsity patterns
of Θ̂ and Θ̄. Thus, for the rest of the proof, our focus is to
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construct such a primal pair (S̃, B̃).

Primal Candidate: We design a candidate optimal solution
(S̃, B̃) with the desired sparsity pattern using a restricted
support optimization problem, called oracle problem:

(S̃, B̃) ∈ arg min
S∈Us,B∈Ub

1

2n

r∑
k=1

∥∥∥y(k) −X(k)
(
s(k) + b(k)

)∥∥∥2
2

+ λs‖S‖1,1 + λb‖B‖1,∞.
(4)

This pair (S̃, B̃) has support constrained to lie within that
of (S∗, B∗). We still need to make sure that the signs agree
and this is the unique pair with these properties.

Sufficient Optimality Conditions: The following lemma
specifies a set of sufficient (stationary) optimality conditions
for the (S̃, B̃) from (4) to be the unique solution of the
(unrestricted) optimization problem (2) while having the same
sign as (S∗, B∗):

Lemma 5. Under our assumptions on the design matrices
X(k), the matrix pair (S̃, B̃) is the unique solution of the
problem (2) if there exists a matrix Z̃ ∈ Rp×r such that

(C1) PUs(Z̃) = λssign
(
S̃
)

.

(C2) [PUb(Z̃)]jk =

{
t
(k)
j sign

(
b̃
(k)
j

)
, k ∈Mj(B̃)

0 o.w..
,

where, t(k)j ≥ 0 such that
∑
k∈Mj(B̃) t

(k)
j = λb.

(C3)
∥∥∥PUcs (Z̃)

∥∥∥
∞,∞

< λs.

(C4)
∥∥∥PUcb (Z̃)

∥∥∥
∞,1

< λb.

(C5) 1
n

〈
X(k), X(k)

〉 (
b̃(k)+s̃(k)

)
− 1
n (X(k))Ty(k)+z̃(k) =0

for all 1 ≤ k ≤ r.

Proof: By conditions (C1) and (C3), 1
λs
Z̃ ∈ ∂‖S̃‖1,1

and by conditions (C2) and (C4), 1
λb
Z̃ ∈ ∂‖B̃‖1,∞. Thus,

(S̃, B̃, Z̃) is a feasible primal-dual pair of (2) by the first-order
optimality condition (C5). It remains to show the uniqueness
to conclude that (S̃, B̃) = (Ŝ, B̂).

Let B and S to be balls of `∞/`1 and `∞/`∞ with ra-
diuses λb and λs, respectively. Considering the fact that
λb‖B‖1,∞ = supZ∈B 〈Z,B〉 and λs‖S‖1,1 = supZ∈S 〈Z, S〉,
the problem (2) can be written as

(Ŝ, B̂) = arg inf
S,B

sup
Z∈B∩S

{
1

2n

r∑
k=1

∥∥∥y(k)−X(k)
(
b(k)+s(k)

)∥∥∥2
2

+ 〈Z, S〉+ 〈Z,B〉

}
.

This saddle-point problem is strictly feasible and convex-
concave. Given the dual variable Z̃, and the primal
optimal pair (Ŝ, B̂), we have λb‖B̂‖1,∞ =

〈
Z̃, B̂

〉
and

λs‖Ŝ‖1,1 =
〈
Z̃, Ŝ

〉
. This implies that b̂j = 0 if ‖z̃j‖1 < λb

(because λb
∑
j ‖b̂j‖∞ ≤

∑
j ‖z̃j‖1 ‖b̂j‖∞ and if ‖z̃j0‖1 < λb

for some j0, then others can not compensate for that in the
sum due to the fact that Z̃ ∈ B, i.e., ‖z̃j‖1 ≤ λb). It also
implies that ŝ(k)j = 0 if

∣∣∣z̃(k)j

∣∣∣ < λs for a similar reason.

Hence, PUcb (B̂) = 0 and PUcs (Ŝ) = 0. This argument rules
out the possibility of having a non-sparse solution. Thus,
solving the restricted problem (4) is equivalent to solving the
problem (2), because the oracle problem only restricts S̃ and B̃
to be zero outside the support of (S∗, B∗) and existence of Z̃
implies that Ŝ and B̂ are zero outside the support of (S∗, B∗).

The uniqueness follows from our (stationary) assumptions
on design matrices X(k) that the matrix 1

n

〈
X

(k)
Uk , X

(k)
Uk

〉
is

invertible for all 1 ≤ k ≤ r. Using this assumption, the
problem (4) is strictly convex and the solution is unique.
Consequently, the solution of (2) is also unique, since we
showed that these two problems are equivalent. This concludes
the proof of the lemma.

Dual Candidate: We need to construct a dual candidate Z̃
that satisfies (C1)-(C5) in Lemma 5. Specifically, we construct
Z̃ as the superposition of three components with disjoint
supports as follows

Z̃ = Z̃s + Z̃b + Z̃Uc ,

where, Z̃s = λssign(S̃) is supported on Supp(S̃), and Z̃b is
supported on Supp(B̃)− Supp(S̃) defined as

(z̃b)
(k)
j =



λb − λs‖s̃j‖0∣∣∣Mj(B̃)
∣∣∣− ‖s̃j‖0 sign

(
b̃
(k)
j

)
k ∈Mj(B̃) & (j, k) /∈ Supp(S̃)

0 ow

,

and finally, Z̃Uc , supported on j ∈ Uc, is set as

(z̃ Uc )(k)
j

=
1

n

(
X

(k)
j

)T
w(k)

− 1

n

〈
X

(k)
j , X

(k)
Uk

〉( 1

n

〈
X

(k)
Uk , X

(k)
Uk

〉)−1(
1

n

(
X

(k)
Uk

)T
w(k)−z̃(k)

Uk

)
.

(5)

It is easy to check that conditions (C1) and (C2) in Lemma 5
are satisfied. To check condition (C5), let ∆ = B̃+ S̃−B∗−
S∗. From the first-order optimality conditions for the oracle
problem (4), we have

1

n

〈
X

(k)
Uk , X

(k)
Uk

〉
∆

(k)
Uk −

1

n

(
X

(k)
Uk

)T
w(k) + z̃

(k)
Uk = 0.

and consequently,

∆
(k)
Uk =

(
1

n

〈
X

(k)
Uk , X

(k)
Uk

〉)−1( 1

n

(
X

(k)
Uk

)T
w(k) − z̃(k)Uk

)
.

(6)
Solving for z̃(k)Uc , for all j ∈ Uck , we get

(z̃ Uc )
(k)
j = − 1

n

〈
X

(k)
j , X

(k)
Uk

〉
∆

(k)
Uk +

1

n

(
X

(k)
j

)T
w(k).
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Substituting for the value of ∆
(k)
Uk , we get (5). Thus, condition

(C5) in Lemma 5 is also satisfied. It remains to show that the
conditions (C3) and (C4) are also satisfied.

STEP 2: This step consists of showing that the pair
(S̃, B̃, Z̃) constructed in the earlier step is actually a feasible
primal-dual pair of (2).It only remains to guarantee (C3) and
(C4) separately for each of the theorems.
Indeed, this is where the proofs of the theorems differ.
Specifically, Lemmas 6, 8 and 11 ensure these conditions are
satisfied with given sample complexities in Theorems 1, 2 and
3, respectively.

VI. PROOFS

The proofs of our three main theorems are in sections VI-A,
VI-B and VI-C respectively.

A. Proof of Theorem 1

Let d = bλbλs c and (B∗, S∗) = Hd(Θ̄). Then, the result
follows from Proposition 1 below.

Proposition 1 (Structure Recovery). Under assumptions
of Theorem 1, with probability 1 − c1 exp(−c2n) for some
positive constants c1 and c2, we are guaranteed that the
following properties hold:

(P1) Problem (2) has unique solution (Ŝ, B̂) such
that Supp(Ŝ) ⊆ Supp(S∗) and RowSupp(B̂) ⊆
RowSupp(B∗).

(P2)
∥∥∥B̂ + Ŝ −B∗ − S∗

∥∥∥
∞,∞

≤

√
4σ2 log (pr)

Cminn
+ λsDmax︸ ︷︷ ︸

δmin

.

(P3) sign (Supp(ŝj)) = sign
(
Supp(s∗j )

)
for all j /∈ RowSupp(B∗) provided that

min
j /∈RowSupp(B∗)
(j,k)∈Supp(S∗)

∣∣∣s∗(k)j

∣∣∣ > δmin.

(P4) sign
(

Supp(ŝj + b̂j)
)

= sign
(
Supp(s∗j + b∗j )

)
for all j ∈ RowSupp(B∗) provided that

min
(j,k)∈Supp(B∗)

∣∣∣b∗(k)j + s
∗(k)
j

∣∣∣ > δmin.

Proof: We prove the result separately for each part.
(P1) Considering the constructed primal-dual pair, it suffices

to show that (C3) and (C4) in Lemma 5 are satisfied
with high probability. By Lemma 6, with probability at
least 1 − c1 exp(−c2n) those two conditions hold and
hence, (Ŝ, B̂) = (S̃, B̃) is the unique solution of (2) and
the property (P1) follows.

(P2) Using (6), we have

max
j∈Uk

∣∣∣∆(k)
j

∣∣∣ ≤ ∥∥∥∥∥
(

1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−11

n

(
X

(k)
Uk

)T
w(k)

∥∥∥∥∥
∞

+

∥∥∥∥∥
(

1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1

z̃
(k)
Uk

∥∥∥∥∥
∞

≤

√
4σ2 log (pr)

Cminn
+ λsDmax,

where, the second inequality holds with high probability
as a result of Lemma 7 for α = ε

√
4σ2 log(pr)
Cminn

for some

ε > 1, considering the fact that Var
(

∆
(k)
j

)
≤ σ2

Cminn
.

(P3) Using (P1) in Lemma 2, this event is equivalent to the
event that for all j /∈ RowSupp(B∗) with (j, k) ∈
Supp(S∗), we have

(
∆

(k)
j + s

∗(k)
j

)
sign

(
s
∗(k)
j

)
> 0. By

Hoeffding inequality, we have

P
[(

∆
(k)
j + s

∗(k)
j

)
sign

(
s
∗(k)
j

)
> 0
]

= P

[
−∆

(k)
j sign

(
s
∗(k)
j

)
<
∣∣∣s∗(k)
j

∣∣∣ ]

≥ P

[ ∣∣∣∆(k)
j

∣∣∣ < ∣∣∣s∗(k)
j

∣∣∣ ].
By part (P2), this event happens with high probability if

min
j /∈RowSupp(B∗)
(j,k)∈Supp(S∗)

∣∣∣s∗(k)j

∣∣∣ > bmin.

(P4) Using (P1) in Lemma 2, this event is equivalent to
the event that for all j ∈ RowSupp(B∗), we have(

∆
(k)
j + b

∗(k)
j + s

∗(k)
j

)
sign

(
b
∗(k)
j + s

∗(k)
j

)
> 0. By Ho-

effding inequality, we have

P
[(

∆
(k)
j + b

∗(k)
j + s

∗(k)
j

)
sign

(
b
∗(k)
j + s

∗(k)
j

)
> 0
]

= P

[
−∆

(k)
j sign

(
b
∗(k)
j + s

∗(k)
j

)
<
∣∣∣b∗(k)
j + s

∗(k)
j

∣∣∣ ]

≥ P

[ ∣∣∣∆(k)
j

∣∣∣ < ∣∣∣b∗(k)
j + s

∗(k)
j

∣∣∣ ].
By part (P2), this event happens with high probability if

min
(j,k)∈Supp(B∗)

∣∣∣b∗(k)j + s
∗(k)
j

∣∣∣ > bmin.

Lemma 6. Under conditions of Proposition 1, the conditions
(C3) and (C4) in Lemma 5 hold for the constructed primal-
dual pair with probability at least 1− c1 exp(−c2n) for some
positive constants c1 and c2.

Proof: First, we need to bound the projection of Z̃ into
the space U cs . Notice that

∥∥∥PUcs (Z̃)
∥∥∥
∞,∞

≤ max

 λb − λs‖s̃j‖0∣∣∣Mj(B̃)
∣∣∣− ‖s̃j‖0 ,

∣∣∣(z̃ Uc )(k)
j

∣∣∣
 .

By our assumption on the ratio of the penalty regularizer
coefficients, we have λb−λs‖s̃j‖0

|Mj(B̃)|−‖s̃j‖0 < λs. Moreover, we have
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∣∣∣(z̃ Uc )(k)
j

∣∣∣ ≤ max
1≤k≤r

max
j∈Uc

k

∥∥∥∥∥ 1

n

〈
X

(k)
j , X

(k)
Uk

〉( 1

n

〈
X

(k)
Uk , X

(k)
Uk

〉)−1
∥∥∥∥∥

1(∥∥∥∥ 1

n

(
X(k)

)T
w(k)

∥∥∥∥
∞

+
∥∥∥z̃(k)
Uk

∥∥∥
∞

)
+

∥∥∥∥ 1

n

(
X(k)

)T
w(k)

∥∥∥∥
∞

≤ (2− γs)
∥∥∥∥ 1

n

(
X(k)

)T
w(k)

∥∥∥∥
∞

+ (1− γs)
∥∥∥z̃(k)
Uk

∥∥∥
∞

≤ (2− γs)
∥∥∥∥ 1

n

(
X(k)

)T
w(k)

∥∥∥∥
∞

+ (1− γs)λs.

Thus, the event ‖PUcs (Z̃)‖∞,∞ < λs is equivalent

to the event max
1≤k≤r

∥∥∥∥ 1

n

(
X(k)

)T
w(k)

∥∥∥∥
∞

<
γs

2− γs
λs . By

Lemma 7, this event happens with probability at least
1− 2 exp

(
− γ2

snλ
2
s

4(2−γs)2σ2 + log(pr)
)

. This probability goes to

1 if λs >
2(2−γs)σ

√
log(pr)

γs
√
n

as stated in the assumptions.

Next, we need to bound the projection of Z̃ into the space U cb .
Notice that∥∥∥PUc

b
(Z̃)
∥∥∥
∞,1
≤ max

(
λs‖s̃j‖0,

r∑
k=1

∣∣∣(z̃ Uc )(k)
j

∣∣∣) .
We have λs‖s̃j‖0 ≤ λsD(S∗) < λb by our assumption on the
ratio of the penalty regularizer coefficients. We can establish
the following bound:

r∑
k=1

∣∣∣z̃(k)
j

∣∣∣
≤ max
j∈Uc

r∑
k=1

∥∥∥∥∥ 1

n

〈
X

(k)
j , X

(k)
Uk

〉( 1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1
∥∥∥∥∥

1(
max

j∈
⋃r
k=1
Uk

∥∥∥z̃(k)
j

∥∥∥
1

+ max
1≤k≤r

∥∥∥∥ 1

n

(
X(k)

)T
w(k)

∥∥∥∥
∞

)

+ max
1≤k≤r

∥∥∥∥ 1

n

(
X(k)

)T
w(k)

∥∥∥∥
∞

≤ (1− γb)λb + (2− γb) max
1≤k≤K

∥∥∥∥ 1

n

(
X(k)

)T
w(k)

∥∥∥∥
∞
.

Thus, the event ‖PUcb (Z̃)‖∞,1 < λb is equivalent to

the event max1≤k≤r

∥∥∥∥ 1
n

(
X(k)

)T
w(k)

∥∥∥∥
∞

< γb
2−γb

λb . By

Lemma 7, this event happens with probability at least
1 − 2 exp

(
− γ2

bnλ
2
b

4(2−γb)2σ2 + log(pr)
)

. This probability goes to

1 if λb >
2(2−γb)σ

√
log(pr)

γb
√
n

as stated in the assumptions.

Hence, with probability at least 1−c1 exp(−c2n) conditions
(C3) and (C4) in Lemma 5 are satisfied.

Lemma 7.

P
[

max
1≤k≤r

∥∥∥∥ 1

n

(
X(k)

)T
w(k)

∥∥∥∥
∞
< α

]
≥ 1−2 exp

(
−
α2n

2σ2
+ log(pr)

)
.

Proof: Since w
(k)
j ’s are distributed as N (0, σ2), we

have 1
n

(
X(k)

)T
w(k) distributed as N

(
0, σ

2

n

(
X(k)

)T
X

(k)
Uk

)
.

Using concentration of Gaussian variables, we have

P
[∥∥∥∥ 1

n

(
X(k)

)T
w(k)

∥∥∥∥
∞
≥ α

]
≤

p∑
j=1

P
[∣∣∣∣ 1n (X(k)

j

)T
w(k)

∣∣∣∣ ≥ α]

≤
p∑
j=1

2 exp

− α2n

2σ2
(
X

(k)
j

)T
X

(k)
j


≤ 2p exp

(
−
α2n

2σ2

)
.

By union bound, the result follows.

B. Proof of Theorem 2

Let d = bλbλs c and (B∗, S∗) = Hd(Θ̄). Then, the result
follows from the next proposition.

Proposition 2. Under assumptions of Theorem 2, if

n > max

(
Bs log(pr)

Cminγ2s
,
Bsr

(
r log(2) + log(p)

)
Cminγ2b

)

then with probability at least 1 −
c1 exp (−c2 (r log(2) + log(p))) − c3 exp(−c4 log(rs))
for some positive constants c1 − c4, we are guaranteed that
the following properties hold:

(P1) The solution (B̂, Ŝ) to (2) is unique and RowSupp(B̂) ⊆
RowSupp(B∗) and Supp(Ŝ) ⊆ Supp(S∗).

(P2)
∥∥∥B̂ + Ŝ −B∗ − S∗

∥∥∥
∞
≤

√
50σ2 log(rs)

nCmin
+ λs

(
Ds

Cmin
√
n

+Dmax

)
︸ ︷︷ ︸

gmin

.

(P3) sign (Supp(ŝj)) = sign
(
Supp(s∗j )

)
for all j /∈ RowSupp(B∗) provided that

min
j /∈RowSupp(B∗)
(j,k)∈Supp(S∗)

∣∣∣s∗(k)j

∣∣∣ > gmin.

(P4) sign
(

Supp(ŝj + b̂j)
)

= sign
(
Supp(s∗j + b∗j )

)
for all j ∈ RowSupp(B∗) provided that

min
(j,k)∈Supp(B∗)

∣∣∣b∗(k)j + s
∗(k)
j

∣∣∣ > gmin.

Proof: We provide the proof of each part separately.

(P1) Considering the constructed primal-dual pair (S̃, B̃, Z̃),
it suffices to show that the conditions (C3) and (C4)
in Lemma 5 are satisfied under these assumptions.
Lemma 8 guarantees that with probability at least
1 − c1 exp (−c2 (r log(2) + log(p))) those conditions
are satisfied. Hence, (B̂, Ŝ) = (B̃, S̃) are the unique
solution to (2) and (P1) follows.



13

(P2) From (6), we have

max
j∈Uk

∣∣∣∆(k)
j

∣∣∣ ≤ ∥∥∥∥∥
(

1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1 1

n

(
X

(k)
Uk

)T
w(k)

∥∥∥∥∥
∞︸ ︷︷ ︸

W(k)

+

∥∥∥∥∥
(

1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1

z̃
(k)
Uk

∥∥∥∥∥
∞

≤
∥∥∥W(k)

∥∥∥
∞

+

∥∥∥∥(Σ
(k)
Uk,Uk

)−1
z̃

(k)
Uk

∥∥∥∥
∞

+

∥∥∥∥∥
((

1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1

−
(

Σ
(k)
Uk,Uk

)−1
)
z̃

(k)
Uk

∥∥∥∥∥
∞

.

We need to bound these three quantities. Notice that∥∥∥∥(Σ
(k)
Uk,Uk

)−1
z̃
(k)
Uk

∥∥∥∥
∞
≤
∥∥∥∥(Σ

(k)
Uk,Uk

)−1∥∥∥∥
∞,1

∥∥∥z̃(k)Uk ∥∥∥∞
≤ Dmaxλs.

Also, we have∥∥∥∥∥
((

1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1

−
(

Σ
(k)
Uk,Uk

)−1
)
z̃

(k)
Uk

∥∥∥∥∥
∞

≤ λmax

((
1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1

−
(

Σ
(k)
Uk,Uk

)−1
)∥∥∥z̃(k)

Uk

∥∥∥
2

≤ λmax

((
1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1

−
(

Σ
(k)
Uk,Uk

)−1
)
√
sλs

≤
4

Cmin

√
s

n

√
sλs,

where, the last inequality holds with probability at least
1 − c1 exp

(
−c2 (

√
n−
√
s)

2
)

for some positive con-
stants c1 and c2 as a result of Davidson and Szarek
[20] on eigenvalues of Gaussian random matrices. Con-
ditioned on X

(k)
Uk , the vector W(k) ∈ R|Uk| is a zero-

mean Gaussian random vector with covariance matrix
σ2

n

(
1
n

〈
X

(k)
Uk , X

(k)
Uk

〉)−1
. Thus, we have

1

n
λmax

((
1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1
)

≤
1

n
λmax

((
1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1

−
(

Σ
(k)
Uk,Uk

)−1
)

+
1

n
λmax

((
Σ

(k)
Uk,Uk

)−1
)

≤
1

n

(
4

Cmin

√
s

n
+

1

Cmin

)
≤

5

nCmin
.

From the concentration of Gaussian random variables
(Lemma 7) and using the union bound, we get

P
[

max
1≤k≤r

∥∥∥W(k)
∥∥∥
∞
≥ t
]
≤ 2 exp

(
− t

2nCmin
50σ2

+ log(rs)

)
.

For t = ε
√

50σ2 log(rs)
nCmin

for some ε > 1, the result follows.

(P3),(P4) The results are immediate consequence of (P2).

Lemma 8. Under the assumptions of Proposition 2, the
conditions (C3) and (C4) in Lemma 5 hold for the con-
structed primal-dual pair with probability at least 1 −

c1 exp (−c2 (r log(2) + log(p))) for some positive constants
c1 and c2.

Proof: First, we need to bound the projection of Z̃ into
the space U cs . Notice that

∥∥∥PUcs (Z̃)
∥∥∥
∞,∞

≤ max

 λb − λs‖s̃j‖0∣∣∣Mj(B̃)
∣∣∣− ‖s̃j‖0 ,

∣∣∣(z̃ Uc )(k)
j

∣∣∣
 .

By our assumptions on the ratio of the penalty regularizer co-
efficients, we have λb−λs‖s̃j‖0

|Mj(B̃)|−‖s̃j‖0 < λs. For all j ∈
⋂r
k=1 Uk

and R ∈ Rp×r with i.i.d. standard Gaussian entries (see
Lemma 4 in [13]), we have

∣∣∣(z̃ Uc )(k)

j

∣∣∣
≤ max
j∈

⋂r
k=1
Uc
k

∣∣∣∣∣ 1n
〈
X

(k)
j , I−

1

n
X

(k)
Uk

(
1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1(
X

(k)
Uk

)T〉
w(k)

∣∣∣∣∣︸ ︷︷ ︸
W(k)
j

+ max
j∈

⋂r
k=1
Uc
k

∣∣∣∣∣ 1n
〈
X

(k)
j , X

(k)
Uk

(
1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1
〉
z̃

(k)
Uk

∣∣∣∣∣
≤ max
j∈

⋂r
k=1
Uc
k

∣∣∣W(k)
j

∣∣∣+ max
j∈

⋂r
k=1
Uc
k

∥∥∥∥Σ
(k)
j,Uk

(
Σ

(k)
Uk,Uk

)−1
∥∥∥∥

1

∥∥∥z̃(k)
Uk

∥∥∥
∞

+ max
j∈

⋂r
k=1
Uc
k

∣∣∣∣∣ 1n
〈
R

(k)
j , X

(k)
Uk

(
1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1
〉
z̃

(k)
Uk

∣∣∣∣∣︸ ︷︷ ︸
R(k)
j

≤ (1− γs)λs + max
j∈

⋂r
k=1
Uc
k

∣∣∣R(k)
j

∣∣∣+ max
j∈

⋂r
k=1
Uc
k

∣∣∣W(k)
j

∣∣∣ ,
The second inequality follows from a simple application of the
triangle inequality, following the line of argument in Appendix
B of [13]. By Lemma 9, if n ≥ 2

2−
√
3

log(pr) then with high

probability
∥∥∥X(k)

j

∥∥∥2
2
≤ 2n and hence Var

(
W(k)
j

)
≤ 2σ2

n .
Using the concentration results for the zero-mean Gaussian
random variable W(k)

j and using the union bound, we get

P
[

max
j∈

⋂r
k=1
Uc
k

∣∣∣W(k)
j

∣∣∣ ≥ t] ≤ 2 exp

(
− t

2n

4σ2
+ log(p)

)
∀t ≥ 0.

Conditioning on
(
X

(k)
Uk , w

(k), z̃(k)
)

’s, we have that R(k)
j is a

zero-mean Gaussian random variable with

Var
(
R(k)
j

)
≤

∥∥∥z̃(k)Uk ∥∥∥22
nCmin

≤ sλ2s
nCmin

.

By concentration of Gaussian random variables, we have

P
[

max
j∈

⋂r
k=1
Uc
k

∣∣∣R(k)
j

∣∣∣ ≥ t] ≤ 2 exp

(
− t

2nCmin
Bsλ2

s

+ log(p)

)
∀t ≥ 0.
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Using these bounds, we get

P
[∥∥∥PUcs (Z̃)

∥∥∥
∞,∞

<λs

]
≥ P

[
max

j∈
⋂r
k=1
Uc
k

∣∣∣R(k)
j

∣∣∣+ max
j∈

⋂r
k=1
Uc
k

∣∣∣W(k)
j

∣∣∣ < γsλs ∀ 1 ≤ k ≤ r
]

≥ P

[
max

j∈
⋂r
k=1
Uc
k

∣∣∣R(k)
j

∣∣∣ < t0 ∀ 1 ≤ k ≤ r
]

P

[
max

j∈
⋂r
k=1
Uc
k

∣∣∣W(k)
j

∣∣∣ < γsλs − t0 ∀ 1 ≤ k ≤ r
]

≥
(

1− 2 exp

(
−
t20nCmin

Bsλ2
s

+ log(pr)

))
(

1− 2 exp

(
−

(γsλs − t0)2n

4σ2
+ log(pr)

))
.

This probability goes to 1 for t0 =
√
Bsλs√

Bsλs+2σ
√
Cmin

γsλs (the

solution to t20Cmin
Bsλ2

s
= (γsλs−t0)2

4σ2 ), if the regularization param-

eter λs >
√

4σ2Cmin log(pr)

γs
√
nCmin−

√
Bs log(pr)

provided that n > Bs log(pr)
Cminγ2

s

as stated in the assumptions.

Next, we need to bound the projection of Z̃ into the space U cb .
Notice that

∥∥∥PUc
b
(Z̃)
∥∥∥
∞,1
≤ max

(
λs‖s̃j‖0,

r∑
k=1

∣∣∣(z̃ Uc )(k)
j

∣∣∣) .
We have λs‖s̃j‖0 ≤ λsD(S∗) < λb by our assumption on
the ratio of the penalty regularizer coefficients. For all j ∈⋂r
k=1 Uck , we have

r∑
k=1

∣∣∣z̃(k)
j

∣∣∣
≤ max
j∈

⋂r
k=1
Uc
k

r∑
k=1

∣∣∣∣∣ 1n
〈
X

(k)
j , I−

1

n
X

(k)
Uk

(
1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1(
X

(k)
Uk

)T〉
w(k)

∣∣∣∣∣︸ ︷︷ ︸
W(k)
j

+ max
j∈

⋂r
k=1
Uc
k

r∑
k=1

∣∣∣∣∣ 1n
〈
X

(k)
j , X

(k)
Uk

(
1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1
〉
z̃

(k)
Uk

∣∣∣∣∣
≤ max
j∈

⋂r
k=1
Uc
k

r∑
k=1

∣∣∣W(k)
j

∣∣∣
+ max
j∈

⋂r
k=1
Uc
k

r∑
k=1

∥∥∥∥∥ 1

n

〈
X

(k)
j , X

(k)
Uk

(
1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1
〉∥∥∥∥∥

1

max
j∈

⋃r
k=1
Uk

∥∥∥z̃(k)
j

∥∥∥
1

+ max
j∈

⋂r
k=1
Uc
k

r∑
k=1

∣∣∣∣∣ 1n
〈
R

(k)
j , X

(k)
Uk

(
1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1
〉
z̃

(k)
Uk

∣∣∣∣∣︸ ︷︷ ︸
R(k)
j

≤ (1− γb)λb + max
j∈

⋂r
k=1
Uc
k

r∑
k=1

∣∣∣R(k)
j

∣∣∣+ max
j∈

⋂r
k=1
Uc
k

r∑
k=1

∣∣∣W(k)
j

∣∣∣ .
We first note that for any v ∈ {−1,+1}r, we have

Var

(
r∑

k=1

vkW(k)
j

)
≤ 2σ2r

n
.

Using the union bound and previous discussion, we get

P

[
max

j∈
⋂r
k=1 Uck

r∑
k=1

∣∣∣W(k)
j

∣∣∣ ≥ t]

= P

[
max

j∈
⋂r
k=1 Uck

max
v∈{−1,+1}r

r∑
k=1

vkW(k)
j ≥ t

]

≤ 2 exp

(
− t2n

4σ2r
+ r log(2) + log(p)

)
∀t ≥ 0.

We have

Var

(
r∑
k=1

∣∣∣R(k)
j

∣∣∣) = Var

(
r∑
k=1

vkR(k)
j

)

≤

∑r
k=1

∥∥∥z̃(k)
j

∥∥∥2

2

nCmin
≤ rsλ2

s

nCmin
<

rsλ2
b

nCmin

and consequently by concentration of Gaussian variables,

P

[
max

j∈
⋂r
k=1
Uc
k

K∑
k=1

∣∣∣R(k)
j

∣∣∣ ≥ t]

= P

[
max

j∈
⋂r
k=1
Uc
k

max
v∈{−1,+1}r

r∑
k=1

vkR(k)
j ≥ t

]

≤ 2 exp

(
− t

2nCmin
2rsλ2

b

+ r log(2) + log(p)

)
∀t ≥ 0.

Finally, we have

P
[∥∥∥PUc

b
(Z̃)
∥∥∥
∞,1

<λb

]
≥ P

[
max

j∈
⋂r
k=1
Uc
k

r∑
k=1

∣∣∣R(k)
j

∣∣∣+ max
j∈

⋂r
k=1
Uc
k

r∑
k=1

∣∣∣W(k)
j

∣∣∣ < γbλb

]

≥ P

[
max

j∈
⋂r
k=1
Uc
k

r∑
k=1

∣∣∣R(k)
j

∣∣∣ < t0

]

P

[
max

j∈
⋂r
k=1
Uc
k

r∑
k=1

∣∣∣W(k)
j

∣∣∣ < γbλb − t0

]

≥
(

1− 2 exp

(
−
t20nCmin

2rsλ2
b

+ r log(2) + log(p)

))
(

1− 2 exp

(
−

(γbλb − t0)2n

4σ2r
+ r log(2) + log(p)

))
.

This probability goes to 1 for t0 =
√
Bsλb√

Bsλb+2σ
√
Cmin

γbλb (the

solution to (γbλb−t0)2n
4σ2r =

t20nCmin
2rsλ2

b
), if

λb >

√
4σ2Cminr

(
r log(2) + log(p)

)
γb
√
nCmin −

√
Bsr

(
r log(2) + log(p)

) ,
provided that n > Bsr(r log(2)+log(p))

γ2
bCmin

as stated in
the assumptions. Hence, with probability at least
1 − c1 exp (−c2 (r log(2) + log(p))) the conditions of
the Lemma 5 are satisfied.

Lemma 9.

P
[

max
1≤k≤r

max
1≤j≤p

∥∥∥X(k)
j

∥∥∥2

2
≤ 2n

]
≥ 1− exp

(
−(1−

√
3

2
)n+ log(pr)

)
.
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Proof: Notice that ‖X(k)
j ‖22 is a χ2 random variable with

n degrees of freedom. According to [21], we have

P
[∥∥∥X(k)

j

∥∥∥2
2
≥ t+ (

√
t+
√
n)2
]
≤ exp(−t) ∀t ≥ 0.

Letting t =
(√

3−1
2

)2
n and using the union bound, the result

follows.

C. Proof of Theorem 3

We will actually prove a more general theorem, from which
Theorem 3 would follow as a corollary. Among shared features
(with size αs), we say a fraction τ has different magnitudes on
Θ̄ (i.e., a fraction 1− τ of shared features have approximately
same magnitude on both tasks. See Theorem 4 for exact
definition): Let τ1 be the fraction with larger magnitude on
the first task and τ2 the fraction with larger magnitude on the
second task (so that τ = τ1 + τ2). Moreover, let λb

λs
= κ and

f(κ) = f(κ, τ, α) = 2− 2(1− τ)α− 2τακ+

(
1 + τ

2

)
ακ2,

and
g(κ, τ, α) = max

(
2 f(κ)

κ2
, f(κ)

)
.

Theorem 4. Under the assumptions of the Theorem 3, if∣∣∣{j ∈ RowSupp(B∗) :
∣∣∣ ∣∣∣Θ∗(1)

j

∣∣∣− ∣∣∣Θ∗(2)
j

∣∣∣ ∣∣∣ ≤ cλs}∣∣∣ = (1− τ)αs,

then, the result of Theorem 3 holds for

θ(n, s, p, α) =
n

g(κ, τ, α) s log (p− (2− α)s)
.

Corollary 4. Under the assumptions of the Theorem 4, if
the regularization penalties are set as κ = λb/λs =

√
2,

then the result of Theorem 3 holds for θ(n, s, p, α) =
n

(2−α+(3−2
√
2)τα)s log(p−(2−α)s)

.

Proof: Follows trivially by substituting κ =
√

2 in
Theorem 4. Indeed, this setting of κ can also be shown to
minimize g(κ, τ, α):

min
1<κ<2

max

(
2 f(κ)

κ2
, f(κ)

)
= min

(
min

1<κ≤
√
2

2

κ2
(f(κ)) , min√

2<κ<2
f(κ)

)
= 2− α+ (3− 2

√
2) τ α.

Proof of Theorem 3: The proof follows from Corollary 4
by setting τ = 0 and κ =

√
2.

We will now set out to prove Theorem 4. We will first need
the following lemma.

Lemma 10. For any j ∈ RowSupp(B∗), if
∣∣∣S∗(k)j

∣∣∣ < cλs for

some constant c specified in the proof, then S̃
(k)
j = 0 with

probability at least 1− c1 exp(−c2n).

Proof: Let Š be a matrix equal to S̃ except that Š(k)
j =

0. Using the concentration of Gaussian random variables and
optimality of S̃, we get

P
[∣∣∣S̃(k)

j

∣∣∣ > 0
]

≤ P

[
2nλs

∣∣∣S̃(k)
j

∣∣∣ < ∥∥∥y(k) −X(k)(B̃(k) + Š(k))
∥∥∥2

2

−
∥∥∥y(k) −X(k)(B̃(k) + S̃(k))

∥∥∥2

2

]

= P

[
2nλs <

(∥∥∥y(k) −X(k)(B̃(k) + Š(k))
∥∥∥2

2∥∥∥S̃(k)
j X

(k)
j

∥∥∥
2

−

∥∥∥y(k) −X(k)(B̃(k) + Š(k))− S̃(k)
j X

(k)
j

∥∥∥2

2∥∥∥S̃(k)
j X

(k)
j

∥∥∥
2

)∥∥∥X(k)
j

∥∥∥
2

]

= P

[
2nλs <

2S̃
(k)
j X

(k)T
j

(
y(k) −X(k)(B̃(k) + Š(k))

)
∥∥∥S̃(k)

j X
(k)
j

∥∥∥
2

∥∥∥X(k)
j

∥∥∥
2

]

= P

[
nλs < X

(k)T
j

(
X(k)(B∗(k) + S∗(k) − B̃(k) − Š(k)) + w(k)

)]

Since X’s and w’s are independent, then X
(k)T
j w(k) ≤ ε1

with high probability. Moreover, the vector X
(k)T
j X(k) is

smaller than some ε2 on entries different from j and is
equal to ‖X(k)

j ‖22 on the jth entry. Using the `∞ bound in
Theorem 2, we have ‖B∗(k) + S∗(k) − B̃(k) − Š(k)‖∞ ≤
max(bmin, S

∗(k)
j ) ≤ S

∗(k)
j . Now, for a small constant c < 1

given by

c =
1

1 +
ε2(s−1)+ε1/|S∗(k)j |

‖X(k)
j ‖22

,

we have

P
[∣∣∣S̃(k)

j

∣∣∣ > 0
]
≤ P

[
nλs <

∣∣∣S∗(k)
j

∣∣∣ (ε2(s− 1) +
∥∥∥X(k)

j

∥∥∥2

2

)
+ ε1

]
= P

[
nλs <

1

c

∣∣∣S∗(k)
j

∣∣∣ ∥∥∥X(k)
j

∥∥∥2

2

]

= P

 cλs∣∣∣S∗(k)
j

∣∣∣n <
∥∥∥X(k)

j

∥∥∥2

2

 .
Notice that E[‖X(k)

j ‖22] = n. Using the concentration
of χ2 random variables (see [21]), this probability vanishes
exponentially fast in n for

∣∣∣S∗(k)j

∣∣∣ < cλs.

D. Proof of Theorem 4

We will now provide the proofs of different parts separately.

Proof: (Success): Recall the constructed primal-dual
pair (B̃, S̃, Z̃). It suffices to show that the dual variable
Z̃ satisfies the conditions (C3) and (C4) of Lemma 5. By
Lemma 11, these conditions are satisfied with probability at
least 1− c1 exp(−c2n) for some positive constants c1 and c2.
Hence, (B̂, Ŝ) = (B̃, S̃) is the unique optimal solution. The
rest are direct consequences of Proposition 2 for Cmin = 1
and Dmax = 1.

(Failure): We prove this result by contradiction. Sup-
pose there exist a solution to (2), say (B̂, Ŝ) such
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that sign
(

Supp(B̂ + Ŝ)
)

= sign (Supp(B∗ + S∗)). By

Lemma 2, this is equivalent to having sign
(

Supp(B̂)
)

=

sign (Supp(B∗)) and sign (Supp(ŝj)) = sign
(
Supp(S∗j )

)
if

j /∈ RowSupp(B∗) and λb
λs

= κ. Moreover for j ∈
RowSupp(B∗), if ŝ(k)j 6= 0 and s

∗(k)
j 6= 0, then by Lemma

11, we have sign(ŝ
(k)
j ) = sign(s

∗(k)
j ).

Now, suppose n < (1−ν) max
(

2 f(κ)
κ2 , f(κ)

)
s log(p−(2−

α)s), for some ν > 0. This entails that
either (i) n < (1− ν)f(κ)s log(p− (2− α)s),
or (ii) n < (1− ν)

(
2 f(κ)
κ2

)
s log(p− (2− α)s).

Case (i): We will show that with high probability, there
exists k for which, there exists j ∈

⋂r
k=1 Uck such that∣∣∣Z̃(k)

j

∣∣∣ > λs. This is a contradiction to Lemma 4.

Using (5) and conditioning on (X
(k)
Uk , w

(k), Z̃
(k)
Uk ), for all

j ∈
⋂r
k=1 Uck we have that the random variables Z̃(k)

j are
i.i.d. zero-mean Gaussian random variables with

Var
(
Z̃

(k)
j

)
=

∥∥∥∥∥ 1

n
X

(k)
Uk

(
1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1

Z̃
(k)
Uk

+
1

n

(
I−

1

n
X

(k)
Uk

(
1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1(
X

(k)
Uk

)T)
w(k)

∥∥∥∥∥
2

2

=

∥∥∥∥∥ 1

n
X

(k)
Uk

(
1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1

Z̃
(k)
Uk

∥∥∥∥∥
2

2

+

∥∥∥∥∥ 1

n

(
I−

1

n
X

(k)
Uk

(
1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1(
X

(k)
Uk

)T)
w(k)

∥∥∥∥∥
2

2

The second equality holds by orthogonality of projections. We
thus have

Var
(
Z̃

(k)
j

)
≥ max

λmin(( 1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1
) ∥∥∥Z̃(k)

Uk

∥∥∥2

2

n

,

∥∥∥∥(I− 1
n
X

(k)
Uk

(
1
n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1(
X

(k)
Uk

)T)
w(k)

∥∥∥∥2

2

n2


≥

∥∥∥Z̃(k)
Uk

∥∥∥2

2(√
n+
√
s
)2

The first term in the maximum satisfies the second inequality
with probability at least 1 − c1 exp

(
−c2 (

√
n+
√
s)

2
)

as a
result of Theorem II.13 in [20] on the eigenvalues of Gaussian
matrices. The second term in the maximum satisfies the second
inequality holds with probability at least 1− c3 exp(−c4n) as
a result of Lemma 1 in [21]. Considering B̃ + S̃, assume
that among shared features (with size αs), a portion of τ1 has
larger magnitude on the fist task and a portion of τ2 has larger
magnitude on the second task (and consequently a portion of
1 − τ1 − τ2 has equal magnitude on both tasks). Assuming
λb = κλs for some κ ∈ (1, 2), we get

σ̃2
1 := Var

(
Z̃

(1)
j

)
=

(1− α)sλ2
s + τ1αsλ2

s + τ2αs(λb − λs)2 + (1− τ1 − τ2)αs
λ2
b
4

(
√
n+
√
s)2

=:
f1(κ)sλ2

s

n
(

1 +
√

s
n

)2
.

The first equality follows from the construction of the dual
matrix and the fact that we have recovered the sign support
correctly. The last strict inequality follows from the assump-
tion that θ(n, p, s, α) < 1. Similarly, we have

σ̃2
2 := Var

(
Z̃

(2)
j

)
>

(1− α)sλ2
s + τ2αsλ2

s + τ1αs(λb − λs)2 + (1− τ1 − τ2)αs
λ2
b
4

n
(

1 +
√

s
n

)2

=:
f2(κ)sλ2

s

n
(

1 +
√

s
n

)2
.

Given these lower bounds on the variance, by results on
Sudakov minoration (see Theorem 3.15 in [22]), for any δ > 0,
there exists N(δ) such that if p− (2−α)s ≥ N(δ), with high
probability we have

max
1≤k≤r

max
j∈

⋃r
k=1 Uk

∣∣∣Z̃(k)
j

∣∣∣
≥ (1− δ)

√
(σ̃2

1 + σ̃2
2) log

(
r
(
p− (2− α)s

))
.

This in turn can be bound as

(1− δ) (σ̃2
1 + σ̃2

2) log
(
r
(
p− (2− α)s

))
≥ (1− δ)

(f1(κ) + f2(κ)) s log
(
r
(
p− (2− α)s

))
n
(

1 +
√

s
n

)2
λ2
s.

≥ (1− δ)
f(κ) s log

(
r
(
p− (2− α)s

))
n
(

1 +
√

s
n

)2
λ2
s.

Consider two cases:
1) s

n = Ω(1): In this case, we have s > cn for some
constant c > 0. Then,

(1− δ)
(f(κ)) s log

(
r
(
p− (2− α)s

))
n
(
1 +

√
s
n

)2 λ2
s

= (1− δ)
(f(κ)) (s/n) log

(
r
(
p− (2− α)s

))
(

1 +
√
s/n
)2 λ2

s

> c′f(κ) log
(
r
(
p− (2− α)s

))
λ2
s

> (1 + ε)λ2
s,

for any fixed ε > 0, as p→∞.

2) s
n → 0: In this case, we have s/n = o(1). Here
we will use that the sample size scales as n < (1 −
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ν) (f(κ)) s log(p− (2− α)s).

(1− δ)
(f(κ)) s log

(
r
(
p− (2− α)s

))
n
(
1 +

√
s
n

)2 λ2
s

≥ (1− δ)(1− o(1))

1− ν λ2
s

> (1 + ε)λ2
s,

for some ε > 0 by taking δ small enough.

Thus with high probability, ∃k∃j ∈
⋂r
k=1 Uck such that∣∣∣Z̃(k)

j

∣∣∣ > λs. This is a contradiction to Lemma 4.

Case (ii): We need to show that with high probability,
there exists a row that violates the sub-gradient condition of
`∞-norm: ∃j ∈

⋂r
k=1 Uck such that

∥∥∥Z̃(k)
j

∥∥∥
1
> λb. This is a

contradiction to Lemma 4.

Following the same proof technique, notice that∑r
k=1 Z̃

(k)
j is a zero-mean Gaussian random variable

with Var
(∑r

k=1 Z̃
(k)
j

)
≥ r(σ̃2

1 + σ̃2
2). Thus, with high

probability

max
j∈

⋂r
k=1 Uck

∥∥∥Z̃(k)
j

∥∥∥
1
≥ (1−δ)

√
r(σ̃2

1 + σ̃2
2) log

(
p− (2− α)s

)
.

Following the same line of argument for this case, yields the
required bound

∥∥∥Z̃(k)
j

∥∥∥
1
> (1 + ε)λb.

This concludes the proof of the theorem.

Lemma 11. Under assumptions of Theorem 3, the conditions
(C3) and (C4) in Lemma 5 hold with probability at least 1−
c1 exp(−c2n) for some positive constants c1 and c2.

Proof: First, we need to bound the projection of Z̃ into
the space U cs . Notice that

∥∥∥PUcs (Z̃)
∥∥∥
∞,∞

≤ max

 λb − λs‖s̃j‖0∣∣∣Mj(B̃)
∣∣∣− ‖s̃j‖0 ,

∣∣∣(z̃ Uc )(k)
j

∣∣∣
 .

By our assumption on the penalty regularizer coefficients, we
have λb−λs‖S̃j‖0

|M±j (B̃)|−‖S̃j‖0 < λs. Moreover, we have

∣∣∣(z̃ Uc )(k)

j

∣∣∣
≤ max
j∈

⋂r
k=1
Uc
k

∣∣∣∣∣ 1n
〈
X

(k)
j , I−

1

n
X

(k)
Uk

(
1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1(
X

(k)
Uk

)T〉
w(k)

∣∣∣∣∣︸ ︷︷ ︸
W(k)
j

+ max
j∈

⋂r
k=1
Uc
k

∣∣∣∣∣ 1n
〈
X

(k)
j , X

(k)
Uk

(
1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1
〉
Z̃

(k)
Uk

∣∣∣∣∣︸ ︷︷ ︸
Z(k)
j

, max
j∈

⋂r
k=1
Uc
k

∣∣∣Z(k)
j

∣∣∣+ max
j∈

⋂r
k=1
Uc
k

∣∣∣W(k)
j

∣∣∣ .

By Lemma 9, if n ≥ 2
2−
√
3

log(pr) then with high probability∥∥∥X(k)
j

∥∥∥2
2
≤ 2n and hence Var

(
W(k)
j

)
≤ 2σ2

n . Notice that

E
[∥∥∥X(k)

j

∥∥∥2
2

]
= n and we added the factor of 2 arbitrarily

to use the concentration theorems. Using the concentration
results for the zero-mean Gaussian random variable W(k)

j

(conditioned on X’s) and using the union bound, for all t > 0,
we get

P

[
max

j∈
⋂r
k=1
Uc
k

∣∣∣W(k)
j

∣∣∣ ≥ t] ≤ 2 exp

(
−
t2n

4σ2
+ log

(
p− (2− α)s

))
.

Conditioning on
(
X

(k)
Uk , w

(k), Z̃(k)
)

’s, we have that Z(k)
j is a

zero-mean Gaussian random variable with

Var
(
Z(k)
j

)
≤ 1

n
λmax

((
1

n

〈
X

(k)
Uk , X

(k)
Uk

〉)−1
)∥∥∥Z̃(k)

Uk

∥∥∥2

2
.

According to the result of [20] on singular values of Gaussian
matrices, for the matrix X(k)

Uk , for all δ > 0, we have

P
[
σmin

(
X

(k)
Uk

)
≤ (1− δ)

(√
n−
√
s
)]
≤ exp

(
−
δ2
(√
n−
√
s
)2

2

)
,

and since λmax

((〈
X

(k)
Uk
, X

(k)
Uk

〉)−1
)

= σmin

(
X

(k)
Uk

)−2
, we get

P

λmax(( 1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1
)
≥

(1 + δ)(
1−

√
s
n

)2


≤ exp

(
−
(√
δ + 1− 1

)2 (√
n−
√
s
)2

2(1 + δ)

)
.

According to Lemma 10, if
∣∣∣∣∣∣Θ∗(1)j

∣∣∣− ∣∣∣Θ∗(2)j

∣∣∣∣∣∣ = O(λs),

then with high probability S̃j = 0, so that |Θ̃(1)
j | = |Θ̃(2)

j |.
Thus, among shared features (with size αs), a fraction τ have
differing magnitudes on Θ̃. Let τ1 be the fraction with larger
magnitude on the first task and τ2 the fraction with larger
magnitude on the second task (so that τ = τ1+τ2). Then, with
high probability, recalling that λb = κλs for some 1 < κ < 2,
we get

Var
(
Z(1)
j

)
≤

∥∥∥Z̃(1)
U1

∥∥∥2

2(√
n−
√
s
)2

=
(1− α)sλ2

s + τ1αsλ2
s + τ2αs(λb − λs)2 + (1− τ1 − τ2)αs

λ2
b
4(√

n−
√
s
)2

=

(
1− (1− τ1 − τ2)α− 2τ2ακ+

(
τ2 + 1−τ1−τ2

4

)
ακ2

)
sλ2
s(√

n−
√
s
)2

,
f1(κ)sλ2

s(√
n−
√
s
)2 .

Similarly,

Var
(
Z(2)
j

)
≤

∥∥∥Z̃(2)
U2

∥∥∥2

2(√
n−
√
s
)2

=

(
1− (1− τ1 − τ2)α− 2τ1ακ+

(
τ1 + 1−τ1−τ2

4

)
ακ2

)
sλ2
s(√

n−
√
s
)2

,
f2(κ)sλ2

s(√
n−
√
s
)2 .
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By concentration of Gaussian random variables, we have

P

[
max

j∈
⋂r
k=1
Uc
k

∣∣∣Z(k)
j

∣∣∣ ≥ t]

≤ 2 exp

(
−
t2
(√
n−
√
s
)2

2fk(κ)sλ2
s

+ log
(
p− (1− α)s

))
∀t ≥ 0.

Using these bounds, we get

P
[∥∥∥PUcs (Z̃)

∥∥∥
∞,∞

<λs

]
≥ P

[
max

j∈
⋂r
k=1
Uc
k

∣∣∣Z(k)
j

∣∣∣+ max
j∈

⋂r
k=1
Uc
k

∣∣∣W(k)
j

∣∣∣ < λs ∀ 1 ≤ k ≤ r
]

≥ P

[
max

j∈
⋂r
k=1
Uc
k

∣∣∣Z(k)
j

∣∣∣ < t0 ∀ 1 ≤ k ≤ r
]

P

[
max

j∈
⋂r
k=1
Uc
k

∣∣∣W(k)
j

∣∣∣ < λs − t0 ∀ 1 ≤ k ≤ r
]

≥
(

1− 2 exp

(
−

t20
(√
n−
√
s
)2

(f1(κ) + f2(κ)) sλ2
s

+log
(
p−(2−α)s

)
+log(r)

))
(

1− 2 exp

(
−

(λs−t0)2n

4σ2
+log

(
p−(2−α)s

)
+log(r)

))
.

This probability goes to 1 for

t0 =

√
(f1(κ) + f2(κ))nsλs√

(f1(κ) + f2(κ))nsλs + 2σ(
√
n−
√
s)
λs

(the solution to
t20(
√
n−
√
s)

2

(f1(κ)+f2(κ))sλ2
s

= (λs−t0)2n
4σ2 ), if

λs >

√
4σ2

(
1−
√

s
n

)2 (
log(r)+log

(
p−(2−α)s

))
√
n−
(
√
s+

√
(f1(κ)+f2(κ)) s

(
log(r)+log

(
p−(2−α)s

)))
provided that (substituting r = 2),

n > (f1(κ) + f2(κ)) s log
(
p− (2− α)s

)
+

(
1 + (f1(κ) + f2(κ)) log(2)

+ 2

√
(f1(κ) + f2(κ))

(
log(2) + log

(
p− (2− α)s

)))
s.

Since f1(κ) + f2(κ) = f(κ) by definition, for large enough p
with s

p = o(1), we require

n > f(κ)s log
(
p− (2− α)s

)
. (7)

Next, we need to bound the projection of Z̃ into the space U cb .
Notice that

∥∥∥PUc
b
(Z̃)
∥∥∥
∞,1
≤ max

(
λs‖s̃j‖0,

r∑
k=1

∣∣∣(z̃ Uc )(k)
j

∣∣∣) .
We have λs‖S̃j‖0 ≤ λsD(S∗) < λb by our assumption on the
ratio of penalty regularizer coefficients. For all j ∈

⋂r
k=1 Uck ,

we have

r∑
k=1

∣∣∣Z̃(k)
j

∣∣∣
≤ max
j∈

⋂r
k=1
Uc
k

r∑
k=1

∣∣∣∣∣1n
〈
X

(k)
j , I−

1

n
X

(k)
Uk

(
1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1(
X

(k)
Uk

)T〉
w(k)

∣∣∣∣∣︸ ︷︷ ︸
W(k)
j

+ max
j∈

⋂r
k=1
Uc
k

r∑
k=1

∣∣∣∣∣ 1n
〈
X

(k)
j , X

(k)
Uk

(
1

n

〈
X

(k)
Uk
, X

(k)
Uk

〉)−1
〉
Z̃

(k)
Uk

∣∣∣∣∣︸ ︷︷ ︸
Z(k)
j

= max
j∈

⋂r
k=1
Uc
k

r∑
k=1

∣∣∣Z(k)
j

∣∣∣+ max
j∈

⋂r
k=1
Uc
k

r∑
k=1

∣∣∣W(k)
j

∣∣∣ .
Let v ∈ {−1,+1}r be a vector of signs such that∑r
k=1

∣∣∣W(k)
j

∣∣∣ =
∑r
k=1 vkW

(k)
j . Thus,

Var

(
r∑
k=1

∣∣∣W(k)
j

∣∣∣) = Var

(
r∑
k=1

vkW(k)
j

)
≤ 2σ2r

n
.

Using the union bound and previous discussion, for all t > 0,
we get

P

[
max

j∈
⋂r
k=1
Uc
k

r∑
k=1

∣∣∣W(k)
j

∣∣∣ ≥ t]

= P

[
max

j∈
⋂r
k=1
Uc
k

max
v∈{−1,+1}r

r∑
k=1

vkW
(k)
j ≥ t

]

≤ 2 exp

(
−
t2n

4σ2r
+ r log(2) + log

(
p− (2− α)s

))
.

Also from the previous analysis, assuming λb = κλs for some
1 < κ < 2, we get

Var

(
r∑
k=1

∣∣∣Z(k)
j

∣∣∣) = Var

(
r∑
k=1

vkZ
(k)
j

)
≤

∑r
k=1

∥∥∥Z̃(k)
j

∥∥∥2

2(√
n−
√
s
)2

=
2(1− α)sλ2

s + (τ1 + τ2)αsλ2
s + (τ1 + τ2)αs(λb − λs)2 + 2(1− τ1 − τ2)αs

λ2
b
4(√

n−
√
s
)2

=

1
κ2 (f1(κ) + f2(κ)) sλ2

b(√
n−
√
s
)2 .

and consequently for all t > 0,

P

[
max

j∈
⋂r
k=1
Uc
k

r∑
k=1

∣∣∣Z(k)
j

∣∣∣ ≥ t]

= P

[
max

j∈
⋂r
k=1
Uc
k

max
v∈{−1,+1}r

r∑
k=1

vkZ
(k)
j ≥ t

]

≤ 2 exp

(
−

t2
(√
n−
√
s
)2

1
κ2 (f1(κ) + f2(κ)) sλ2

b

+ r log(2) + log
(
p− (2− α)s

))
.

Finally, we have
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P
[∥∥∥PUc

b
(Z̃)
∥∥∥
∞,1

<λb

]
≥ P

[
max

j∈
⋂r
k=1
Uc
k

r∑
k=1

∣∣∣Z(k)
j

∣∣∣+ max
j∈

⋂r
k=1
Uc
k

r∑
k=1

∣∣∣W(k)
j

∣∣∣ < λb

]

≥ P

[
max

j∈
⋂r
k=1
Uc
k

r∑
k=1

∣∣∣Z(k)
j

∣∣∣ < t0

]

P

[
max

j∈
⋂r
k=1
Uc
k

r∑
k=1

∣∣∣W(k)
j

∣∣∣ < λb − t0

]

≥
(

1− 2 exp

(
−

t20
(√
n−
√
s
)2

1
κ2 (f1(κ) + f2(κ)) sλ2

b

+r log(2)+log
(
p−(2−α)s

)))
(

1−2 exp

(
−

(λb−t0)2n

4σ2r
+r log(2)+log

(
p−(2−α)s

)))
.

This probability goes to 1 for

t0 =

√
1
κ2 (f1(κ) + f2(κ))nsλb√

1
κ2 (f1(κ) + f2(κ))nsλb + 2σ(

√
n−
√
s)
λb

(the solution to (λb−t0)2n
4σ2r =

t20(
√
n−
√
s)2

1
κ2

(f1(κ)+f2(κ))sλ2
b

), if

λb >

√
4σ2

(
1−
√

s
n

)2
r
(
r log(2)+log

(
p−(2−α)s

))
√
n−
(
√
s+

√
1
κ2 (f1(κ)+f2(κ)) sr

(
r log(2)+log

(
p−(2−α)s

)))
provided that (substituting r = 2),

n >
2

κ2
(f1(κ) + f2(κ)) s log

(
p− (2− α)s

)
+

(
1 +

2

κ2
(f1(κ) + f2(κ)) 2 log(2)

+ 2

√
2

κ2
(f1(κ) + f2(κ))

(
2 log(2) + log

(
p− (2− α)s

)))
s.

For large enough p with s
p = o(1), we require

n >
2

κ2
f(κ)s log

(
p− (2− α)s

)
.

Combining this result with (7), the lemma follows.
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APPENDIX A
DETERMINISTIC NECESSARY OPTIMALITY CONDITIONS

In this appendix, we investigate deterministic necessary
conditions for the optimality of the solutions (B̂, Ŝ) of the
problem (2).

A. Sub-differential of `1/`∞ and `1/`1 Norms

In this section we state the sub-differential characterization
of the norms we used in out convex program. The results can
be directly derived from the definition of sub-differential of a
function.

Lemma 12 (Sub-differential of `1/`∞-Norm). The matrix
Z̃ ∈ Rp×r belongs to the sub-differential of `1/`∞-norm of
matrix B̃, denoted as Z̃ ∈ ∂

∥∥∥B̃∥∥∥
1,∞

iff

(i) for all j ∈ RowSupp(B̃), we have z̃
(k)
j ={

t
(k)
j sign

(
b̃
(k)
j

)
k ∈Mj(B̃)

0 ow.
, where, t(k)j ≥ 0 and∑r

k=1 t
(k)
j = 1.

(ii) for all j /∈ RowSupp(B̃), we have
∑r
k=1

∣∣∣z̃(k)j

∣∣∣ ≤ 1.

Lemma 13 (Sub-differential of `1/`1-Norm). The matrix Z̃ ∈
Rp×r belongs to the sub-differential of `1/`1-norm of matrix
S̃, denoted as Z̃ ∈ ∂

∥∥∥S̃∥∥∥
1,1

iff

(i) for all (j, k) ∈ Supp(S̃), we have z̃(k)j = sign
(
s̃
(k)
j

)
.

(ii) for all (j, k) /∈ Supp(S̃), we have
∣∣∣z̃(k)j

∣∣∣ ≤ 1.

APPENDIX B
PROOF OF LEMMA 2

We provide the proof of each property separately.
(P1) Suppose there exists (j0, k0) ∈ Supp(Ŝ), such that

sign(ŝ
(k)
j ) = −sign(b̂

(k)
j ). Let B̌, Š ∈ Rp×r be matrices

equal to B̂, Ŝ in all entries except at (j0, k0). Consider
the following two cases

1)
∣∣∣ŝ(k0)j0

+ b̂
(k0)
j0

∣∣∣ ≤ ∥∥∥b̂j0∥∥∥∞: Let b̌(k0)j0
= b̂

(k0)
j0

+ ŝ
(k0)
j0

and š(k0)j0
= 0. Notice that (j0, k0) /∈ Supp(Š).

2)
∣∣∣ŝ(k0)j0

+ b̂
(k0)
j0

∣∣∣ >
∥∥∥b̂j0∥∥∥∞: Let b̌

(k0)
j0

=

−sign
(
b̂
(k0)
j0

)∥∥∥b̂j0∥∥∥∞ and š
(k0)
j0

= ŝ
(k0)
j0

+ b̂
(k0)
j0
−

b̌
(k0)
j0

. Notice that sign
(
b̌
(k0)
j0

)
= sign

(
š
(k0)
j0

)
.

Since B̌ + Š = B̂ + Ŝ and ‖b̌j0‖∞ ≤ ‖b̂j0‖∞ and
‖šj0‖1 < ‖ŝj0‖1, it is a contradiction to the optimality
of (B̂, Ŝ).

(P2) We prove the result in two steps by establishing 1.
M(B̂) >

⌊
λb
λs

⌋
and 2. D(Ŝ) <

⌈
λb
λs

⌉
.

1) On the contrary, suppose there exists a row j0 ∈
RowSupp(B̂) such that

∣∣∣Mj0(B̂)
∣∣∣ ≤ ⌊

λb
λs

⌋
. Let

k∗ be the index of the element whose magnitude
is ranked

(⌊
λb
λs

⌋
+ 1
)

among the element of the

vector b̂j0 + ŝj0 . Let B̌, Š ∈ Rp×r be matrices equal
to B̂, Ŝ in all entries except on the row j0 and

b̂
(k)
j0

=



∣∣∣∣b̂(k∗)j0
+ ŝ

(k∗)
j0

∣∣∣∣ sign
(
b̂
(k)
j0

)
∣∣∣b̂(k)
j0

+ ŝ
(k)
j0

∣∣∣ ≥ ∣∣∣∣b̂(k∗)j0
+ ŝ

(k∗)
j0

∣∣∣∣
b̂
(k)
j0

+ ŝ
(k)
j0

ow,

and šj0 = ŝj0 + b̂j0 − b̌j0 . Notice that
M(B̌) >

⌊
λb
λs

⌋
and sign

(
š
(k)
j0

)
= sign

(
b̌
(k)
j0

)
for all (j0, k) ∈ Supp (šj0) since sign

(
ŝ
(k)
j0

)
=

sign
(
b̂
(k)
j0

)
for all (j0, k) ∈ Supp

(
Ŝj0

)
by

(P1). Further, since Š + B̌ = Ŝ + B̂ and
‖b̌j0‖∞ =

∣∣∣b̂(k∗)j0

∣∣∣ +
∣∣∣ŝ(k∗)j0

∣∣∣ and ‖šj0‖1 ≤

‖ŝj0‖1 +
⌊
λb
λs

⌋(∥∥∥b̂j0∥∥∥∞ − ∣∣∣b̌(k∗)j0

∣∣∣− ∣∣∣š(k∗)j0

∣∣∣), this

is a contradiction to the optimality of (B̂, Ŝ) due
to the fact that λs

⌊
λb
λs

⌋
< λb.

2) On the contrary, suppose there exists a row j0 ∈
RowSupp(Ŝ) such that ‖ŝj0‖0 ≥

⌈
λb
λs

⌉
. Let k∗ be

the index of the element whose magnitude is ranked⌈
λb
λs

⌉
among the elements of the vector b̂j0 + ŝj0 .

Let B̌, Š ∈ Rp×r be matrices respectively equal to
B̂ and Ŝ in all entries except on the row j0 and

b̂
(k)
j0

=



∣∣∣∣b̂(k∗)j0
+ ŝ

(k∗)
j0

∣∣∣∣ sign
(
b̂
(k)
j0

)
∣∣∣b̂(k)
j0

+ ŝ
(k)
j0

∣∣∣ ≥ ∣∣∣∣b̂(k∗)j0
+ ŝ

(k∗)
j0

∣∣∣∣
b̂
(k)
j0

+ ŝ
(k)
j0

ow,

and šj0 = ŝj0 + b̂j0− b̌j0 . Notice that D(Š) <
⌈
λb
λs

⌉
and sign

(
š
(k)
j0

)
= sign

(
b̌
(k)
j0

)
for all (j0, k) ∈

Supp (šj0) since sign
(
ŝ
(k)
j0

)
= sign

(
b̂
(k)
j0

)
for all

(j0, k) ∈ Supp (ŝj0). Since Š + B̌ = Ŝ + B̂ and
‖b̌j0‖∞ =

∣∣∣b̂(k∗)j0

∣∣∣ +
∣∣∣ŝ(k∗)j0

∣∣∣ and ‖šj0‖1 ≤ ‖ŝj0‖1 +(⌈
λb
λs

⌉
− 1
)(∥∥∥b̂j0∥∥∥∞ − ∣∣∣b̌(k∗)j0

∣∣∣− ∣∣∣š(k∗)j0

∣∣∣), this is

a contradiction to the optimality of (B̂, Ŝ), due to
the fact that λs

(⌈
λb
λs

⌉
− 1
)
< λs

⌊
λb
λs

⌋
< λb.

(P3) If j /∈ RowSupp(B̂) then the result is trivial.
Suppose there exists (j0, k0) ∈ Supp(Ŝ) with
j0 ∈ RowSupp(Ŝ) such that

∣∣∣b(k0)j0

∣∣∣ < ‖b̂j0‖∞.

Let B̌, Š ∈ Rp×r be matrices equal to B̂, Ŝ in all
entries except for the entry corresponding to the
index (j0, k0). Let b̌

(k0)
j0

=
∥∥∥b̂j0∥∥∥∞ sign

(
b̂
(k0)
j0

)
if∣∣∣b̂(k0)j0

+ ŝ
(k0)
j0

∣∣∣ ≥ ‖bj0‖∞ and b̌
(k0)
j0

= b̂
(k0)
j0

+ ŝ
(k0)
j0
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otherwise. Let š
(k0)
j0

= ŝ
(k0)
j0

+ b̂
(k0)
j0
− b̌

(k0)
j0

. Since

B̌ + Š = B̂ + Ŝ and
∥∥b̌j0∥∥∞ =

∥∥∥b̂j0∥∥∥∞ and
‖šj0‖1 < ‖ŝj0‖1, it is a contradiction to the optimality
of (B̂, Ŝ).

(P4) If j /∈ RowSupp(B̂) or j /∈ RowSupp(Ŝ) the result is
trivial. Suppose there exists a row j0 ∈ RowSupp(B̂) ∩
RowSupp(Ŝ) such that the result does not hold for that.
Let k∗ = arg max{k:(j,k)/∈Supp(Ŝ)}

∣∣∣b̂(k)j

∣∣∣. Let B̌, Š ∈
Rp×r be matrices equal to B̂, Ŝ in all entries except for
the row j0 and

b̂
(k)
j0

=


∣∣∣b̂(k∗)j0

∣∣∣ sign
(
b̂
(k)
j0

)
(j0, k) ∈ Supp(Ŝ)

b̂
(k)
j0

ow,

and šj0 = ŝj0 + b̂j0 − b̌j0 . Since B̌ + Š = Ŝ + B̂

and
∥∥b̌j0∥∥∞ =

∣∣∣b̂(k∗)j0

∣∣∣ and by (P2) and (P3),

‖šj0‖1 ≤ ‖ŝj0‖1 +
(⌈

λb
λs

⌉
− 1
)(∥∥∥b̂j0∥∥∥∞ − ∣∣∣b̂(k∗)j0

∣∣∣), this

is a contradiction to the optimality of (B̂, Ŝ), due to the
fact that λs

(⌈
λb
λs

⌉
− 1
)
< λs

⌊
λb
λs

⌋
< λb.

This concludes the proof of the lemma.

APPENDIX C
PROOF OF LEMMA 3

On the contrary, assume that (Ŝ, B̂) is the unique solution.
Take a non-zero row b̂j0 with j0 ∈ RowSupp(B̂). If∣∣∣Mj0(B̂)

∣∣∣ < d, then let B̌, Š ∈ Rp×r be two matrices

equal to B̂, Ŝ except on the row j0 and let b̌j0 = 0 and
šj0 = b̂j0 + ŝj0 . Then, (B̌, Š) are strictly better solutions than
(B̂, Ŝ). This contradicts the optimality of (B̂, Ŝ). Hence,∣∣∣Mj0(B̂)

∣∣∣ ≥ d. with similar argument we can conclude that∥∥∥Ŝj0∥∥∥
0
≤ d.

If
∥∥∥Ŝj0∥∥∥

0
= d, then let 0 < δ ≤ min(j0,k)∈Supp(Ŝ)

∣∣∣ŝ(k)j0

∣∣∣ and

B̌(δ), Š(δ) ∈ Rp×r be two matrices equal to B̂, Ŝ except for
the entries indexed (j0, k) ∈ Supp(Ŝ) and let b̌(k)j0

= b̂
(k)
j0

+

δsign
(
b̂
(k)
j0

)
and š

(k)
j0

= ŝ
(k)
j0
− δsign

(
ŝ
(k)
j0

)
for all (j0, k) ∈

Supp(Ŝ). Then, (B̌(δ), Š(δ)) is another solution to (2). This
contradicts the uniqueness of (B̂, Ŝ).

If
∥∥∥Ŝj0∥∥∥

0
< d, then using Lemma 2 and Equation 6, we

have

P
[∣∣∣Mj0 (B̂)

∣∣∣ ≥ d+ 1
]

=

r−d∑
i=1

P
[∣∣∣Mj0 (B̂)

∣∣∣ = d+ i
]

=

r−d∑
i=1

P

[
∃k1, . . . , ki+1∈Mj0 (B̂) ∀l = 1, . . . , i+ 1 :

‖b̂(kl)j0
+ ŝ

(kl)
j0︸ ︷︷ ︸
0

| =
∥∥∥b̂j0∥∥∥∞

]

=

r−d∑
i=1

P

[
∃k1, . . . , ki+1∈Mj0 (B̂) ∀l = 1, . . . , i+ 1 :

∣∣∣∆(kl)
j0

∣∣∣ =
∣∣∣b∗(kl)j + s

∗(kl)
j

∣∣∣+
∥∥∥b̂j∥∥∥

∞

]

=

r−d∑
i=1

P

[
∃k1, . . . , ki+1∈Mj0 (B̂) ∀l,m = 1, . . . , i+ 1 :

∣∣∣∆(kl)
j0

∣∣∣ = Ckl,km +
∣∣∣∆(km)

j0

∣∣∣ ] = 0.

In above equation Ckl,km are some constants. The last conclu-
sion follows from the fact that ∆

(kl)
j0

’s are continuous Gaussian
variables and the cardinality of this event is less than the
cardinality of the space they lie in. Hence,

∣∣∣Mj0(B̂)
∣∣∣ = d.

Let 0 < δ < ‖bj0‖∞ and B̌(δ), Š(δ) ∈ Rp×r be two
matrices equal to B̂, Ŝ except for the entries indexed (j0, k)

for k ∈ Mj0(B̂) and let b̌(k)j0
= b̂

(k)
j0
− δ and š

(k)
j0

= ŝ
(k)
j0

+ δ

for all k ∈ Mj0(B̂). Then, (B̌(δ), Š(δ)) is another solution
to (2). This contradicts the uniqueness of (B̂, Ŝ).

APPENDIX D
COORDINATE DESCENT ALGORITHM

We use the coordinate descendent algorithm described as
follows. The algorithm takes the tuple (X,Y, λs, λb, ε, B, S)
as input, and outputs (B̂, Ŝ). Note that X and Y are given
to this algorithm, while B and S are our initial guess or
the warm start of the regression matrices. ε is the precision
parameter which determines the stopping criterion.

We update elements of the sparse matrix S using the
subroutine UpdateS, and update elements in the block sparse
matrix B using the subroutine UpdateB, respectively, until
the regression matrices converge. The pseudo code is in
Algorithm 1 to Algorithm 3.

A. Correctness of Algorithms

In this algorithm, B is the block sparse matrix and S is
the sparse matrix. We alternatively update B and S until
they converge. When updating S, we cycle through each
element of S while holding all the other elements of S and
B unchanged; When updating B, we update each block Bj
(the coefficient vector of the jth feature for r tasks) as a
whole, while keeping S and other coefficient vector of B fixed.
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Algorithm 2 Our Model Solver
Input: X , Y , λb, λs, B, S and ε
Output: Ŝ and B̂

Initialization:
for j = 1 : p do

for k = 1 : r do
c
(k)
j ←

〈
X

(k)
j , y(k)

〉
for i = 1 : p do
d
(k)
i,j ←

〈
X

(k)
i , X

(k)
j

〉
end for

end for
end for

Updating:
loop
S ← UpdateS(c; d;λs;B;S)
B ← UpdateB(c; d;λb;B;S)
if Relative Update < ε then

BREAK
end if

end loop
RETURN B̂ = B, Ŝ = S

Algorithm 3 UpdateB
Input: c, d, λb, B and S
Output: B

Update B using the cyclic coordinate descent algorithm for
`1/`∞ while keeping S unchanged.

for j = 1 : p do
for k = 1 : r do
α
(k)
j ←

(
c
(k)
j −

∑
i 6=j(b

(k)
i + s

(k)
i )d

(k)
i,j

)
/d

(k)
j,j − s

(k)
i

if
∑r
k=1 |α

(k)
j | ≤ λb then

bj ← 0
else

Sort α to be |α(k1)
j | ≥ |α(k2)

j | ≥ · · · ≥ |α(kr)
j |

m∗ = arg max1≤m≤r(
∑r
k=1 |α

(km)
j | − λb)/m

for i = 1 : r do
if i > m∗ then
b
(ki)
j ← α

(ki)
j

else
b
(ki)
j ← sign(α(ki)

j )

m∗

(∑m∗

l=1 |α
(kl)
j | − λb

)
end if

end for
end if

end for
end for
RETURN B

Algorithm 4 Update-S
Input: c, d, λs, B and S
Output: S

Update S using the cyclic coordinate descent algorithm for
LASSO while keeping B unchanged.
for j = 1 : p do

for k = 1 : r do
α
(k)
j ←

(
c
(k)
j −

∑
i 6=j(b

(k)
i + s

(k)
i )d

(k)
i,j

)
/d

(k)
j,j − s

(k)
i

if |α(k)
j | ≤ λs then

skj ← 0
else
skj ← α

(k)
j − λssign(α

(k)
j )

end if
end for

end for
RETURN S

For updating B, the subproblem is updating Bj

b̂j = arg min
bj

1

2

r∑
k=1

∥∥∥r(k)j − b
(k)
j X

(k)
j

∥∥∥2
2

+ λb‖bj‖∞.(8)

If we take the partial residual vector r
(k)
j =

y(k) −
∑
l 6=j

(b
(k)
l X

(k)
l ) −

∑
l(s

(k)
l X

(k)
l ), the correctness

of this algorithm will directly follow from the correctness of
coordinate descent algorithm of `1/`∞ in [23, 24]. With the
same argument, the correctness of the Algorithm 3 can be
proven.


