
Synthesizing Programs over Recursive Data

Structures

Jayadev Misra∗

The University of Texas at Austin
Austin, Texas 78712, USA
email: misra@cs.utexas.edu

May 29, 2003

Dedicated to the memory of
Edsger Wybe Dijkstra, 1930 – 2002

1 Informal Description and Overview

This paper describes a methodology and its theoretical basis for synthesizing a
class of programs which operate on recursive data structures. The methodology
has appeared in an earlier paper by the author [6]. This paper suggests a
theoretical basis for the methodology. The theory rests on some elementary
results in fixed point theory over lattices. Most of the required mathematics is
developed in the paper.

To motivate the problem and its solution, we describe a few example prob-
lems and develop their solutions using the proposed methodology. For this
paper, the data structure we consider is finite linear sequence (also called a
string) over some alphabet.

Computing the maximum and the second maximum First, consider
the problem of computing the maximum (max) of a nonempty finite sequence
of integers. The function can be computed by a left to right scan of the input
sequence. This is because for any sequence xe —whose last element is e and
the remaining prefix x— max(xe) can be computed from max(x) and e. That
is, there is a function, h, such that max(xe) = h(max(x), e), for all x and e
(we take the max of the empty string to be −∞). The proposed computation
exploits the recursive structure of the input, by first computing the function
over the prefix, and then combining the result with the last element, e.
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Next, consider the problem of computing the second largest number (max2)
in a finite sequence of integers having at least two elements. It is no longer pos-
sible to apply the left-to-right computation strategy directly, because max2(xe)
is not a function of max2(x) and e. Therefore, we must compute a more general
function g which has the property that (1) max2(x) can be computed from g(x),
for every x, (2) g(xe), for every x and e, can be computed from g(x) and e, and
(3) g is the least generalization of max2, in the sense that it requires the smallest
amount of additional computation. For max2, the desired generalization is the
pair of functions (max, max2), whose values can be computed from left to right
over the sequence, and from which the value of max2 can be extracted.

Inductive Functions Function f which has the property that f(xe) is a
function of f(x) and e, for all x and e, is called inductive. More generally, the
value of an inductive function over a recursive data structure can be computed
from the function values over the components of the structure.

In many cases, as in max2, the given function is not inductive. A suitable
inductive generalization must be found in such cases. In some sense, the gen-
eralization should be the least possible, so that the additional computation is
minimized. This paper shows how the least inductive generalization can be
computed.

1.1 A Methodology for Constructing Inductive General-
izations

The following methodology was proposed in Misra [6] to obtain an inductive
generalization of a given function, f . Call g a generalization of f if f(xe), for
any x and e, can be computed (efficiently) from g(x) and e. Let h be the least
generalization of f ; if f = h then “stop”, because f is inductive. Otherwise
(f 6= h), set f to h, and iterate this step.

The methodology just described is admittedly vague, particularly, for terms
such as “least”, “generalization”, and, even, “inductive”. The purpose of this
paper is to assign exact meanings to these terms and show that the least induc-
tive generalization is the limit of the sequence of approximations, obtained by
the iterations.

Before developing the theory, we show the application of the proposed method-
ology on a small problem which has been treated in the literature. Our method-
ology arrives at the solution systematically and with very little effort.

1.2 Maximum Segment Sum

This problem has been popularized by Bentley [1]. Given is a finite sequence of
integers. A segment in this sequence is a subsequence of contiguous elements; a
segment may be empty. A segment sum is the sum of the elements in that seg-
ment; empty segment sum is zero. It is required to find the maximum segment
sum (mss) in the given sequence.
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x mss(x) e xe mss(xe)
4 -5 1 4 3 4 -5 1 3 4
4 -5 2 4 3 4 -5 2 3 5

Table 1: mss is not inductive

A little thought shows that mss is not inductive: given mss(x) and e, for
arbitrary x and e, mss(xe) can not be computed in general. Table 1 shows two
cases where mss(x) and e are identical, but mss(xe) are different.

The counterexample in Table 1 also guides us to the generalization that is
needed to get an inductive function. To compute mss(xe), it is sufficient to
know (in addition to mss(x) and e) the sum of the maximum segment ending
at the last element of x. Call this quantity mssf (x); for empty x, mssf (x) = 0.
Then,

mss(xe) = max(mss(x), 0,mssf (x) + e)

This equation can be understood as follows. The maximum segment in xe either
does not include e —then, it is either the maximum segment within x or the
empty segment—, or it includes e —then, it is the maximum segment ending at
the last element of x (which could be empty) followed by e.

The next step is to repeat the argument with the pair of functions (mss,mssf ).
Can both of these function values at xe be computed from those at x and e?
We know the answer for mss. For mssf we note,

mssf (xe) = max(0,mssf (x) + e)

using arguments similar to those in the last paragraph. Therefore, the pair
(mss,mssf ) is an inductive generalization of mss. Using our theory, it can be
shown that this is the least inductive generalization.

1.3 Number of Iterations to Compute Inductive General-
ization

The two examples, max2 in the introduction and maximum segment sum of
section 1.2, are easily treated using our methodology, because the inductive gen-
eralizations can be computed with a bounded number of iterations. In general,
however, the number of iterations is not bounded, and may not even be finite.
In many cases, the least inductive generalization is of the form (f0, . . . , fn),
where each fi is a function over the argument and n is the length of the string;
see the computation of the longest ascending sequence [6], the prefix function
of a string, used in the Knuth-Morris-Pratt string matching algorithm [5], or
the span of a sequence, treated in Goodrich and Tamassia [3, section 3.5]. Our
theory shows that the least inductive generalization is the limiting value of a se-
quence of approximations, and the length of this sequence need not be bounded.
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1.4 Overview of the Theory and Paper

In section 2, we define an order relation, ¹, over the set of functions whose
domains are finite sequences (over a given alphabet). Roughly, f ¹ g means
that f can be computed from g; more precisely, it means that f = h ◦ g, for
some function h (◦ denotes function composition). Relation ¹ is a preorder, not
a partial order; call g and h equivalent if g ¹ h and h ¹ g. The least inductive
generalization of a function is not unique; it can be any one of a set of equivalent
functions.

In order to construct a unique inductive generalization, in section 3 we look
at the set of partitions of the domain, where each partition corresponds to an
equivalence class of functions. Most of this paper is concerned with partitions.
Define r ≤ s, for partitions r and s, if f ¹ g for functions f and g from
the corresponding equivalence classes. Relation ≤ is a partial order; moreover,
partitions form a lattice under this order.

Section 4 contains a definition of inductive functions (and inductive parti-
tions) and enumeration of some of their properties. It is shown, in particular,
that the inductive partitions form a sublattice.

Each step of our methodology applies a function σ mapping a partition to a
partition. The definition of σ is given in section 5. We show that σ is monotonic
(with respect to ≤) and continuous. Additionally, the inductive partitions are
precisely the fixed points of σ. The least fixed point of σ at or above r, r∗, is the
desired least inductive generalization of partition r; r∗ is the lub of the sequence
σi(r), i ≥ 0. See figure 1 for a pictorial depiction of the lattice structures and
the application of the methodology.

Lattice of partitions Lattice of Inductive Partitions

Application of

Fixed points of σ

σ

Figure 1: Schematic of the application of the methodology

The theory allows us to get an explicit characterization of the least inductive
generalization; see section 6. Specifically, any least inductive generalization f∗

of function f satisfies, for all x and y:

f∗(x) = f∗(y) ≡ 〈∀z :: f(xz) = f(yz)〉
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2 Function Space

We consider the set of functions from sequences over a given alphabet. We would
like to define an order relation over this function space so that for functions f and
g, f ¹ g iff f is computable from g (i.e., we can compute f(x) given g(x), for any
x). Unfortunately, we can’t develop a theory under this interpretation, because
computable functions are not closed under least upper bound and greatest lower
bound, a point we discuss in section 7.3. So, we adopt a more liberal definition
of function ordering, which only asserts that if f is computable from g, then
f ¹ g.

Notation

Let A be an alphabet, A∗ the set of finite sequences (also called strings) over A.
x, y, z are arbitrary elements of A∗.
f, g, h are functions whose domains are A∗.
Function composition is denoted by ◦.

Definition f ¹ g iff f = h ◦ g for some function h (h is a function from the
range of g to the range of f). 2

Properties of ¹
F2.1 These properties follow directly from the definition of ¹.

1. ¹ is reflexive: f ¹ f .

2. ¹ is transitive: f ¹ g ∧ g ¹ h ⇒ f ¹ h.

3. c ¹ f , where c is a constant function.

4. f ¹ id, where id : A∗ → A∗ is the identity function.

5. 〈f ¹ g〉 ≡ 〈∀x, y :: g(x) = g(y) ⇒ f(x) = f(y)〉.
6. f ¹ g ⇒ f ◦ h ¹ g ◦ h, for any h.

3 Partition Space

Relation ¹ is a preorder, not a partial order. That is, f ¹ g and g ¹ f does not
imply that f = g. For instance, for two different constant functions c and d,
c ¹ d and d ¹ c. However, for our purposes, if f ¹ g and g ¹ f , we may consider
f and g equivalent, because either function may be used to compute h, where
h ¹ f or h ¹ g. So, instead of individual functions, we consider equivalence
classes of functions where f and g are defined to be equivalent if f ¹ g and
g ¹ f . These equivalence classes correspond precisely to the partitions of A∗,
as explained next.

A partition is an equivalence relation over A∗. For every function f there is
a unique partition π(f) defined by
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π-definition: x π(f) y ≡ f(x) = f(y)

We say that f induces the partition π(f) and π(f) corresponds to f . Conversely,
every partition r corresponds to some function (perhaps, many functions).

A constant function induces the coarsest partition —all elements of A∗ are
in one equivalence class— and id the finest —every element of A∗ is in a dif-
ferent equivalence class. We define an order relation, ≤, over partitions which
formalizes the notions of coarse and fine; it is closely related to the ordering
over functions; f ¹ g means that f induces a coarser partition than g.

Working with partitions, instead of functions, has the advantage that ≤ is
a partial order. Further, the partitions form a complete lattice where ⊥ and
> correspond to a constant function and id, respectively. The lattice structure
of partitions is well-known. We enumerate some of its properties, below, for
completeness.

Notation

r, s, t denote partitions over A∗.
We write f ∼ g for f ¹ g ∧ g ¹ f .

Definition (Ord) 〈r ≤ s〉 ≡ 〈∀x, y :: x s y ⇒ x r y〉.

This definition is used extensively in the proofs; so, we have given it a name,
(Ord), by which we will refer to it.

3.1 Properties of ≤
F3.1 The following propositions follow directly from the definitions.

1. ≤ is a partial order, i.e., ≤ is reflexive, antisymmetric and transitive.

2. π(f) ≤ π(g) ≡ f ¹ g.
π(f) = π(g) ≡ f ∼ g.

3. c ≤ r, where c is the partition corresponding to any constant function.

4. r ≤ id, where id is the partition corresponding to the identity function
over A∗.

5. x π(f ◦ g) y ≡ g(x) π(f) g(y), for all x and y.

We show proofs of two of these propositions, to familiarize the reader with
the proof style.

• Part(2), π(f) ≤ π(g) ≡ f ¹ g: For arbitrary x and y,

π(f) ≤ π(g)
≡ {definition of ≤ from (Ord)}
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x π(g) y ⇒ x π(f) y
≡ {π(g) and π(f) from π-definition}

g(x) = g(y) ⇒ f(x) = f(y)
≡ {from F2.1(part 5)}

f ¹ g

• Part(5), x π(f ◦ g) y ≡ g(x) π(f) g(y):

g(x) π(f) g(y)
≡ {π(f) from π-definition}

f(g(x)) = f(g(y))
≡ {function composition}

(f ◦ g)(x) = (f ◦ g)(y)
≡ {π(f ◦ g) from π-definition}

x π(f ◦ g) y

3.2 Lattice Structure of the Partition Space

Partition s is an upper bound of the set of partitions J if for every r in J , r ≤ s.
As usual, s is the least upper bound (lub) if s ≤ u for every upper bound u.
Define the greatest lower bound (glb) analogously. We write the lub of J as tJ
and the glb as uJ . We show that any set of partitions has a lub and a glb;
hence, the partitions constitute a complete lattice[2].

Notation t and u have the highest binding power over all functions.

In preparation for defining the lub and glb of a set of partitions, J , we define
a graph of J . The nodes in the graph are the elements of A∗. The edges are
labeled with the elements of J (i.e., the names of the partitions in J). There is
an undirected edge labeled r between x and y, for any r in J , provided x r y.
Let J∗ be the set of finite sequences over J . Any P in J∗, called a path, is either
empty or of the form rQ, where r is a partition in J and Q is a path. We write
x P y to mean that there is a path between x and y in the graph of J whose
edges are labeled as in P . Formally, for all x and y

x P y ≡ x = y, if P is empty,
x rQ y ≡ 〈∃z :: x r z ∧ z Q y〉

F3.2 The relations u and v, defined below, are tJ and uJ , respectively.

〈∀x, y :: x u y ≡ (∀r : r ∈ J : x r y)〉
〈∀x, y :: x v y ≡ (∃P : P ∈ J∗ : x P y) 〉

Proof: See Appendix A. 2

It follows from (F3.2) that

t{} = ⊥, u{} = >
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The following obvious property of lub and glb follows from their definition.

F3.3 R ⊆ S ⇒ (uS ≤ uR) ∧ (tR ≤ tS)

Tuples of Functions For a pair of functions f and g, (f, g) is the function
whose value is the pair (f(x), g(x)) for argument x. The following facts can
be proved easily, use F2.1, part(5) for part(1), and the definition of (f, g) for
part(2).

F3.4 Facts about tuples:

1. f ¹ g ∧ u ¹ v ⇒ (f, u) ¹ (g, v)

2. π(f, g) = π(f) t π(g), i.e.,
x π(f, g) y ≡ x π(f) y ∧ x π(g) y

4 Inductive Functions and Partitions

The material developed in the last two sections provide the basis for defini-
tions of inductive functions and partitions. In sections 4.1 and 4.2, we define
extensions of functions and partitions, which are used in the subsequent defi-
nitions. In section 4.3, we define inductive functions and partitions, and note
some of their properties. We show in section 4.4 that inductive partitions form
a complete lattice.

Notation and Terminology

ε is the empty sequence.
e denotes a symbol in A, and ‘e’ is the sequence containing e.
Any sequence over A is either ε or a sequence x followed by a symbol e, written
as xe.

4.1 Extensions of Functions

Definition For any f : A∗ → R, define its extension f ′ : A∗ → (R, A∗) by

• f ′(ε) = (f(ε), ε).

• f ′(xe) = (f(x), ‘e’).

We give a more elaborate definition of extension, which is useful in estab-
lishing its properties. We define two functions, pre and last on sequences, as
follows.

pre : A∗ → A∗, and last : A∗ → A∗

pre(ε) = ε, and last(ε) = ε
pre(xe) = x, and last(xe) = ‘e’
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Then,

f ′ = (f ◦ pre, last)

Note that 〈x = y〉 ≡ 〈pre(x) = pre(y) ∧ last(x) = last(y)〉.

F4.1 f ¹ g ⇒ f ′ ¹ g′

Proof:

f ′

= {definition}
(f ◦ pre, last)

¹ {f ¹ g ⇒ f ◦ pre ¹ g ◦ pre, from (F2.1, part 6). Also, last ¹ last.
Apply (F3.4(part 1))}

(g ◦ pre, last)
= {definition}

g′ 2

Corollary f ∼ g ⇒ f ′ ∼ g′ 2

4.2 Extensions of Partitions

Definition The extension of partition r, written as r′, is defined by:

r = π(f) ≡ r′ = π(f ′)

We show that this is a valid definition, i.e., if r = π(f) and r = π(g), then
r′ = π(f ′) and r′ = π(g′). This amounts to proving that π(f) = π(g) ⇒
π(f ′) = π(g′), shown as a corollary to F4.2, below.

F4.2 π(f) ≤ π(g) ⇒ π(f ′) ≤ π(g′)

Proof:

π(f) ≤ π(g)
≡ {from F3.1(part 2}

f ¹ g
⇒ {from F4.1}

f ′ ¹ g′

≡ {from F3.1(part 2}
π(f ′) ≤ π(g′) 2

By using symmetry, π(g) ≤ π(f) ⇒ π(g′) ≤ π(f ′), and using the antisym-
metry of ≤,
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Corollary π(f) = π(g) ⇒ π(f ′) = π(g′) 2

F4.3 For arbitrary x and y, and partition r,

x r′ y ≡ 〈pre(x) r pre(y)〉 ∧ 〈last(x) = last(y)〉

Proof: Let f be such that r = π(f).

x r′ y
≡ {r′ = π(f ′)}

x π(f ′) y
≡ {f ′ = (f ◦ pre, last)}

x π(f ◦ pre, last) y
≡ {from F3.4(part 2)}

x π(f ◦ pre) y ∧ x π(last) y
≡ {from F3.1(part 5)}

pre(x) π(f) pre(y) ∧ x π(last) y
≡ {r = π(f) and x π(last) y ≡ last(x) = last(y)}

pre(x) r pre(y) ∧ last(x) = last(y) 2

The following two propositions are direct consequences of F4.3.

F4.4 For arbitrary x, y and e, xe r′ ye ≡ x r y

F4.5 For partitions r and s, 〈∀x, y, e :: x r y ⇒ xe s ye〉 ⇒ s ≤ r′

4.3 Definitions of Inductive Functions and Partitions

Definition

Function f is inductive iff f ¹ f ′. Partition r is inductive iff r ≤ r′.

The definition of inductive function is motivated by the following consid-
erations. Function f ’s value can be computed by a left to right scan of its
argument string iff for any x and e, f(xe) is a function of f(x) and e, i.e.,
f(xe) = g(f(x), ‘e’), for some g. We show that in this case f is inductive.

Suppose f : A∗ → R, and there is a function g : R×A∗ → R such that
f(xe) = g(f(x), ‘e’), for all x and e. Define h : R×A∗ → R by

h(u, v) =
{

u if v = ε
g(u, v) if v 6= ε

Then,

h(f ′(ε))
= {definition of f ′: f ′(ε) = (f(ε), ε)}

h(f(ε), ε)
= {definition of h}

f(ε)
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And,

h(f ′(xe))
= {definition of f ′: f ′(xe) = (f(x), ‘e’)}

h(f(x), ‘e’)
= {definition of h}

g(f(x), ‘e’)
= {definition of g}

f(xe)

In all cases, therefore, h(f ′(x)) = f(x). Hence, f ¹ f ′, i.e., f is inductive.
A similar proof shows that an inductive function’s value can be computed

by a left to right scan of its argument. More generally, if f ¹ g′, then f(xe) is
a function of g(x) and e.

F4.6 Let f ∼ g. Then,

f inductive ≡ g inductive

Proof: We show that f inductive ⇒ g inductive. The converse follows by
symmetry.

f inductive
⇒ {definition of inductive}

f ¹ f ′

⇒ {from f ∼ g, f ¹ g and g ¹ f}
g ¹ f , f ¹ f ′, f ¹ g

⇒ {from F4.1, f ¹ g ⇒ f ′ ¹ g′}
g ¹ f , f ¹ f ′, f ′ ¹ g′

⇒ {transitivity of ¹}
g ¹ g′

⇒ {definition of inductive}
g inductive

F4.7 f inductive ≡ π(f) inductive

Proof:

f inductive
≡ {definition of inductive}

f ¹ f ′

≡ {from F3.1(part 2)}
π(f) ≤ π(f ′)

≡ {definition of inductive partition}
π(f) inductive 2

F4.8 Partition r is inductive iff

〈∀x, y, e :: x r y ⇒ xe r ye〉
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Proof: The proof is by mutual implication.

Part 1. Let r be inductive, i.e., r ≤ r′. Consider arbitrary x, y and e such that
x r y. We show xe r ye.

x r y
≡ {from (F4.4)}

xe r′ ye
⇒ {r is inductive: r ≤ r′. From (Ord)}

xe r ye

Part 2. Suppose 〈∀x, y, e :: x r y ⇒ xe r ye〉. We show that r is inductive, i.e.,
r ≤ r′. The proof follows from F4.5, letting r be r and s be r. 2

Notation For a set of partitions J , J ′ = {r′| r ∈ J}.
The following result is central to the subsequent proofs.

F4.9 For any J , u(J ′) = (uJ)′

Proof: See appendix B.

4.4 Lattice Structure over Inductive partitions

The set of all inductive partitions form a lattice. This is because the lub and
glb of a set of inductive partitions is inductive, which we show below. Note that
> and ⊥ are inductive.

Let S be a set of inductive partitions, and let u = tS. To prove that u is
inductive, it is sufficient, from (F4.8), to show that for arbitrary x, y and e,
x u y ⇒ xe u ye.

x u y
≡ {definition of tS from (F3.2)}

〈∀r : r ∈ S : x r y〉
⇒ {all partitions in S are inductive. Apply (F4.8)}

〈∀r : r ∈ S : xe r ye〉
⇒ {definition of tS from (F3.2)}

xe u ye

Let v = uS. We show v is inductive by proving v ≤ v′. Since v is the glb,

〈∀r : r ∈ S : v ≤ r〉
⇒ {all r in S are inductive: r ≤ r′}

〈∀r : r ∈ S : v ≤ r′〉
⇒ {S′ = {r′| r ∈ S}}

〈∀t : t ∈ S′ : v ≤ t〉
⇒ {definition of glb}

v ≤ u(S′)
⇒ {from F4.9, u(S′) = (uS)′}
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v ≤ (uS)′

⇒ {v = uS. Hence, v′ = (uS)′}
v ≤ v′

5 The Synthesis Methodology

The program synthesis problem treated in this paper is as follows. Given f
find f∗ such that (1) f ¹ f∗, (2) f∗ is inductive, and (3) f∗ is a least function
satisfying (1) and (2). Observe that f∗ may not be unique; any function g where
f∗ ∼ g satisfies these requirements. However, the partition corresponding to f∗

is unique (recall that f∗ ∼ g ⇒ π(f∗) = π(g)). Therefore, we compute the
unique partition π(f∗), using the following methodology.

Let r = π(f). We define a function σ over partitions which is continuous.
The limiting value of the sequence σi(r), i ≥ 0, is π(f∗).

Definition of σ: For a given r, let σ(r) = uR, where R = {s| r ≤ s ∧ r ≤ s′}
F5.1 σ(r) satisfies the following propositions.

1. r ≤ σ(r).

2. r ≤ (σ(r))′.

3. σ is monotonic with respect to ≤, i.e.,

r ≤ t ⇒ σ(r) ≤ σ(t)

4. σ is continuous, i.e., for a set of partitions S

σ(tS) = t(σ(S)), where
σ(S) = {σ(r)| r ∈ S}

5. r is inductive iff r is a fixed point of σ. 2

Proof of F5.1, part(1); r ≤ σ(r): From the definition of R,

〈∀s : s ∈ R : r ≤ s〉
⇒ {r is a lower bound of R. From the definition of glb}

r ≤ uR
⇒ {uR = σ(r)}

r ≤ σ(r) 2

Proof of F5.1, part(2); r ≤ (σ(r))′: From the definition of R,

〈∀s : s ∈ R : r ≤ s′〉
⇒ {from the definition of glb}

r ≤ u(R′)
⇒ {from (F4.9), u(R′) = (uR)′}

r ≤ (uR)′

⇒ {σ(r) = uR}
r ≤ (σ(r))′ 2
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It follows from F5.1, part(1 and 2) that σ(r) ∈ R. Hence, we have:

F5.2 t = σ(r) ≡ t ∈ R ∧ 〈∀s : s ∈ R : t ≤ s〉, where
R = {s| r ≤ s ∧ r ≤ s′}

Proof of F5.1, part(3); σ is monotonic: Let

R = {s| r ≤ s ∧ r ≤ s′} and T = {s| t ≤ s ∧ t ≤ s′}
r ≤ t

⇒ {definitions of R and T}
〈∀s : s ∈ T : s ∈ R〉

⇒ {set theory}
T ⊆ R

⇒ {(F3.3)}
uR ≤ uT

⇒ {σ(r) = uR and σ(t) = uT}
σ(r) ≤ σ(t) 2

Proof of F5.1, part(4); σ is continuous: Let u = tS, v = t(σ(S)). We show
σ(u) = v. Proof is in two parts.

(1) v ≤ σ(u): For any r, r ∈ S,

r ≤ u , u is an upper bound of S
σ(r) ≤ σ(u) , σ is monotonic, from F5.1, part(3)
σ(u) is an upper bound of σ(S)

, from above
v ≤ σ(u) , v = t(σ(S))

(2) σ(u) ≤ v:
First, we show that v is an upper bound of S, i.e., for any r, r ∈ S, r ≤ v.

r ≤ σ(r) , from (F5.1)
σ(r) ≤ v , v is an upper bound of σ(S)
r ≤ v , from above two

Next, we show that v′ is an upper bound of S, i.e., for any r, r ∈ S, r ≤ v′.

σ(r) ≤ v , v is an upper bound of σ(S)
(σ(r))′ ≤ v′ , from σ(r) ≤ v, applying (F4.1)
r ≤ (σ(r))′ , from F5.1, part(2)
r ≤ v′ , from above two

Now, we complete the proof of σ(u) ≤ v. Let U = {s| u ≤ s ∧ u ≤ s′}.
v and v′ are upper bounds of S

, from above proofs
u ≤ v ∧ u ≤ v′ , u is tS
v ∈ U , U = {s| u ≤ s ∧ u ≤ s′}
σ(u) ≤ v , σ(u) = uU and v ∈ U 2
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Proof of F5.1, part(5); r ≤ r′ iff r = σ(r):

r = σ(r)
≡ {from F5.2 using r for t}

r ∈ R ∧ 〈∀s : s ∈ R : r ≤ s〉
≡ {the second term is true from the definition of R}

r ∈ R
≡ {definition of R}

r ≤ r ∧ r ≤ r′

≡ {r ≤ r from the reflexivity of ≤}
r ≤ r′ 2

Theorem 1: Let r∗ be the lub of the chain σi(r), for i ≥ 0. Then, r∗ is the
least fixed point of σ at or above r, i.e.,

r ≤ r∗, σ(r∗) = r∗, and
r∗ = u{s| r ≤ s ∧ σ(s) = s}.

Proof: The proof is similar to the proof of the least fixed point theorem for a
continuous function, see Stoy[7]. 2

The fixed points of σ are exactly the inductive partitions, from F5.1, part(5);
so, we have:

Corollary: r∗ is the least inductive partition at or above r. 2

6 Characterization of Least Inductive General-
ization

In the previous section, we have characterized the least inductive generalization,
r∗, of r as the limit of a sequence. In this section, we give a direct characteriza-
tion which can be used to verify if a given partition (or function) is indeed the
least inductive generalization. It is possible that the characterization given in
this section may be the basis of the synthesis procedure.

In the following proposition we give an explicit characterization of σi(r) and
r∗ in terms of r. In the following, |z| is the length of string z.

F6.1 For arbitrary x and y:

1. x σi(r) y ≡ 〈∀z : |z| ≤ i : xz r yz〉
2. x r∗ y ≡ 〈∀z :: xz r yz〉
Then, we deduce from (part 2) that a least inductive generalization f∗ of f

satisfies (since r∗ = π(f∗)):

f∗(x) = f∗(y) ≡ 〈∀z :: f(xz) = f(yz)〉
We start the proof of F6.1 by proving a special case of F6.1(part 1), for

i = 1.
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Lemma: For arbitrary x and y,

x σ(r) y ≡ 〈∀z : |z| ≤ 1 : xz r yz〉

Proof: Define partition u by:

x u y ≡ x r y ∧ 〈∀e :: xe r ye〉 (A)

Proof of the lemma amounts to showing that u = σ(r). To prove u = σ(r),
according to F5.2, it is (necessary and) sufficient to show that

(1) r ≤ u,
(2) r ≤ u′, and
(3) 〈∀s : r ≤ s ∧ r ≤ s′ : u ≤ s〉

Proof of (1); r ≤ u: We show, according to (Ord),

x u y ⇒ x r y

which follows from (A).

Proof of (2); r ≤ u′: For any x, y and e

true
⇒ {from (A)}

x u y ⇒ xe r ye
⇒ {from F4.5, letting r be u and s be r}

r ≤ u′

Proof of (3); 〈∀s : r ≤ s ∧ r ≤ s′ : u ≤ s〉: Consider any s such that
r ≤ s ∧ r ≤ s′. We prove u ≤ s by showing x s y ⇒ x u y.

x s y
⇒ {from F4.4, x s y ⇒ 〈∀e :: xe s′ ye〉}

x s y ∧ 〈∀e :: xe s′ ye〉
⇒ {r ≤ s ∧ r ≤ s′; use (Ord)}

x r y ∧ 〈∀e :: xe r ye〉
⇒ {from (A)}

x u y 2

Proof of F6.1(part 1); x σi(r) y ≡ 〈∀z : |z| ≤ i : xz r yz〉:
The proof is by induction on i.

• i = 0:

〈∀z : |z| ≤ i : xz r yz〉
≡ {i = 0}

x r y
≡ {i = 0}

x σi(r) y
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• i + 1, i ≥ 0:

x σi+1(r) y
≡ {σi+1(r) = σi(σ(r))}

x σi(σ(r)) y
≡ {induction hypothesis}

〈∀z : |z| ≤ i : xz σ(r) yz〉
≡ {previous lemma}

〈∀z : |z| ≤ i :
〈∀w : |z| ≤ 1 : xzw r yzw〉

〉
≡ {properties of string concatenation}

〈∀z : |z| ≤ i + 1 : xz r yz〉 2

Proof of F6.1(part 2); x r∗ y ≡ 〈∀z :: xz r yz〉:
x r∗ y

≡ {r∗ = t{σi(r)| i ≥ 0}; definition of lub from F3.2}
〈∀i : i ≥ 0 : x σi(r) y〉

≡ {from F6.1(part 1)}
〈∀i : i ≥ 0 :

〈∀z : |z| ≤ i : xz r yz〉
〉

≡ {predicate calculus}
〈∀z :: xz r yz〉 2

7 Discussion

7.1 Functions over Recursive Data Structures

It is possible to generalize this theory to apply to functions over recursive data
structures. An inductive function over such a structure has the property that
its value for any specific structure can be computed from the function values
over the components of the structure. For example, function f is inductive over
binary trees if for any tree t, which has tl, tr and r as the left and right subtrees,
and the root, respectively, f(t) is a function of f(tl), f(tr) and r. The definitions
of extension and inductive function (partition) are analogous to the treatment
given in section 4. The results of that section need to be proven for the specific
recursive data structure. The results of section 5 are completely independent
of the specific data structure. The characterization given in section 6 has to be
specialized for each recursive structure.

7.2 Limitations of the theory

The theory provides a justification for the programming methodology described
in section 1.1. It does not provide a procedure for computing the fixed point
which can be implemented on a machine. In fact, it is unlikely that a present-day
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theorem prover can establish that a function is inductive, or show a counterex-
ample to guide programmers in their search for function generalizations.

A more serious drawback is that the notion of computability had to be aban-
doned to develop the theory: f ¹ g does not mean that f can be computed from
g; it means that f = h ◦ g. It is not guaranteed that h is efficiently computable,
or even computable at all. Therefore, the appropriate way of computing the
value of f may not be through its inductive generalization. See section 7.3 for
the difficulties in limiting the theory to computable functions.

Finally, we have considered only computations which proceed from left to
right on a sequence. Therefore, a function like quicksort (see Knuth [4]) can not
be synthesized by our methods. However, heapsort(see Knuth [4]), where the
heap is built by scanning the sequence from left to right, is inductive, and can,
possibly, be synthesized by our scheme.

7.3 Limiting the Study to Computable Functions

We defined f ¹ g to be f = h ◦ g, for some function h. In any practical
situation, we want all three functions —f , g and h— to be computable. In
fact, we would like h to be polynomially (even linearly) computable so that the
desired value, f(x) for input x, is extracted from g(x) efficiently. Unfortunately,
our theory does not apply if the definition of ¹ is suitably strengthened, because
the partitions corresponding to such functions do not form a complete lattice.

To explain this remark, we define a class of elementary functions; call the
corresponding partitions elementary partitions. Each elementary function value
is easy to compute; in fact, the function value for an argument x can be com-
puted in time proportional to the length of x by a Turing machine. However,
the glb of a set of elementary partitions may correspond to an uncomputable
function. More generally, we show that for any function g there is a set of
elementary partitions, S, such that uS = π(g). Since our proposed method-
ology requires computing glbs, we can’t restrict ourselves to only computable
functions and their partitions.

Define elementary function, fpq : A∗ → A∗, where p and q are strings, as
follows.

fpq(x) =
{

x if p 6= x
q if p = x

Note that fpq(p) = q and fpq(q) = q. Thus, p π(fpq) q holds. Except for the
arguments p and q, the function values of fpq are all distinct.

For any function g let

S = {π(fpq)| g(p) = g(q)}, i.e., π(fpq) ∈ S ≡ g(p) = g(q).

We show that uS = π(g). That is, based on F3.2, we show that for any x and
y,

x π(g) y ≡ 〈∃P : P ∈ S∗ : x P y〉
or, equivalently,

g(x) = g(y) ≡ 〈∃P : P ∈ S∗ : x P y〉
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Proof is by mutual implication.

• g(x) = g(y) ⇒ 〈∃P : P ∈ S∗ : x P y〉, for any x and y:

g(x) = g(y)
≡ {definition of S}

π(fxy) ∈ S
⇒ {let path P be the sequence π(fxy). Since x π(fxy) y holds, x P y}

〈∃P : P ∈ S∗ : x P y〉

• 〈∃P : P ∈ S∗ : x P y〉 ⇒ g(x) = g(y), for any x and y: Proof is by induction
on the length of P .

P is empty:

x P y
⇒ {P is empty}

x = y
⇒ {predicate calculus}

g(x) = g(y)

P = rQ, where r ∈ S and Q ∈ S∗:

x P y
⇒ {P = rQ. There exists a z such that}

x r z ∧ z Q y
⇒ {x r z ∧ r ∈ S ⇒ g(x) = g(z)}

g(x) = g(z) ∧ z Q y
⇒ {induction hypothesis on z Q y}

g(x) = g(z) ∧ g(z) = g(y)
⇒ {predicate calculus}

g(x) = g(y)

A Appendix: Proof of F3.2

The statement of F3.2 is: The relations u and v, defined below, are tJ and uJ ,
respectively.

〈∀x, y :: x u y ≡ (∀r : r ∈ J : x r y)〉
〈∀x, y :: x v y ≡ (∃P : P ∈ J∗ : x P y) 〉

First, we show that u and v are partitions, i.e., equivalence relations over
A∗. For u, it follows from the fact that conjunction of equivalence relations is
an equivalence relation. For v, x v y holds provided x and y belong to the same
connected component of the graph of J . Hence, v is an equivalence relation.

Next, we show that u = tJ . For any r, r ∈ J , x u y ⇒ x r y, from the
definition of u. So, r ≤ u; that is, u is an upper bound. To see that u is the
lub, consider any upper bound t; we show u ≤ t.
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〈∀x, y :: x t y ⇒ (∀r : r ∈ J : x r y)〉 , (Ord) and that t is an upper bound
〈∀x, y :: x t y ⇒ x u y〉 , from above and definition of u
u ≤ t , (Ord)

Now, we show that v is the glb of J . Note that J∗ is never empty; if J is the
empty set, the only path in J∗ is the empty path; so, v is the identity partition.

First, we show that v is a lower bound of J , i.e., for any r, r ∈ J , v ≤ r.
From (Ord), we need to show that for arbitrary x and y, x r y ⇒ x v y.

x r y
⇒ {let P be the sequence that consists only of r}

x P y
⇒ {definition of x v y}

x v y

We show that v is the glb, as follows: for any lower bound t of J , x v y ⇒
x t y, for any x and y; therefore, t ≤ v, from (Ord). From the definition of v,
x v y implies that there is a path P between x and y. The proof is by induction
on n, the length of P .

• n = 0:

x v y
⇒ {P connects x and y; t is a partition, so t is reflexive}

x P y ∧ x t x
⇒ {P is empty since its length is 0}

x = y ∧ x t x
⇒ {predicate calculus}

x t y

• n + 1:

x v y
⇒ {a path of the form rQ connects x and y}

x rQ y
⇒ {definition of path}

〈∃z :: x r z ∧ z Q y〉
⇒ {t ≤ r. Hence x r z ⇒ x t z}

〈∃z :: x t z ∧ z Q y〉
⇒ {induction hypothesis: length of Q is n}

〈∃z :: x t z ∧ z t y〉
⇒ {t is a partition, so t is transitive}

〈∃z :: x t y〉
⇒ {predicate calculus}

x t y 2
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B Appendix: Proof of F4.9

The proposition F4.9 is:

For any J , u(J ′) = (uJ)′

The proof is as follows. We have to show that for arbitrary x and y

x u(J ′) y ≡ x (uJ)′ y
≡ {definition of u(J ′)}

〈∃P : P ∈ (J ′)∗ : x P y〉 ≡ x (uJ)′ y
≡ {apply F4.3 to the second term}

〈∃P : P ∈ (J ′)∗ : x P y〉 ≡ 〈pre(x) (uJ) pre(y) ∧ last(x) = last(y)〉
≡ {definition of uJ}

〈∃P : P ∈ (J ′)∗ : x P y〉 ≡
〈∃Q : Q ∈ J∗ : pre(x) Q pre(y) ∧ last(x) = last(y)〉

The proof of this equivalence is by mutual implication. The proof obligations
are, for arbitrary x and y:

1. 〈∀P : P ∈ (J ′)∗ : x P y ⇒
〈∃Q : Q ∈ J∗ : pre(x) Q pre(y) ∧ last(x) = last(y)〉〉

2. 〈∀Q : Q ∈ J∗ : pre(x) Q pre(y) ∧ last(x) = last(y) ⇒
〈∃P : P ∈ (J ′)∗ : x P y〉〉

In each case, the proof is by induction on path lengths, of P in part 1 and
Q in part 2. The base cases are, with P empty in part 1 and Q empty in part
2:

Base 1. x = y ⇒ 〈∃Q : Q ∈ J∗ : pre(x) Q pre(y) ∧ last(x) = last(y)〉
Base 2. pre(x) = pre(y) ∧ last(x) = last(y) ⇒ 〈∃P : P ∈ (J ′)∗ : x P y〉

Noting that

〈x = y〉 ≡ 〈pre(x) = pre(y) ∧ last(x) = last(y)〉
the two cases are proved by setting Q and P to empty paths, respectively. Now,
we prove the inductive cases.

• Part 1. P = r′R where r′ ∈ J ′ and R ∈ (J ′)∗:

x P y
⇒ {P = r′R. For some z}

x r′ z ∧ z R y
⇒ {from F4.3, applied to x r′ z}

pre(x) r pre(z) ∧ last(x) = last(z) ∧ z R y
⇒ {induction hypothesis on z R y; for some S, S ∈ J∗:}

pre(x) r pre(z) ∧ last(x) = last(z) ∧ pre(z) S pre(y) ∧ last(z) = last(y)
⇒ {relational product}

pre(x) rS pre(y) ∧ last(x) = last(z) ∧ last(z) = last(y)
⇒ {predicate calculus}

pre(x) rS pre(y) ∧ last(x) = last(y)
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• Part 2. Q = sS, where s ∈ J and S ∈ J∗: If last(y) = ε, then last(x) =
last(y) ⇒ x = ε ∧ y = ε. So, x u(J ′) y holds from the base cases proved
earlier. So, assume in the following proof that last(y) is not empty.

pre(x) Q pre(y) ∧ last(x) = last(y)
⇒ {Q = sS. Definition of relational product: there is a z}

pre(x) s z ∧ z S pre(y) ∧ last(x) = last(y)
⇒ {let w be the string z followed by the symbol last(y).

Note that last(y) is not empty, so w is well-defined.
Hence, pre(w) = z, last(w) = last(y)}

pre(x) s pre(w) ∧ pre(w) S pre(y)
∧ last(x) = last(y) ∧ last(w) = last(y)

⇒ {induction hypothesis on pre(w) S pre(y) ∧ last(w) = last(y);
there is an R, R ∈ (J ′)∗ such that}

pre(x) s pre(w) ∧ w R y ∧ last(x) = last(y) ∧ last(w) = last(y)
⇒ {from the last two conjuncts}

pre(x) s pre(w) ∧ w R y ∧ last(x) = last(w)
⇒ {from F4.3, applied to pre(x) s pre(w) ∧ last(x) = last(w)}

x s′ w ∧ w R y
⇒ {relational product}

x s′R y
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