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Abstract. Orc is a new model of distributed programming which pro-
vides a strong theoretical foundation for internet computing based on
compositions of web-services. Orc combines some of the power and flex-
ibility of process algebra with the simplicity and determinism of syn-
chronous programming models. We present an operational semantics of
Orc and prove some laws analogous to those of Kleene algebra. We vali-
date the deterministic operational semantics by proving it equivalent to
a deterministic form of trace semantics.

1 Introduction

We propose a model for internet computing, called Orc. Orc assumes that there
are basic services which provide computation and communication capabilities
(i.e., data management, arithmetic and logical computation, and, even, channels
for communication); we call such services sites. Orc includes only the machinery
to call the sites in appropriate order, i.e., specify their orchestration, to carry
out an internet computation.

Orchestration requires a better understanding of the kinds of computations
that can be performed efficiently over a wide-area network, where the delays
associated with communication, unreliability and unavailability of servers, and
competition for resources from multiple clients are dominant concerns. Internet
computing often requires a client to: invoke alternate sites for the same compu-
tation to guard against failure, poll a site until it supplies results which meet
certain desired criteria, ask a site to notify the client when it acquires the ap-
propriate data, or download an application and invoke it locally.

Consider a typical internet computing problem. A client contacts two airlines
simultaneously for price quotes. He buys a ticket from either airline if its quoted
price is no more than $300, the cheapest ticket if both quotes are above $300,
and any ticket if the other airline does not provide a timely quote. He receives an
indication if neither airline provides a timely quote. Such problems are typically
programmed using elaborate manipulations of low-level threads. We regard this
as an orchestration problem in which each airline is a site; we can express such
orchestrations very succinctly in Orc.

Orc has just three composition operators. Yet, it allows us to combine sites of
arbitrary complexity in a computation, without making any assumptions about
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their behavior. Orc includes no explicit constructs for time-out, thread synchro-
nization or communication, features which are common in thread-based lan-
guages. These are easily programmed in Orc, as we show in our examples.

Contributions of the Paper Distributed programs are traditionally struc-
tured as networks of processes communicating over channels. The computation
is nondeterministic because the channels have arbitrary delays and the process
computations may be nondeterministic. The complexity of interaction among
processes and channels does not readily facilitate practical programming and
can complicate algebraic reasoning.

In Orc, we distinguish the client and its environment. The client initiates
the computation by calling some sites. The responses from the sites may arrive
in arbitrary order, but for each response the computation of the client is deter-
ministic. Therefore, an Orc computation is a sequence of rounds, where in each
round (except the very first one) some response is processed, and, possibly, site
calls are made and values produced in a deterministic fashion. Orc is compact
(see the syntax in Section 2.2) and for many real-life distributed applications,
such as workflow coordination and managing an auction, the programs are con-
cise and easily understood. The underlying theoretical model, the main subject
of this paper, is also compact and permits derivations of several algebraic laws.

2 Overview of the Computation Model

In this section, we give a brief overview of the computation model using a series
of examples. We give the formal syntax and an informal semantics sufficient for
understanding the examples.

Orc can be added to a sequential programming language to by introducing
a statement of the form

z :∈ E(L)

where z is a variable, E is the name of an orchestration expression (abbreviated
to Orc expression, or, simply expression) and L a list of actual parameters.
Evaluation of E(L) may entail a wide-area computation and return zero or more
results, the first one of which (if there is one) is assigned to z. If the evaluation
yields no result, the statement execution does not terminate.

2.1 Site

The simplest Orc expression is a site call. A site is a separately defined procedure,
like a web service. The site may be implemented on the client’s machine or a
remote machine. A site call elicits at most one response; it is possible that a
site never responds to a call. Absence of response is treated as any other non-
terminating computation. We will show how to alleviate this problem using
time-outs.
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Calling site CNN (d), where CNN is a news service and d is a date, may
download the newspage for the specified date. Calling Email(a,m) sends mes-
sage m to address a, causing permanent change in the state of the recipient’s
mailbox, and returns a signal to the client to denote completion of the operation.
Calling an airline flight-booking site returns the booking information and causes
a state change in the airline database.

Site calls are strict, i.e., a site is called only of all its parameters have values.

Some Fundamental Sites We define a few sites in Table 1 that are funda-
mental to effective programming in Orc.

let(x, y, · · · ) publishes (i.e., returns) a tuple consisting of the values of its arguments.
Rtimer(t) where t is integer and t ≥ 0, returns a signal after exactly t time units.
Signal returns a signal immediately. It is same as Rtimer(0).
if (b) where b is boolean, returns a signal if b is true, and

it remains silent (i.e., does not respond) if b is false.

Table 1. Fundamental Sites

2.2 Syntax of Orc

In the following syntax, S ranges over site names, x over variables, F over ex-
pression names, and c over constants.

P ∈ Prog ::= D e
D ∈ Decl ::= F (x) ∆ e

e, f, g ∈ Expr ::= 0 || S(p) || F (p) || !p || f >x> g || f | g || g where x :∈ f
p ∈ Param ::= x || c

A program (Prog) is a list of declarations (Decl). Declaration F (x) ∆ e
defines expression F whose formal parameter is x and body is expression e. An
expression (Expr) is either elementary or is a composition of two expressions.
An elementary expression is either: (1) 0, which is treated as a site which is
never called, (2) a site call S(p), (3) an expression call F (p), or (4) a site call !p
that publishes the value of p; it is equivalent to let(p), see Table 1. Orc has three
composition operators: (1) >x> for sequential composition, (2) | for symmetric
parallel composition, and (3) where for asymmetric parallel composition. The
operators in increasing order of precedence (binding power) are: ∆ , :∈ ,
where , | , >x> . Operator >x> is right associative.

Evaluation of an expression calls some number of sites and publishes a (pos-
sibly empty) stream of values, as we explain next.

Sequential Composition To evaluate (CNN >m> Email(a,m)), first call
CNN . The value it publishes (i.e., returns) is named m, and Email(a, m) is
then called. The value returned by Email(a,m) is the value of the expression.
If either site fails to respond, then the evaluation returns no value.

We write M À · · · , without a parameter name in À , if the value published
by M is of no significance.



4 W. Cook & J. Misra

Symmetric Parallel Composition To evaluate (CNN | BBC), call the two
sites simultaneously. The output stream consists of the values returned by both
sites in time-order. Thus, there can be anywhere from zero to two values in the
stream. Particularly interesting is an expression like

(CNN | BBC ) >m> Email(a,m)

Here, (CNN | BBC ) may publish multiple values, and for each value v, we call
Email(a,m) setting m to v. Therefore, the evaluation can cause up to two emails
to be sent, one with the value from CNN and the other from BBC .

Asymmetric Parallel Composition Operators >x> and | only create
threads. We introduce the where operator to prune threads selectively. For
example, (Email(a,m) where m :∈ (CNN | BBC )) sends at most one email,
with the first value received from either CNN or BBC . For this expression,
we proceed by evaluating both Email(a,m) and (CNN | BBC ) simultaneously.
Assume that initially a has a value, but m does not. Because of strictness in site
call, evaluation of Email(a,m) is suspended until m gets a value. Evaluation of
(CNN | BBC ), as described under Symmetric Parallel Composition, may yield
up to two values; the first value is assigned to m and further evaluation of
that expression is then terminated. At this point, Email(a,m) is called and its
response, if any, is the value of the whole expression.

Notes and Conventions Expressions !p and let(p) are equivalent; we use
the former in describing the semantics and the latter in the examples. In this
paper, we do not formally treat expressions of the form !(p, q), which is let(p, q),
though the semantics can be easily extended. The expression ((f where x :∈
g) where y :∈ h) is also written as (f where x :∈ g, y :∈ h), or by writing the
assignments in separate lines without the comma. We do not specify the types
of parameters; parameters can be of any type which can be assigned to variables
of the host language. In our examples, we use integer, site, string and list as
parameter type.

2.3 Expression Definition

An expression is defined like a procedure, with a name and possible parameters.
Below, MailOnce(a) emails the first newspage from CNN or BBC to address a.

MailOnce(a) ∆ Email(a,m) where m :∈ (CNN | BBC )

A more interesting expression emails a newspage to a, receives a confirmation
from Email, waits for t time units, and then repeats these steps forever.

Ticker(a, t) ∆ MailOnce(a) À Rtimer(t) À Ticker(a, t)

Recall from Table 1 that Rtimer(t) returns a signal after t time units (the signal
value itself is of no significance, only the time delay is).

The following expression emits a signal every time unit, starting immediately.

Metronome ∆ Signal | Rtimer(1) À Metronome
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Suppose site Query returns a value (different ones at different times) and
Accept(x) returns x if x is acceptable, and remains silent otherwise. Publish all
acceptable values by calling Query at unit intervals forever.

RepeatQuery ∆ Metronome À Query >x> Accept(x)

2.4 Small Examples

Simple Time-out Suppose site M returns a positive integer. Assign to z the
value from M if it is received before t time units, else set z to 0.

z :∈ M | Rtimer(t) À let(0)

Priority Receive N ’s response as soon as possible, but no earlier than 1 unit
from now. Expression Rtimer(1) À N delays calling N for a time unit and ex-
pression (N >x> Rtimer(1) À let(x)) delays producing the response for a unit
after it is received. What we want is to call N immediately but delay receiving
its response until a time unit has passed.

DelayedN ∆ Rtimer(1) À let(u) where u :∈ N

We can use this expression to give priority to M over N . Request M and
N for values, but give priority to M by allowing its response to overtake N ’s
response provided M ’s response arrives within the first time unit.

x :∈ M | DelayedN

Recursive definition with time-out Call a list of sites and tally the number
of responses received in 10 time units. Below, tally(L) implements this specifi-
cation where L is a list of sites and m is a (fixed) argument for each site call.
We denote an empty list by [ ], and a list with head x and tail xs by (x : xs).

tally([ ]) ∆ let(0)
tally(x : xs) ∆ add(u, v) — add(u, v) returns the sum of u and v

where
u :∈ x(m) À let(1) | Rtimer(10) À let(0)
v :∈ tally(xs)

Kleene Star In the theory of regular expressions, M∗ denotes the set of strings
formed by concatenating zero or more M symbols. Analogously, define Mstar(x)

Mstar(x) ∆ let(x) | M(x) >y> Mstar(y)

which returns the stream of results by successively calling M starting with x

x, M(x), M(x) >y> M(y), M(x) >y> M(y) >z> M(z), . . .

We may use Mstar(x) to compute successive approximations starting with x.
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Arbitration A fundamental problem in concurrent computing is arbitration: to
choose between two threads and let only one proceed. In CCS [8], α.P +β.Q is a
process which behaves as process P if action α happens and as Q if β happens.
In Orc terms, α and β correspond to sites Alpha and Beta and P and Q are
expressions. We wish to evaluate P or Q depending on which of Alpha and Beta
responds first. (This is similar, though not identical, to the CCS expression.)
Below, boolean variable flag encodes which of Alpha and Beta responds first.

if (flag) À P | if (¬flag) À Q
where flag :∈ Alpha À let(true) | Beta À let(false)

Fork-join Parallelism In fork-join parallelism, we spawn two independent
threads at a point in the computation, and resume the computation after both
threads complete. There is no special construct for fork-join in Orc, but it is
easy to code such computations. Below, we call sites M and N in parallel and
return their values as a tuple after they both complete their executions.

let(u, v) where u :∈ M , v :∈ N

Synchronization Synchronization of threads is fundamental in concurrent
computing. Consider two threads M À f and N À g; we wish to execute them
independently, but synchronize f and g by starting them only after both M and
N have completed; see the left solution in Figure 1. The solution in the right of
Figure 1 passes on the values returned by M and N to f and g.

(let(u, v)
whereu :∈ M

v :∈ N)
À (f | g)

(let(u, v)
whereu :∈ M

v :∈ N)
>(u, v)> (f | g)

Fig. 1. Synchronization of Threads

Interrupt There is no mechanism in Orc to interrupt an expression evalua-
tion. In this section, we show how an expression evaluation can be interrupted,
and more importantly, how a different computation (such as roll back) can be
initiated in case of interruption.

We have already seen a form of interrupt: time-out. To allow for general
interrupts, we set up sites Interrupt .set and Interrupt .get . An external agent calls
Interrupt .set to interrupt the evaluation of an expression. And, Interrupt .get
returns a signal only if Interrupt .set has been called earlier.

To allow interruption of f , use
let(z) where z :∈ f | Interrupt.get

Thus, z acquires a value from f or Interrupt.get. It is easy to extend this solution
to handle different types of interrupts, by waiting to receive from many possible
interruption sites, and returning specific codes for each kind of interrupt.

To determine if there has been an interrupt, in order to initiate roll back,
return a tuple whose first component is the value from f (if any) and the second
component is a boolean to indicate whether there has been an interrupt:

let(z, b) where (z, b) :∈ f >y> let(y, true) | Interrupt.get >y> let(y, false)
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Non-strict Evaluation; Parallel-or Suppose sites M and N return booleans.
Compute the parallel-or of the two booleans, i.e., (in a non-strict fashion) return
true as soon as either site returns true and false only if both sites return false.
In the left solution in Figure 2, site or(x, y) returns x ∨ y. This solution may
return up to three different values depending on how many of x and y are true.
To return just one value, use the right solution in Figure 2.

if (x) | if (y) | or(x, y)
where

x :∈ M
y :∈ N

let(z)
where

z :∈ if (x) | if (y) | or(x, y)
x :∈ M
y :∈ N

Fig. 2. Parallel-Or

Communicating Processes Programming constructs of Orc, as we have seen,
can implement essential distributed computing paradigms, such as arbitration,
synchronization and interrupt. We argue that they are also well-suited for en-
coding process-based computations.

We introduce channels for communication among processes. Each channel
has to be implemented as a site. We assume in our examples that channels are
FIFO and unbounded, though other kinds of channels (including rendezvous-
based communications) are easily implemented through sites.

Channel c has two methods, c.get and c.put, which are called from Orc ex-
pressions. Calling c.put(m) adds item m to the end of the channel and returns
a signal. Calling c.get returns the value at the head of c and removes it from c;
if the channel is empty, c.get queues the caller until it can return a value.

A process is an expression which, typically, names channels which are shared
with other expressions. Shown below is a simple process which reads items from
its input channel c, calls site Compute to do some computations with the item
and then writes the result to output channel e.

P (c, e) ∆ c.get >x> Compute(x) >y> e.put(y) À P (c, e)

This process publishes no value, though it writes to channel e. To publish every
value which is also written to e, define

Q(c, e) ∆ c.get >x> Compute(x) >y> (let(y) | e.put(y) À Q(c, e))

Define process N to read inputs from two input channels, c and d, indepen-
dently, and write to e.

N ∆ P (c, e) | P (d, e)

The following small example illustrates a dialog with a user process. The
process reads a positive integer as input from a channel called tty, checks if the
number is prime and publishes the result to channel c. It repeats these steps as
long as input is provided to it.

Dialog ∆ tty.get >x> Prime?(x) >b> c.put(b) À Dialog
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u fresh

S(c)
S〈c,u〉
↪→ ?u

(SiteCall)

!c
!c
↪→ 0 (Pub)

f
l

↪→ f ′

f | g l
↪→ f ′ | g

(Sym1)

f
!c
↪→ f ′

f >x> g
τ

↪→ (f ′ >x> g) | [c/x]g
(Seq1V)

f
!c
↪→ f ′

g where x :∈ f
τ

↪→ [c/x]g
(Asym1V)

?u
u?c
↪→ !c (SiteRet)

[[ F (x) = e ]] ∈ D

F (p)
τ

↪→ [p/x]e
(Def)

g
l

↪→ g′

f | g l
↪→ f | g′

(Sym2)

f
l

↪→ f ′ l 6= !c

f >x> g
l

↪→ f ′ >x> g
(Seq1N)

f
l

↪→ f ′ l 6= !c

g where x :∈ f
l

↪→ g where x :∈ f ′

(Asym1N)

g
l

↪→ g′

g where x :∈ f
l

↪→ g′ where x :∈ f
(Asym2)

Fig. 3. Asynchronous Operational Semantics of Orc

3 Asynchronous Operational Semantics

We first develop an asynchronous operational semantics, which allows transitions
to be performed in any order. Asynchronous evaluation allows arbitrary inter-
leaving of internal actions and external responses. The asynchronous semantics
is refined in later sections to define a deterministic semantics.

In the syntax of Orc, defined in Section 2.2, x is bound in g for the expressions
f >x> g and g where x :∈ f . Free variables and substitution of a constant c for
variable x in e, written [c/x]e, are defined in the standard way. As is common
in small-step operational semantics, the language must be extended to represent
intermediate states. We introduce ?u to denote an instance of a site call that
has not yet returned a value, where u is a unique handle that identifies the call
instance. We extend the definition of Expr to include ?u:

e, f, g ∈ Expr ::= 0 || S(p) || F (p) || !p || f >x> g || f | g || g where x :∈ f || ?u

The transition relation e
l

↪→ e′, defined in Figure 3, states that expression e
transitions with event l to expression e′. There are four kinds of events:

l ∈ Event ::= S〈c, u〉 || u?c || !c || τ

S〈c, u〉 is a site call with argument c and handle u. A new handle u is created
for each site call – the environment generates a response, u?c, containing the
result value c. Similarly, !c publishes the output value c from a process. As is
traditional, τ denotes internal events.
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The rule SiteCall defines site calls. The transition label S〈c, u〉 notifies the
environment of the call. The call is replaced by the expression ?u, which waits
for the call to return. A site call occurs only when its parameters are constants;
in S(x), where x is a variable, the call is blocked until x is defined. In SiteRet
a pending site call ?u receives a result c from the environment, which is then
output. If the environment never produces a site return event, then the call blocks
indefinitely. The Pub rule generates a publish action !c. If a variable is to be
published, as in !x, the expression blocks until x is defined. Function expressions
are evaluated using call-by-name in the Def rule. We assume a single global set
of definitions D.

Sym1 and Sym2 are the standard rules for parallel composition.
Evaluation of sequential composition depends on whether or not the left side

publishes a value. If the left expression publishes !c, Seq1V creates a new in-
stance of the right side, [c/x]g, which is run in parallel with the main expression.
If the left expression does not publish a value, then sequential composition uses
the rule Seq1N. Sequential composition only publishes values from the right
hand side; any values generated by the left side are hidden. No transitions are
allowed on the right hand side until it is instantiated.

Asymmetric parallel composition uses rules Asym1N and Asym2 to allow
transitions on the left and right, but only if the right process does not publish
a value. When the right side publishes a value !c, Asym1V terminates the right
process and the c is bound into the left process. One subtlety of these rules is
that the left process may contain both active and blocked subprocesses – any
subprocess that uses x is blocked until the right side publishes a value.

The traditional classification of rules into introduction and elimination forms
is useful in understanding the distinction between Orc and its environment. The
three main events which are introduced (appear in the conclusions of the rules)
are: SiteCall introduces S〈c, u〉, SiteRet introduces u?c, and Pub introduces
!c . The rules Seq1V and Asym1V eliminate !c . Unlike most process calculi,
some events do not have corresponding elimination rules. For example, there are
no elimination rules for site calls S〈c, u〉 or site returns u?c. This is because these
events are only handled (eliminated) by the environment. The environment can
also eliminate !c events to obtain the output(s) of an expression.

4 Laws

Algebraic laws facilitate reasoning about process definitions. While we use ad-
vanced proof techniques to prove the laws, a programmer can use the laws di-
rectly to reason about programs without detailed knowledge of the underlying
bisimulations. We begin with a few basic laws.

Proposition 1.

Commutativity of |: f | g ≡ g | f
Identity for |: f ≡ f | 0 ≡ 0 | f
Left identity for >x> : 0 ≡ 0 >x> g
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Proof. Direct from operational semantics

Briefly, we prove bisimulations using safe functions involving particular kinds
of contexts [12]. For these proofs, we use parallel composition contexts, in which
the context hole occurs only in a parallel composition. The function FC is a
function on process relations defined as follows:

FC(P, Q) = {(C[P ], C[Q]) | C is a parallel composition context and (P, Q) ∈ R}

A function F on process relations is safe if R ⊆ S and R ; S (R progresses to
S) implies F(R) ⊆ F(S) and F(R) ; F(S).

Lemma 1. FC is a safe function.

A safe function F is useful because R ; F(R) implies that R is included in
bisimilarity.

Proposition 2. Associativity of |

(f | g) | h ≡ f | (g | h)

Proof. Define the relation R as relating the above terms for all substitutions of
f , g, and h: 〈(f | g) | h, f | (g | h)〉 ∈ R. It is easy to show that R progresses
to R by analysis of the rules Sym1 and Sym2. Thus R is a bisimulation and is
included in bisimilarity.

Proposition 3. Right distributivity of >x> over |

(f | g) >x> h ≡ (f >x> h) | (g >x> h)

Proof. Define the relation R as relating the above terms for all substitutions of
f , g, and h. Show R progresses to FC(R). The only transitions that can occur,
on both sides, are Seq1N and Seq1V. For Seq1N, the derivations are simple
congruences. For Seq1V, define the context C[•] = ([c/x]h | •).

(f | g) >x> h
!c
↪→ {Seq1V and Sym1 applied to f}

[c/x]h | ((f ′ | g) >x> h)
= C[(f ′ | g) >x> h]

(f >x> h) | (g >x> h)
!c
↪→ {Sym1 and Seq1V applied to f}

([c/x]h | (f ′ >x> h)) | (g >x> h)
= {Associativity of |}

[c/x]h | ((f ′ >x> h) | (g >x> h))
= C[(f ′ >x> h) | (g >x> h)]

The case for Seq1V applied to g is analogous. Thus R progresses to FC(R).

Proposition 4. Associativity of >x> . If x /∈ FV (h) then

(f >x> g) >y> h ≡ f >x> (g >y> h)

Proof. Included in the full paper.
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5 Deterministic Operational Semantics

Determinism means that the outputs of a process are determined by the inputs
to the process from the environment. As is typical of most process algebras, the
asynchronous semantics of Orc given in Section 3 is highly nondeterministic. In
this section we refine this semantics to create a deterministic semantics while
preserving the essential concurrent and distributed nature of Orc computation.
The key is to distinguish internal Orc actions from external events: internal eval-
uation must be confluent, so that only external events cause divergence (choice)
in behavior. We must also prevent output race conditions during internal eval-
uation. The deterministic semantics eliminates internal choice from Orc, which
simplifies the programming model significantly – without reducing the practical
power of the language to support internet programming. All the examples in
Section 2 function properly under the deterministic semantics.

The deterministic semantics models expression evaluation in rounds. A round
consists of all possible internal actions —site calls, outputs and τ transitions—
which are executed eagerly, i.e., as soon as possible, after receiving some response.
The initial round proceeds without receiving any response; subsequently, a re-
sponse is required at the start of each round. Thus, all actions corresponding to
a response are executed before the next response is considered. After completing
all possible internal actions in a round, the process becomes quiescent. The set
of quiescent expressions, ExprQ, is defined as follows:

q ∈ ExprQ ::= 0 || S(x ) || !x || q >x> e || q | q || q where x :∈ q || ?u
The set of events is partitioned into actions and responses. Actions are initi-

ated by an Orc process, while responses are initiated by the environment.

Actions a ∈ Act ::= τ || !c || S〈c, u〉
Responses r ∈ Rsp ::= u?c

Evaluation in rounds is formalized by partitioning the base transition relation
into two sub-relations: ↪→X for environmental events, and ↪→N for internal actions.

Asynchronous ↪→ : Expr × Event× Expr {Defined in Figure 3}
External

l
↪→X : Expr × Event× Expr = {(q, r, e) | q r

↪→ e} ∪ {(q̂, τ, q̂)}
Internal

a
↪→N : Expr ×Act∗ × ExprQ = {(e, ā, q) | e (

a
↪→)∗ q}

Round
lā
↪→R : Expr × Event∗ × ExprQ =

l
↪→X ◦ ā

↪→N

The external transition relation ↪→X is the identity relation on non-quiescent
expressions, denoted by q̂ : Expr\ExprQ. To ensure that all possible internal
actions are performed before any external events are accepted ↪→N must produce
a quiescent expression. It is possible that internal evaluation of an expression
may not terminate; then the expression never becomes quiescent and accepts no
further responses from the environment.

To prevent race conditions, we require that expressions be functional. An
expression is functional if all values published in a single round are identical.
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Proposition 5. Internal evaluation of functional expressions is confluent.

Proof. Proof included in full paper.

Functional behavior can be ensured by several means, including syntactic
restrictions or semantic analysis. For example, if let is interpreted as a site rather
than a publish expression !p, then all expressions are functional. Another way
to ensure that all expressions are functional is to prevent more than one output
in a round. For example, consider the following extension of Orc: expression !p
is prohibited in source programs, but a variant of sequential composition, >!x>,
is allowed, where

f >!x> g = f >x> (!x | g)

This extension guarantees that at most one !p will be executed in a round,
thus avoiding a race for the output order.

The deterministic semantics, based on rounds and functional expressions,
may seem overly complex. Actually, it is easier to write programs under this
semantics, because actions are guaranteed to happen immediately rather than
being arbitrarily delayed.

6 Trace Semantics

We develop a denotational semantics for Orc using event trees as the semantic
domain. Traces are easily derived from these denotations. The nodes of a tree
are labeled by action events, and edges are labeled by response events or vari-
ables. An edge labeled by a variable represents a blocked process – when the
variable becomes bound the nodes below the edge are merged with the node
above the variable edge. A node is represented as a Tree containing a set of
actions, Set(Act), for the node label and a map, ResponseMap, which defines
labeled edges and subtrees.

t ∈ Tree = Set(Act)×ResponseMap
m ∈ ResponseMap = Response 7→ Tree

r ∈ Response ::= u?c || x

(a) M (b) M >x> N(x) (c) M | N (d) !x (e) !x where x :∈ M | N

M〈u〉

?
u?c

!c

M〈u1〉

?
u1?c1

N〈c1, u2〉

?
u2?c2

!c2

M〈u1〉, N〈u2〉

?
u1?c1

!c1

?
u2?c2

!c2

?
u2?c2

!c2

?
u1?c1

!c1

?
x

!x

M〈u1〉, N〈u2〉

?
u1?c1

!c1

?
u2?c2

!c2

Fig. 4. Example trees and tree composition
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T : Expr → Tree
T [[ Fi(xi) ∆ gi; e ]] = T r[[ e ]]ρ0 where ρ0 = Y (λρ.{Fi 7→ λp.[p/xi]T r[[ gi ]]ρ)

T r[[0 ]]ρ = (∅, ∅)
T r[[ S(p) ]]ρ = Wait(p, ({S〈p, u〉}, {u?c 7→ !c })) where u new
T r[[ !p ]]ρ = Wait(p, ({ !p }, ∅))

T r[[ f | g ]]ρ = T r[[ f ]] | T r[[ g ]]
T r[[ f >x> g ]]ρ = T r[[ f ]] >x> T r[[ g ]]

T r[[ g where x :∈ f ]]ρ = T r[[ g ]] :x∈ T r[[ f ]]
T r[[ F (p) ]]ρ = ρF (p)
Wait(c, t) = t
Wait(x, t) = (∅, {x 7→ t})

Fig. 5. Trace semantics

Composition operators:

(s, m) | (s′, m′) = (s ∪ s′, (m . m′) ∪ (m′ . m))

({ni, !cj }, {rk 7→ uk}) >x> t = ({ni}, {rk 7→ uk >x> t}) | [cj/x]t

(s, m) :x∈ (s′, m′) =

¡
(s ∪ s′, (m .x m′) ∪ (m /x m′)) !c /∈ s′

[c/x](s, m) !c ∈ s′

Interleaving functions:

{ri 7→ ti} . m = {ri 7→ (ti | (∅, m))}
{ri 7→ ti} .x m = {ri 7→ (ti :x∈ (∅, m))}
m /x {ri 7→ ti} = {ri 7→ ((∅, m) :x∈ ti)}

Substitution:

[c/x](s, {x 7→ t, ri 7→ ti}) = ([c/x]s, {ri 7→ [c/x]ti}) | [c/x]t

[c/x](s, {ri 7→ ti}) = ([c/x]s, {ri 7→ [c/x]ti}) where x /∈ ri

Fig. 6. Operations on traces

Figure 4 shows some Orc expressions and their corresponding trees. In (a),
site M is called, the process waits for the response from the environment, and
then the result c is published. The generic label u?c denotes a family of edges,
one for each particular value of c. In (b) the output of site M is used as an
argument to site N . In (c), M and N are called together; the tree has two paths
depending on whether M or N returns first. Part (d) illustrates the simplest
blocked process, which waits for x to be defined and then publishes its value.
In (e), the where expression terminates execution of M | N after the first site
returns a value.

The tree semantics is defined by the function T in Figure 5. The function
T r defines traces relative to an environment ρ containing interpretations of any
process definitions F . The base environment, ρ0, is created by taking the fixed
point of the mutually recursive definitions. The semantics is fundamentally com-
positional, although free variables are represented explicitly in response maps
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and eliminated via substitution, rather than λ abstraction. The function Wait
creates a blocked process for any expression that involves a free variable.

Each composition operator has a corresponding operation on traces, as de-
fined in Figure 6. These combine trees using the interleaving functions, which
correspond closely to the operational semantics. For example, the two cases
(m.m′) and (m′ .m) in the definition of | correspond to rules Sym1 and Sym2.
The set of external responses in the two sub-trees must be disjoint; this is always
true because response labels u are fresh for each call. The requirement for func-
tional behavior is visible in the definition of :x∈ , which is not a function unless
there is a unique c for which !c ∈ s′. Processes are unblocked by substitution on
trees: when a substitution provides a value for a response variable x in a tree,
the corresponding subtree is instantiated and merged with the main tree.

The function Traces computes the set of traces for a tree by constructing
all paths through the tree. The traces of an Orc expression are given by the
composition of Traces and T :

Traces(ai, ∅) = Perm(ai)
Traces(ai, {xk 7→ tk}) = {s . xk . s′ | s ∈ Perm(ai), s′ ∈ Traces(tk)}

TracesOrc = Traces ◦ T
The trace semantics is closely related to the operational semantics: It charac-

terizes the set of all possible sequences of actions that an expression can perform.
The set of traces of a term e is derived from the transition relation:

Traces↪→[[ e ]] = {s1...sn | e s1
↪→R e1

s2
↪→R e2 ... en−1

sn
↪→R en}

Proposition 6. For any functional term e and substitution σ,

Traces↪→[[σe ]] = σ(TracesOrc[[ e ]])

Proof. By structural induction on Orc terms. Included in full paper.

Lemma 2. (Equivalence of operational semantics with rounds and deterministic
trace semantics.) For any closed functional term e, Traces↪→[[ e ]] = TracesOrc[[ e ]]

Lemma 3. The operational semantics is deterministic with respect to external
events.

7 Related Work

We give a brief overview of the work most related to that described in this paper;
a more complete account will appear in the final paper. An extended discussion
of Orc programming model along with more real-world examples appears in [10]
and a denotational semantics for it in [7].

Orc draws extensively from experience with process algebras, particularly
CCS [8], and CSP [6] and π-calculus [9]. These formalisms represent a multi-
threaded computation by an expression which has interesting algebraic proper-
ties. The operational semantics and the proof by bisimulation in this paper are
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directly motivated by CCS. The asynchronous version of Orc can be translated
to a variant of π-calculus [9] with support for process termination. Although pro-
cess termination has been studied extensively [1, 11], we do not know of any work
that ties termination to communication as in Orc. We are studying the transla-
tion of the deterministic semantics of Orc to π-calculus, which seems non-trivial
because of eager evaluation. Also, we are now comparing the Orc programming
model with the work of Benton, Cardelli and Fournet[2] which employs join cal-
culus[4] as its basis. Orc is similar in its treatment of time and round-based
computations to synchronous programming models [3, 5].
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