
Theory for Software Verification — draft January 20, 2009

DAVID A. NAUMANN

Stevens Institute of Technology

Semantic models are the basis for specification and verification of software. Operational, denota-
tional, and axiomatic or algebraic methods offer complementary insights and reasoning techniques
which are surveyed here. Unifying theories are needed to link models. Also considered are selected
programming features for which new models are needed.

Categories and Subject Descriptors: F.3 [Logics and Meanings of Programs]:

General Terms: Verification, Theory, Semantics

1. INTRODUCTION

To verify a program means to produce compelling evidence, based on sound theory,
that the program’s behavior satisfies its specified requirements. Software verifica-
tion requires mathematically rigorous reasoning about application domains, spec-
ifications of systems and their environments, software designs, code developed by
programmers, code generated by tools, and the programs embodied in hardware.
The theory of programming encompasses models of both the behaviors of programs
and the properties described by their specifications. Algebraic and logical laws
are derived from models to simplify reasoning and make it amenable to automated
assistance.

The theory of programming holds a special fascination, for reasons that range
from practical through scientific to philosophical. In compilers, semantic definitions
are executed symbolically to analyze the behavior of code and thereby determine
applicability of transformation laws used for practical optimization. Process al-
gebras are used in the search for scientific understanding of emergent phenomena
in distributed self-organizing systems. The goal of the Verified Software Initiative
(VSI) is to produce programs that reason about programs, a branch of artificial
intelligence that poses philosophical conundrums about self-reference [Moore 2008].

Many theories are needed and it is important to understand the reasons why.
Accurate models of program execution on hardware are needed for reliable predic-
tions about real systems. High level models of system concepts and environments
are needed so people can judge whether requirements are adequately described by
formal specifications. A range of programming languages, design and implementa-
tion techniques, and application domains need to be modeled. For the engineering

Naumann was supported in part by NSF grants CNS-0627338 and CNS-0708330.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2009 ACM 0000-0000/2009/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, January 2009, Pages 1–36.

2 · January 20, 2009

of verification tools, even imprecise or incomplete models can be useful for speedy
discovery of interesting conjectures.

Theory provides not only models but also links between models. A verifying
compiler may check assertions in source code by efficient automated reasoning in
a model at the programmer’s level of abstraction —e.g., with a single unbounded
address space. Yet the purpose of this check is to predict the behavior of the
generated object code executed using hierarchical storage of bounded size. A link
between these models can justify and delimit the sound conclusions about actual
behavior that may be drawn using the more abstract model. Links connect models
of system components that are implemented by different specialists using dissimilar
programming languages and analysis tools.

This survey introduces the major semantic methods and accomplishments that
appear to the author to be most relevant to software verification. It also consid-
ers selected programming language features and assertional methods which in the
author’s view are critical for a wide range of systems and which pose unsolved re-
search problems. To save space, references for some topics are secondary sources,
rather than seminal papers, and the distinction is sometimes left to the reader’s
discernment.

Overview. Throughout the paper we focus on two closely related reasoning tasks.
The correctness task is to show that a system described in one notation (e.g., a
programming or design language) has some property described in another (e.g.,
temporal logic). The refinement task is to show equivalence or some correctness-
preserving refinement relation between two system descriptions in a common no-
tation, for purposes such as refactoring a design model or reducing one analysis
problem to another.

Sect. 2 surveys the operational approach in which program semantics is defined
by modeling the internal workings of a machine. This includes idealized machines
which are convenient for abstract reasoning and can be linked to many different
concrete models.

The properties that we wish to verify usually do not include all the details of a
system’s execution. For example, we are often interested in the data that has been
input and output, but less often interested in the exact timing or the order in which
primitive instructions are executed. Sect. 3 surveys the denotational approach
which models a program exclusively by the set of observations, direct or indirect,
that are considered relevant at some chosen level of abstraction. Denotational
semantics is compositional: The behaviors of a program are defined with reference
to the behaviors of its subprograms —independent from the code or executions
of those subprograms. Compositionality allows direct proofs of algebraic laws. It
enables reasoning about a program module in the absence of other modules with
which it interacts. To achieve compositionality, care is needed in the choice of what
is considered to be observable; this in itself can yield insights about features of the
language.

Sect. 4 surveys methods for linking between semantic models. In the older lit-
erature, the operational, denotational, and other modeling approaches sometimes
appear as rivals. The current trend is towards combinations of many complemen-
tary models in order for verification to scale to large software systems.
ACM Journal Name, Vol. V, No. N, January 2009.

January 20, 2009 · 3

if prog[s(pc)] is . . . then s transitions to . . .

x : = e [s | x : s(e), pc : pc + 1]
ifnz x goto i [s | pc : i] if s(x) 6= 0

[s | pc : pc + 1] otherwise

Fig. 1. Transition table for simple instructions. We write s(e) for the value of expression e in
store s and [s | x : n] for the store that agrees with s except for mapping x to integer n.

Operational and denotational semantics predict the specific observations that
will result from execution of a program with a given set of input data and inter-
acting with a given environment. But the purpose of software verification is to
ensure that all observations of a program’s behavior, in all initial conditions and
in all environments, will have specified properties that reflect the system require-
ments. In Sect. 5, we introduce the axiomatic approach which models programs
by their properties and directly supports proofs of correctness. This approach is
immediately useful in the design of tools for software verification. Modeling at the
level of properties leads in two startling directions. Refinement algebra embraces
non-executable idealizations, in support of correctness by construction. Abstract
interpretation enables fully automated verification by means of approximate models
that are sufficiently accurate for the properties of interest.

The different styles a semantics are illustrated by application to three different
kinds of programming language, imperative, functional, and distributed. Since the
purpose is only to illustrate the semantic styles, each is treated only in its most
basic form. Sect. 6 surveys some advanced features of commonly used design and
implementation languages that pose difficult challenges for verification. For lack of
space, the critical area of concurrency is almost entirely neglected. Sect. 7 concludes
with a vision for the future.

2. TRANSITION SEMANTICS

A program instructs a machine how to behave. Turing [1937] sought to model be-
haviors with a simple purpose, the computation of some function, but capturing in a
precise way the concrete resources and step by step action of physical devices. Such
models are now known as small-step operational semantics or transition semantics.
Sect. 2.1 gives typical examples, Sect. 2.2 considers observations and properties,
and reasoning techniques are the topic of Sects. 2.3 and 2.4.

2.1 Transition systems

A transition system is a set S, elements of which are called states, together with
an initial condition I ⊆ S, a transition relation T ⊆ S × S, and a final condition
F ⊆ S. A run or computation is a sequence of states s0, s1, . . . such that s0 is in I,
the successors are given by the transition relation (i.e., (si, si+1) ∈ T for all i), and
if the sequence is finite then the last state is in F .

For example, consider a register machine acting on some fixed set V ar of integer
variables. A state is a store, i.e., a valuation of the variables: S is V ar → Z.
The machine is running a fixed program, prog, which is a finite sequence of in-
structions numbered from 0. There is a designated program counter variable, pc;
the initial condition is that pc is 0. The instructions include assignment x : = e
where e is a simple arithmetic expression and x ∈ V ar. The conditional instruc-

ACM Journal Name, Vol. V, No. N, January 2009.

4 · January 20, 2009

〈skip; c, s〉 7→ 〈c, t〉
〈c0, s〉 7→ 〈c1, t〉

〈c0; c, s〉 7→ 〈c1; c, t〉
s(e) 6= 0

〈ifnz e then c0 else c1 fi, s〉 7→ 〈c0, s〉

s(e) 6= 0

〈while e do c od, s〉 7→ 〈c; while e do c od, s〉
s(e) = 0

〈while e do c od, s〉 7→ 〈skip, s〉

〈cud, s〉 7→ 〈c, s〉 〈cud, s〉 7→ 〈d, s〉
〈c, s〉 7→ 〈c′, s′〉

〈c 9 d, s〉 7→ 〈c′ 9 d, s′〉
〈d, s〉 7→ 〈d′, s′〉

〈c 9 d, s〉 7→ 〈c 9 d′, s′〉

Fig. 2. Selected rules in structural operational semantics. The horizontal line means “implies”.

tion, ifnz x goto k, sets pc to k if x is non-zero; otherwise it sets pc to pc + 1 as
does assignment. The final states are those where pc is out of the range of indices
of prog. The transition relation is given in Fig. 1; it is defined only for non-final
states. Many other features can be treated similarly, e.g., we could include call and
return instructions and add to the state a stack of return addresses.

For static analysis, efficiency may be gained by using a transition system that
models a single program, abstract protocol, etc. An alternative is to use a single
transition system that models a stored program machine, e.g., by adapting the one
above to use states of the form 〈prog, s〉.

2.1.1 Structural operational semantics (SOS) and imperative programs. Source
languages offer structured programming constructs including the simple imperative
commands given by the grammar c ::= skip | x : = e | c; c | ifnz e then c else c fi |
while e do c od. A “structural” style of transition semantics was introduced by
Plotkin [2004] in lecture notes circa 1981. It eliminates the need for an explicit
program counter. The cost is that the transition relation is defined inductively
rather than being given by rules (as in Fig. 1) that can be directly executed in an
implementation or simulation (e.g., model checking).

In our example, states take the form 〈c, s〉 where s is a store assigning integers to
the variables of c. Command c represents the control state, initially the program of
interest. The final states are those of the form 〈skip, s〉. The transition relation, 7→,
is given by rules in Fig. 2. In the transitions for the conditional construct, the new
control state is a sub-command of the initial command, but that is not the case
for iteration. One of the rules for sequential composition has a proper antecedent,
which is why the rule comprise an inductive definition of 7→.

The power and elegance of SOS is illustrated by its simple treatment of two ad-
vanced features of programming, non-determinism and concurrency. For example,
look at the semantics of nondeterministic choice (u) and interleaving (9) in Fig. 2.

2.1.2 Parameterization and functional programs. The pure lambda terms [Church
1936] are given by the grammar M ::= x | MM | λx.M . Informally, λx.N is an
anonymous function with parameter x and MN is the application of M to ar-
gument N . Application associates to the left: MNO is (MN)O. A transition
semantics is given using states that consist of a single term. The key transition
rule, (λx.M)N 7→ (M/x→N), is called beta reduction. (We use Reynolds’ notation
M/x→N for capture-avoiding substitution.) The most general transition semantics
allows reduction in all subterms: if M 7→ M ′ then MN 7→ M ′N , NM 7→ NM ′,
ACM Journal Name, Vol. V, No. N, January 2009.

January 20, 2009 · 5

and λx.M 7→ λx.M ′. The nondeterminacy of this transition relation can be viewed
as deliberate underspecification, just as many languages underspecify the order of
evaluation for arithmetic operations. Even with the nondeterministic transition
relation, all terminating computations lead to the same result, but some terms
terminate or not depending on the order in which transitions are taken.

Lambda calculus guides the modeling of many forms of parameterization in pro-
gramming and specification languages. As a very simple example, consider pa-
rameterized commands p ::= (λx.c) where parameter x is not allowed to be as-
signed in the procedure body c. Extend commands by c ::= p(e) where e is an
integer expression and extend the semantics of Sect. 2.1.1 by a single transition
〈(λx.c)(e), s〉 7→ 〈c/x→e, s〉. To model pure functional languages, lambda terms
can be augmented with primitives such as arithmetic and evaluation order made
more deterministic. Moreover the transition relation is more determinate. To
model eager evaluation (call by value), a subset of terms called values is desig-
nated: V ::= λx.M . The transition rules are ((λx.M)V) 7→ (M/x→V) and if
M 7→ M ′ then MN 7→ M ′N and V M 7→ V M ′. More generally, one can give a
grammar of evaluation contexts, in which subterms can be reduced [Wright and
Felleisen 1994], e.g., to model control constructs like throwing and catching excep-
tions. More concrete models use states with more than a single term, e.g., with an
explicit stack [Landin 1964; Harper and Stone 1997]. A technique with many uses
is continuation passing style which treat’s a term’s context as an extra parameter
that can be manipulated (see Reynolds [1993] for a history).

2.1.3 Concurrency. The concurrent execution of two programs acting on shared
state can be modeled by the union of their transition relations. More concretely,
the nondeterministic scheduling of threads acting on shared store is easily modeled
using command transitions; see the rules for 9 in Fig. 2. That semantics treats
command steps as indivisible. The granularity of atomicity is critical, both for
accurate modeling of hardware and for effective reasoning.

To concentrate on synchronization and communication, it is fruitful to use process
algebras [Milner 1980; Brookes et al. 1984; Bergstra et al. 2001] with transition
semantics in which states consist of nothing but a single process term. For example,
consider the terms P ::= in ch.x;P | out ch.v;P | (P ‖ P) | P u P . Here P ‖ Q
executes the two processes concurrently, synchronizing by message-passing along
named channels. The term in ch.x;P sets variable x to a value read on channel ch
and out ch.v;P sends value v. This is made precise by the reduction

in ch.x;P ‖ out ch.v;Q 7→ P/x→v ‖ Q (1)

Concurrency leads to nondeterminacy as in out ch.1 ‖ out ch.2 ‖ in ch.x.
Unsynchronized concurrent steps are given by rules like those for 9 in Fig. 2.

One of those symmetric rules can be omitted by using the structural congruence
P ‖ Q ≡ Q ‖ P . Define P 7→ P ′ to hold just if there are Q and Q′ such that
Q 7→ Q′ is an instance of an explicitly given rule and P ≡ Q and P ′ ≡ Q′ [Milner
1992]. This amounts to defining transitions on equivalence classes of terms.

Equivalence classes help with scope and binding. Concrete implementations have
complications that can be avoided in theory by identifying terms that are alpha
equivalent, i.e., the same except for renaming of bound variables (cf. Sect. 4.4).

ACM Journal Name, Vol. V, No. N, January 2009.

6 · January 20, 2009

2.2 Observable behavior and program properties

A specification stipulates what aspects of computations are to be observed as well
as which behaviors are required. Notions of observation are not limited to what is
physically feasible, e.g., the abstract notion of termination is not really observable
but is often required because exact time seldom matters. For transition semantics
of commands, the usual forms of observation are: a finite prefix of the computation
(called a trace); the initial and final states of a terminated trace; whether the
computation is finite (termination); the sequence of values of designated variables
(reactivity); the initial and final values of designated variables in a terminated trace.

Different computations may admit the same observations; abstracting to those
observations is one purpose of the semantic methods discussed in Sects. 3–5.

A labeled transition system (LTS) augments a transition with an event that can
be observed when the transition takes place. For example, out ch.v;P ch!v−→ P and

in ch.x;P ch?v−→ (P/x→v). Reduction (1) is replaced by rule
P

ch!v−→ P ′ Q
ch?v−→ Q′

P ‖ Q
τ−→ P ′ ‖ Q′ .

The distinguished label τ abstracts from an internal communication. A trace is now
a sequence of events, or a sequence of non-τ events.

For unlabeled transitions, message transmission is modeled using a shared vari-
able to record channel history. Real time can be modeled using a variable t increased
appropriately by every transition. Lynch and Vaandrager [1996] use labeled transi-
tion systems in which some transitions are time steps. Alternatively, a computation
can be taken as a function from R to states —but this goes beyond transition se-
mantics. So too probabilistic computations [Kozen 1981; McIver and Morgan 2005]
and models of true concurrency [Petri 1962; Mazurkiewicz 1986].

Let us turn from observations to properties of observations. These are often
based on state conditions, e.g., whether the condition holds in the initial state, or
whether it holds in every state of a trace (is invariant). As a property of traces, the
partial correctness condition given by state predicates p, q is that if p holds initially
and the trace is terminated then q holds in the final state. Two-state conditions
can be applied to the first and last state, e.g., x ≥ 0∧y′ = x2 where y′ refers to the
value of y in the last state. Alternatively, this can be encoded by a pair of state
conditions, x ≥ 0 and y = x2, together with a simple two-state condition (typically
verified by simple syntactic checks) that requires x to be unchanged. Another
use for two-state conditions is as transition invariants [Floyd 1967; Podelski and
Rybalchenko 2004], e.g., whether a certain function of the state (called variant or
measure) is decreased (in some well founded order) in every transition step. Pnueli
[1977] pioneered the use of linear temporal logic, which combines state conditions
with modal operators [Blackburn et al. 2001], to express conditions on runs such
as whether every p-state is eventually followed by a q-state, while abstracting from
specific steps in time.

Program properties are about the totality of a program’s behaviors. Partial cor-
rectness, invariance, and other conditions on runs are usually lifted to programs
demonically : every computation must satisfy the condition. This is by far the most
common sort of requirement specification so it is worth rephrasing: The property
is a set X of observations and the program is correct if all its behaviors are con-
ACM Journal Name, Vol. V, No. N, January 2009.

January 20, 2009 · 7

tained in X. This subsumes program refinement: let X be the behaviors of the
program to be refined. Two classes of properties in this sense are important because
they admit quite different proof techniques. A safety property says that nothing
bad ever happens, where the “bad” thing is a state predicate. Partial correctness
and invariance are safety properties. A liveness property says something “good”
eventually happens, e.g., termination, or a response to every request. Total cor-
rectness conjoins partial correctness and termination. Every property (i.e., set of
runs) is the intersection of a safety property and a liveness property [Lamport 1977;
Alpern and Schneider 1985; Manolios and Trefler 2003]. Temporal logic provides a
finer classification [Manna and Pnueli 1990; Sistla 1994]. Case distinctions can be
avoided by using only infinite runs and modeling termination by quiescence [Manna
and Pnueli 1990; Cousot and Cousot 2000]. Temporal logic can express fairness
conditions, i.e., liveness assumptions about underlying schedulers or physical con-
currency; alternatively, program properties quantify only over fair runs [Manna and
Pnueli 1995].

Some interesting requirements cannot be specified as a set of observations inter-
preted as above. Complexity theory often treats nondeterminacy angelically : the
question is whether from each initial state there exists a run satisfying some condi-
tion [Cook 1971]. More typical of a system requirement is the property that from
every reachable state satisfying p there is a transition to one satisfying q and an-
other to a state satisfying ¬q. This is expressible in branching-time logics [Emerson
and Clarke 1982; Kozen 1983; Hennessy and Milner 1985] which include modalities
that refer to all or some possible future paths. The property that nondeterminacy
is bounded (i.e., no state has infinitely many immediate successors) is needed for
certain proof techniques [Hennessy and Milner 1985; Abadi and Lamport 1988]
but precludes some modeling techniques. Information confidentiality can be spec-
ified by requiring that for each run, possibly involving both high and low security
actions, the subsequence consisting of only the low actions is also a run [Goguen
and Meseguer 1982]. More subtle security properties can be expressed in terms of
knowledge [Halpern and O’Neill 2008]. Motivated by information flow and other
requirements like bounds on average response time, Clarkson and Schneider [2008]
explore arbitrary conditions on run sets, dubbed hyperproperties.

Because it is conceptually simple and technically convenient to equate program
properties with observation sets, theories provide special forms of observation. Some
branching time behavior is captured by failures [Brookes et al. 1984] which consist
of a trace together with some actions the process can refuse to make following that
trace. Branching behavior of a process can also be observed by running it in parallel
with a simple “test” process [DeNicola and Hennessy 1984; Milner and Sangiorgi
1992] A wealth of observations may be obtained by adding what are commonly
called ghost variables or auxiliaries; these are explicitly assigned in program code
or implicitly in the semantics. Ghost variables are used for selective exposure of
details from lower abstraction layers (e.g., elapsed time), for abstraction (e.g., state
predicates that refer to event history), and for expression of design concepts (e.g.,
access permissions and ownership). Care must be taken with the scope of ghost
variables, to avoid unsoundness [Kleymann 1999].

Many other program properties can be defined on transition semantics, e.g., the
ACM Journal Name, Vol. V, No. N, January 2009.

8 · January 20, 2009

number of activation records on a call stack. Abstracting from irrelevant artifacts
of modeling is one goal of semantic theory.

2.3 Proof techniques and the inductive assertion method

To prove program properties using transition semantics, the basic technique is in-
duction on states s0, s1, . . . of an arbitrary run. Consider the register machine
program x : = 0;x : = x + 1; ifnz x goto 1;x : = −x. The predicate 0 ≤ pc ≤ 2 is
a program invariant. Proof: The initial condition says that pc = 0 in the initial
state, s0. For the induction step, assume that 0 ≤ pc ≤ 2 holds in si−1. Then one
of the instructions is executed to obtain si; each step of computation sets pc to a
value in the range 0..2.

For some trace properties, strong induction is needed. In every run of the code
above, the variable y has the same value in every state. To prove for a given run
that ∀i | si(y) = s0(y), show by induction on i that ∀k | k ≤ i ⇒ sk(y) = s0(y).
The induction step is still about a single machine step.

For transition system (S, I, T, F), a state predicate Q ⊆ S is called an inductive
invariant if I ⊆ Q and ∀s, t | s ∈ Q ∧ (s, t) ∈ T ⇒ t ∈ Q. (Using relation algebra:
Q;T ⊆ Q.) Not all invariants are inductive: For the program above, the condition
pc 6= 0 ⇒ x ≥ 0 is invariant, but the unreachable state [pc : 3, x : 1, y : 0] satisfies the
condition and steps to one that does not. If the set R of states reachable from I
by iteration of T is known, then Q is invariant iff R ⊆ Q. Checking whether Q is
an inductive invariant is usually easier than finding R. Ghost state is sometimes
needed to formulate invariants that are sufficiently strong to be inductive [Owicki
and Gries 1976].

2.3.1 Type invariants. The semantic definitions in Sect. 2.1.1 rely on the dis-
tinction between expressions and commands, interpreting the two kinds of phrase
quite differently (as state functions and transition relations, respectively). Some
but not all programming languages provide finer classification of phrases by means
of typing, which can be exploited in semantic definitions (see Sects. 3.3 and 5). The
type declaration x : int specifies an invariant, x ∈ Z. Typing invariants are typically
verified by type checking algorithms based on structurally recursive rules for typ-
ing judgements that record declarations and ascribe types to all phrases. Typing
judgements need to carry enough information to serve as inductive invariants. This
leads to higher order types, e.g., of code pointers in dispatching tables for interrupt
handlers or virtual method calls in object-oriented programs.

Typing rules can be justified using a transition semantics for untyped phrases.
To this end, one possibility is to introduce an error state, say , to which there is
a transition if the code to be evaluated has an error like applying a function to the
wrong number of arguments. A simpler alternative is for there to be no applicable
transition —the state is called stuck, and only terminal states should be stuck. (See
the textbook by Pierce [2002].)

2.3.2 Inductive assertion method. A partial correctness property can be proved
by reducing it to an invariant. The technique was first articulated by Floyd [1967]
(but see Jones [2003]). The method is suited to programs with a notion of control
point such that in each state of a trace control is “at” one point. In the register
machine this is explicit as variable pc. The structural operational semantics for
ACM Journal Name, Vol. V, No. N, January 2009.

January 20, 2009 · 9

simple imperative commands also has this notion, less explicitly. The technique
can in principle be used for multi-threaded programs on a uni-processor, provided
that scheduling is modeled explicitly.

Consider machine programs of length N in which every ifnz y goto i instruction
has 0 ≤ i ≤ N−1. Then only instruction prog[N−1] can halt and only by changing
pc to N ; so the control points are 0..N with 0 the entry point and N the exit point.
The key idea is to associate predicates with some control points. For practical
application, “predicate” means formula, but much of the following makes sense for
predicates as sets of states. A predicate associated with some control point is called
an assertion. An annotation of a program is a mapping of some of its control points,
including at least the entry and exit points, to predicates. (In the literature, “as-
sertion” sometimes means state formula, and “partial correctness assertion” means
the claim that a certain program satisfies a certain partial correctness property.)

For an annotation to be correct means that for any computation such that the
initial state satisfies the initial assertion, the following is invariant: If control is at
any point with an assertion, that assertion holds. To prove a partial correctness
property (pre, post), it suffices to find a correct annotation with pre and post as the
entry and exit assertions. The power of the method comes from using an annotation
that is an inductive invariant, obtained as follows.

A set of control points is a cutpoint set if (a) it includes the start and exit points,
and (b) every cycle in the control flow graph contains an element of the set. (The
control flow graph has program points as vertices; there is a directed edge from i to
j just if some transition can change pc from i to j. This notion becomes much less
trivial for languages with higher order features.) A basic path is a finite sequence
of control points, compatible with the program’s control flow graph, starting and
ending with cutpoints but containing no other cutpoints. Redefine annotation to
require that the control points with assertions form a cutpoint set. (In terms
of source code: every loop should have a specified invariant and every recursive
procedure a specification.)

The instruction sequence x : = 1; z : = y; z : = z − 1;x : = x ∗ (y − z); ifnz z goto 2
satisfies the partial correctness property (y ≥ 1, x = y!). (To avoid distraction,
say “x = y!” is false when y < 0.) To prove it, we use the annotation 0 : (y ≥ 1),
5 : (x = y!), and 4 : (x = (y − z)! ∧ 0 ≤ z ≤ y). The basic paths are 0, 1, 2, 3, 4 and
4, 2, 3, 4 and 4, 5.

An annotation is inductive if each basic path is correct in the following sense:
For any state s that satisfies the starting assertion of the path and has s(pc) at
the start of the path, and any successive sequence of states that follows the path
to the end, the end assertion holds in the last state. For the example above, the
state [x : 2, y : 3, z : 1, pc : 4] satisfies the assertion at 4 and the successive steps follow
path 4, 2, 3, 4 so the ending state must (and does) satisfy the assertion at 3. From
state [x : 6, y : 3, z : 0, pc : 4] the consecutive sequence does not follow path 4, 2, 3, 4
but rather 4, 5 so the ending state must (and does) satisfy the assertion at 5.

If an annotation is inductive then it is a correct annotation. Proof: by induction
on length of the computation. Each step is along some basic path. If the step
reaches an annotated point, it is the end step of the path and so the assertion holds
by correctness of the path.

ACM Journal Name, Vol. V, No. N, January 2009.

10 · January 20, 2009

Closely associated with the inductive assertion method is a method for proving
termination. One chooses a set W , a well founded relation on W , and a function
f , called the variant, from states to W . For each basic path, and any execution
along the path from a state s that satisfies the start assertion and goes to state t,
f(t) should be less than f(s). More generally, one considers well foundedness of
the transition relation itself [Podelski and Rybalchenko 2004].

2.3.3 Verification conditions. The inductive assertion method reduces partial
correctness proof to the choice of an annotation together with correctness proofs
for basic paths. These proofs involve the semantics of individual instructions, the
accumulation of effects along the path, and mathematical reasoning about what-
ever predicates occur in assertions. Floyd [1967] showed that the mathematical
reasoning can be factored out in the form of a single state predicate, the verifica-
tion condition, that can be obtained —by an effective procedure— from the start
and end predicates and the program. A basic path is correct iff its verification
condition is valid.

The verification condition for a basic path can be constructed by “symbolic ex-
ecution” of the path not on states but on formulas, which computes the strongest
postcondition of the start assertion. The verification condition is that the strongest
postcondition implies the end assertion. It suffices to use an approximation that
is conservative, i.e., weaker than the strongest postcondition. An alternative is
that the start assertion implies the weakest precondition for the path to establish
the end assertion (and an approximation may strictly imply the weakest precon-
dition). Floyd presented suitable formula transformations for simple imperative
commands. Even more, he suggested that the verification conditions should be
taken as specification of the programming language (see Sect. 5). Moore [2006]
shows how verification conditions are generated directly from transition semantics.

2.4 Refinement, simulation, and contextual equivalence

Proofs of behavioral equivalence are often needed as basis for correctness, e.g.,
to justify program transformations used in verification condition generators and
compilers. The correctness statement for a compiler amounts to an equivalence or
refinement between a source program and an object program possibly interpreted
in different models (see Sect. 4). Correctness by construction develops correct pro-
grams by refinement from specifications [Morgan 1988]. Refinement also connects
concrete semantics with abstract interpretations on which static analyses are based.

Each notion of observation gives a notion of refinement: program p′ refines p just
if every observation of p′ is also an observation of p. Two programs are equivalent
iff each refines the other. For any class of program properties there is an associated
notion of refinement: p′ refines p iff every property of p is a property of p′.

To prove refinement directly in terms of transition semantics, the fundamental
notion is simulation [Milner 1971]. A simulation from (S′, I ′, T ′, F ′) to (S, I, T, F)
is a relation R ⊆ S×S′, such that initial states are related and moreover sRs′ and
s′T ′t′ imply there is some t with sT t and tRt′. In relation algebra: R;T ′ ⊆ T ;R.
Then T ′ simulates T if a simulation from T ′ to T exists. For deterministic transition
systems, a simulation amounts to an inductive invariant on a cartesian product of
the two systems. In data refinement [de Roever and Engelhardt 1998], a simulation
ACM Journal Name, Vol. V, No. N, January 2009.

January 20, 2009 · 11

R is used to connect the differing internal states of two implementations and R is
the identity on visible state.

Within a single transition system, state s′ simulates s if there is a simulation R
from the system to itself such that (s, s′) is in R (here initial conditions are not
relevant). This is of interest in case the program is part of the state. For an LTS,
a strong simulation requires that all events match. A weak simulation does not
require matching by τ -steps but rather allows an observable event to be matched
by a step preceded and followed by several τ -steps.

A transition system is bisimilar to another if there is a simulation R and the
converse of R is a simulation the other way around. This is a very fine equivalence
relation: two systems are bisimilar iff they have the same branching-time temporal
properties [Hennessy and Milner 1985].

For program phrases that on their own do not admit meaningful observations, the
programmer’s notion of equivalence is that they produce equivalent results when
used in “any context”. The parameterized command (λx.c) is not directly observ-
able, but it can be indirectly observed in any command in which an application
(λx.c)(n) occurs. Write C[−] for some context with a “hole” into which p may be
plugged to yield a well formed command C[p]. The contextual approximation rela-
tion, �ctx, is defined relative to some chosen notion of observation. As an example,
if we observe pre-post states of commands then p �ctx p′ is defined to hold iff
〈C[p], s〉 7→∗ 〈skip, t〉 ⇒ 〈C[p′], s〉 7→∗ 〈skip, t〉 for all C[−] and all s, t. Contextual
equivalence, 'ctx, is the intersection of the preorder �ctx with its converse.

2.5 Further reading

The textbook by Bradley and Manna [2007] gives a contemporary treatment of the
inductive assertion method as well as axiomatic semantics. Winskel’s [1993] text-
book covers transition semantics as well as evaluation, denotational, and axiomatic
semantics. Reynolds’ [1998] textbook covers many of the topics of this survey and
is our primary guide for terminology and notation. A slender book by Milner [1999]
introduces the π-calculus, an influential process algebra that models mobility, and
includes background on bisimulations.

3. DENOTATIONAL SEMANTICS

Specifications pertain to the totality of a program’s behaviors. Denotational se-
mantics Scott and Strachey [1971] connects a program with its set of behaviors,
as such, rather than deriving the collection from a definition of its instances as in
transition semantics. Moreover, the observable behaviors of a program are defined
as a function of the behaviors of its constituent parts, i.e., compositionally. This en-
ables reasoning about a program in terms of the behaviors of its subprograms, e.g.,
library procedures, without recourse to complete implementations of those compo-
nents as is needed in operational semantics. To make compositionality possible, all
phrases must denote something, and observations are organized in rich mathemat-
ical structures. Indeed, much of the interest is in what sorts of observation sets are
considered and what operations are used to compose them.

A precedent of denotational semantics is Kleene’s [1936] theory of partial recur-
sive functions. This theory answers the question of what functions are computable
not by defining some mechanism whereby functions are computed but by consider-

ACM Journal Name, Vol. V, No. N, January 2009.

12 · January 20, 2009

ing ordinary mathematical functions (the observation sets). The partial recursive
functions are those that can be built up from arithmetic primitives using a small
repertoire of operations: function composition, weak induction on the naturals (e.g.,
defining f via f(x, i) = g(f(x, i − 1)) for given g), and unbounded minimization.
The latter means defining f(x) as the least y, y ≥ 0, such that g(x, y) = 0 for given
g; in there is no such y, f(x) is not defined. Kleene’s theory makes no reference
to traces of an automaton or transition system, nor to syntax per se. Rather, it is
about programs as ordinary mathematical objects.

This section presents denotational semantics in a conventional, syntax based way.
Sect. 4.2 returns to the view that syntax can be dispensed with entirely.

Before delving into denotational semantics per se, we review some essential back-
ground on fixed points (fixpoints for short).

3.1 Fixed points, traces, and evaluation semantics

Recall how the theorems of a logic are defined inductively. The set Th of theorems
is the smallest set that contains the axioms and is closed under the inference rules.
To be more precise, for X a set of formulas let F (X) be all instances of the axioms
together with any formula that follows by an inference rule from some formulas
in X. So Th is closed under F , i.e., Th = F (Th). Moreover, it is the smallest
set of formulas with this property. Function F is monotonic: if X ⊆ Y then
F (X) ⊆ F (Y). The Knaster-Tarksi theorem [Tarski 1955] says that for a monotonic
function F on sets, the least fixpoint of F is the intersection of all X such that
F (X) ⊆ X. The Kleene fixpoint theorem says that the least fixpoint is the limit
of the iterates of F , that is, the least upper bound (lub) of the ascending chain
∅ ⊆ F (∅) ⊆ F 2(∅) ⊆ F 3(∅) . . . where F 2(X) = F (F (X)) etc. In general, this chain
must be extended to the transfinite, but under a suitable condition the fixpoint is
reached as the lub of the finite iterates. In particular, for logical rules with finitely
many antecedents we have Th = ∪n∈NFn(∅). The condition is that F is continuous,
i.e., distributes over the lub of any countable ascending chain: F (∪iXi) = ∪iF (Xi)
provided that Xi ⊆ Xi+1 for all i ∈ N.

Let us revisit the computations of a system with states S and transition relation
T , ignoring initial and final conditions. Let S∗ be the set of finite sequences of
states. For nonempty sequences s and t, with s finite, write s · t for their matched
catenation: if the last state of s is the first state of t, then keep one copy of that
state; otherwise, s · t is undefined. For sets X and Y of sequences, X · Y is the set
of matched catenations. Let B be the set of blocked states, i.e., those without a
T -successor. Define F (X) = B ∪ (T · X), where T is considered as a set of two-
element sequences and X ranges over subsets of S∗. The set of finite runs of (S, T)
is the least fixpoint of F (least with respect to ⊆) [Cousot and Cousot 1992].

The dual of least fixpoint is greatest fixpoint, which is the union of all X such
that X ⊆ F (X). In the case of traces, it happens that the least and greatest
fixpoint coincide. In general, they are different. Let Sω be the infinite sequences
of states. The set of infinite runs of (S, T) is the greatest fixpoint of G defined
by G(Y) = T · Y where Y ranges over subsets of Sω. The reasoning principle for
greatest fixpoints, coinduction, is closely related to simulation (see Sect. 3.4).

Before generalizing these ideas for use in denotational semantics, we apply them
to a form of operational semantics that abstracts from intermediate steps. Whereas
ACM Journal Name, Vol. V, No. N, January 2009.

January 20, 2009 · 13

〈e, s〉 ⇓ v

〈x : = e, s〉 ⇓ [s | x : v]

〈c0, s〉 ⇓ s′ 〈c1, s′〉 ⇓ t

〈c0; c1, s〉 ⇓ t

〈e, s〉 ⇓ 0 〈c1, s〉 ⇓ t

〈ifnz e do c0 else c1 fi, s〉 ⇓ t

〈e, s〉 ⇓ 0

〈while e do c od, s〉 ⇓ s

〈e, s〉 ⇓ n n 6= 0 〈c, s〉 ⇓ s′ 〈while e do c od, s′〉 ⇓ t

〈while e do c od, s〉 ⇓ t

Fig. 3. Selected rules of evaluation semantics for commands.

transition semantics defines the workings of a machine running a program, from
which notions of observation are derived, an evaluation semantics directly defines
the relation between program and observations [Kahn 1987]. Another term is big-
step operational semantics, as this style has mostly been used for the most basic
observation: the output value or final state from a given input or initial state.

For simple imperative commands, the rules in Fig. 3 define a ternary relation
〈c, s〉 ⇓ s′ on command c, initial store s, and final store s′. The definition can be
read as a recursive interpreter that computes s′ given c and s. For primitive com-
mands like assignment, evaluation semantics is essentially the same as the transition
semantics. But evaluation semantics combines complete observations, as evident
in the single rule for sequence. The rules are read inductively, like proof rules:
the relation ⇓ is a least fixed point. For an interpreter, the rule antecedents are
recursive invocations, and the inductive reading gives the terminating executions
of the interpreter.

Although the rules look like a definition by cases on syntax forms, they are not
structurally inductive on the command, owing the second of the rules for loops. As
in transition semantics, it is not possible to determine the behaviors of a command
exclusively from the behaviors of its subparts.

For lambda terms, an evaluation semantics defines the relation M ⇓ V between
a term and a value to which it reduces. The rules for eager evaluation are V ⇓ V

and
M ′ ⇓ V ′ (M/x→V ′) ⇓ V

(λx.M)M ′ ⇓ V
. The behavior (λx.M)M ′ ⇓ V is not determined

by the behaviors of M and M ′ as it will be in denotational semantics, but rather
it requires performing textual substitution M/x→V ′ and evaluating the result.

Evaluation semantics can be used with other notions of behavior, e.g., commands
can be related to their finite runs [Leroy and Grall 2008]. Abrupt termination, e.g.,
due to a type error, can also be modeled in evaluation semantics if error values are
added to the possible observations. In transition semantics, error values and rules
to manipulate them can be avoided because a finite trace ending in a stuck state is
distinct from an infinite or normally terminated trace.

For observations of infinite computations, Cousot and Cousot [1992] propose
evaluation semantics using greatest fixpoints. Leroy and Grall [2008] investigate
coinductive evaluation semantics where a relation 〈c, s〉 ⇑ represents divergence.

3.2 Denotational semantics and approximation

As a first taste of denotational semantics, we recall how the meaning of a first order
formula is defined in terms of the meanings of its subformulas. The semantics is
given by defining a relation s |= F between formulas and the stores in which they

ACM Journal Name, Vol. V, No. N, January 2009.

14 · January 20, 2009

are considered true. This can as well be written as a function F [[−]] that maps a
formula to its set of satisfying assignments. The semantics of first order logic is
defined compositionally : by structural recursion on formulas, using in each case only
the denotation of the subformulas, e.g., F [[p ∧ q]] is defined to be F [[p]] ∩ F [[q]]. For
arithmetic terms we define E [[e]](s), earlier written as s(e), by structural recursion
with clauses like E [[x]](s) = s(x) and E [[e + d]](s) = E [[e]](s) + E [[d]](s). Note that
+ on the left side of the equation is program syntax and on the right it has its
ordinary mathematical meaning. (Reminding the reader that they are different is
one purpose of the fancy brackets.) One may view semantic functions like E [[−]] as
a compositional translation or homomorphism from one language to another whose
meaning is known, e.g., ordinary mathematics or the logic of a theorem prover
(Sect. 4.4). Owing to compositionality, equality of denotations is a congruence
with respect to the constructs of the language. By contrast, bisimilarity and other
operationally defined equivalences are not always congruences.

Let us consider a semantics that models initial/final observations of the ter-
minating computations of commands. The semantic function C[[−]] maps com-
mands to relations on Store. The semantics of sequence illustrates how famil-
iar mathematical constructions may be used in denotational definitions: define
C[[c0; c1]] = C[[c0]]; C[[c1]] where, on the right, “;” is composition of relations. For
conditional, define C[[ifnz e then c fi]] = F (E [[e]], C[[c]]) where F is defined as follows:
(s, t) ∈ F (g,R) iff either g(s) 6= 0 and (s, t) ∈ R or g(s) = 0 and s = t.

Henceforth, we shall usually elide E , C, etc., as they can be inferred from their
arguments. But they are different functions: [[c]] is an element of P(Store× Store)
and [[e]] is an element of Store → Z.

The semantics of loops is given as a fixpoint. Operationally, while e do c od has
the same meaning as its unfolding, if e then c;while e do c od fi. This suggests that
the denotation will satisfy [[while e do c]] = F ([[e]], ([[c]]; [[while e do c]])) using F from
semantics of conditional. Letting G(R) = F ([[e]], ([[c]];R)), we define [[while e do c]]
to be the least fixpoint of G. It exists because G is monotonic with respect to
the order ⊆ on store relations. The examples in Sect. 3.1 might suggest the choice
of least fixpoint, but a stronger justification is the link with transition semantics:
〈c, s〉 7→∗ t iff (s, t) ∈ [[c]] (see Sect. 4.1).

3.3 Domains: the ranges of denotational semantic functions

For a denotational model that captures divergence of commands, one might expect
to use a greatest fixpoint; we consider such a model in Sect. 5.2. (Beware that in the
literature one finds order relations reversed sometimes, whence greatest swapped
with least.) For infinite behaviors a suitable form of observation is also needed,
e.g., infinite traces or divergence (recall ⇑). The next example is a model for
deterministic commands, capturing both finite and infinite behavior. Let Store⊥
abbreviates Store ∪ {⊥}, where ⊥ is some object not in Store that stands for
divergence. The semantics, D[[−]], maps commands into the set Store → Store⊥.
It is not ordered by ⊆ but it does have the structure needed for fixpoints, the
approximation order v is defined by f v g iff f(s) 6= ⊥ ⇒ f(s) = g(s) for all
s ∈ Store. (In general the extensional order on functions f, g into a set X partially
ordered by ≤ is f v g ⇐⇒ ∀v ∈ X | f(x) ≤ g(x).) This function space also has a
least element, the function λs.⊥ (using lambda notation as meta-language). Every
ACM Journal Name, Vol. V, No. N, January 2009.

January 20, 2009 · 15

ascending chain f0, f1, . . . has a lub, namely the function g such that g(s) = fk(s) if
there is some k such that fk(s) 6= ⊥; and g(s) = ⊥ otherwise. Unlike the previous
examples, this domain does not have lubs arbitrary collections: if, for some s, f(s)
differs from g(s) and neither is ⊥ then f and g have no upper bound. A partially
ordered set with lubs of ascending chains is called a complete partial order (cpo) or
domain.

The next ingredient for a general theory of domains is continuity. To define
D[[while e do c]] we define function G from Store → Store⊥ to Store → Store⊥,
such that G(f)(s) = s if [[e]](s) = 0 and G(f)(s) = f(D[[c]](s)) otherwise. The
iterates λs.⊥, G(λs.⊥), G2(λs.⊥), . . . form an ascending chain. For the lub of this
chain to be a fixpoint of G we rely on the fact that G is continuous.

Denotations are given for every kind of phrase. As a simple illustration, we
sketch a naive semantics for the simple procedures of the form λx.c with integer
value parameters x (Sect. 2.1.2). We need a set of possible meanings to interpret
the form λx.c and an interpretation of (λx.c)(e) as a function of the meanings
of its parts. We define P[[λx.c]] as an element of Z → (Store → Store⊥). (For
parameters passed by name, a different domain is needed.) As usual, the semantic
clause looks like a translation to the meta-language: P[[λx.c]] = λi.λs.[[c]]([s | x : i]).
The semantics of application is [[(λx.c)(e)]](s) = (P[[λx.c]]([[e]](s)))(s).

The next example is a language with more interesting types. The simple types
are given by τ ::= int | τ→τ (using int as a representative base type). Simply
typed lambda terms have the form λx : τ.M . Types are ascribed to terms by an
inductively defined relation, E ` M : τ (called a typing judgement), where E assigns
types to variables including the free variables of M . One of the typing rules is

if E, x : τ ` M : τ ′ then E ` (λx : τ.M) : τ→τ ′ (2)

For example, closed term (λx : int.λf : int→int.f(fx)) has type (int→(int→int))→int.
The denotational semantics begins with semantics for types: T [[int]] = Z and induc-
tively T [[τ→τ ′]] = T [[τ]] → T [[τ ′]]. The meaning of terms is defined by induction on
syntax, so that for closed term M : τ the denotation M[[M]] is an element of T [[τ]].
More precisely, M[[−]] is defined on typing judgements

For other type constructors there are corresponding constructs for domains. From
D and D′ we can form a disjoint union D+D′; this can be used to model exceptional
versus normal outcomes. The product D ×D′, ordered pointwise, can be used to
model functions with multiple arguments —but for parameters passed by value,
pairs like 〈v,⊥〉 containing a single ⊥ are of no use and removed in the smash
product D ⊗ D′. To add recursive definitions to simply typed lambda calculus
we interpret the arrow types by [[τ → τ ′]] = [[τ]] →c [[τ ′]]⊥, where →c means the
set of continuous functions (ordered extensionally). This function space has a least
element λx.⊥ on which to base approximation chains. A recursive definition denotes
the least fixpoint of a function from [[τ → τ ′]] to itself.

Nondeterministic commands can be taken to denote functions D → P (D) where
the powerdomain P (D) is some collection of subsets of D (typically finite, nonempty
subsets). For subsets α, β of D there are several plausible ways to define α ≤ β, e.g.,
∀b ∈ β | ∃a ∈ α | a ≤ b. Smyth [1983] links this with the demonic interpretation
of nondeterminacy and total correctness, and the reverse condition with partial
correctness. The two conditions together are appropriate when sets are values in

ACM Journal Name, Vol. V, No. N, January 2009.

16 · January 20, 2009

their own right. Technical complications with powerdomains lead many to use
relations or predicate transformers to model nondeterminacy (Sect. 5.2).

Not all domains can be defined by structural induction on types. Some popular
languages are untyped and allow procedures to be applied to themselves. In the
extrinsic view of types [Reynolds 1998], phrases have meanings independent of
typing, contrary to the treatment above of typed terms. The canonical example
is untyped lambda terms. Imagine a semantics so that [[M]] is an element of some
semantic domain D to be defined. Now, [[λx.M]] ought to be a function that can
be applied to elements of D, so [[λx.M]] is in D →c D, but λx.M is a term so it is
in D. Scott [1970] found D with an isomorphism D ∼= (D →c D). The restriction
to continuous functions is critical since a bijection D ∼= (D → D) exists only if D
is a singleton. Similar equations arise in other higher order languages (Sect. 6.3)
and in languages that allow recursive definition of types (e.g., classes in C++).

As a hint about the solution of domain equations, consider the simpler, recursive
equation Str ∼= (Z + (Z× Str)⊥) for non-empty “streams” of integers. Let Str0 be
the degenerate cpo {⊥}. Let Stri+1 = (Z+(Z×Stri)⊥) so in effect Strk consists of
lists of length at most k, some approximate in that they end with ⊥. At the limit
we get infinite sequences and their finite approximants. The chain of unfoldings is
connected by order-embeddings Stri into Stri+1 for each i. Such embeddings play
a role like the ordering relation within a single cpo (see Sect. 4.3).

Domain theory encompasses the many variations on cpo’s that support different
constructions needed to model programming and specification language constructs.
See Gunter and Scott [1990] and Abramsky and Jung [1994].

3.4 Fixed point induction and coinduction

A great benefit of denotational semantics is that many equations and refinement
laws can be proved simply by use the ordering or equality of domain elements. More
is needed to prove, e.g, partial correctness of a loop. Let G be the function defined
in Sect. 3.2, so the semantics is the lub of the chain of iterates Gi(λs.⊥). A direct
proof shows that each Gi(λs.⊥) has the property, by induction on i. Then show
that the property is preserved at the limit, i.e., if every relation in an ascending
chain has the property then so does the lub of the chain.

Explicit induction on i can be avoided. If f :D →c D then by definition the
least fixpoint, µf , satisfies an induction principle: For any d ∈ D, f(d) ≤ d implies
µf ≤ d. Scott’s fixpoint induction rule is more powerful. It applies to any domain
D and any P ⊆ D that is chain complete (i.e., for any ascending chain whose
elements are all in P , the lub is also in P). The rule says that µf ∈ P follows from
⊥ ∈ P and f -closure of P (i.e., x ∈ P ⇒ f(x) ∈ P).

Not all interesting predicates are chain complete. For example, let D be the
domain of finite and infinite sequences, ordered by prefix. The finite sequences are
not a chain-complete subset: the lub of an ascending chain of finite traces may be
infinite.

For greatest fixpoints the dual principle is coinduction: if d ≤ f(d) then d is at
most the greatest fixpoint of f . This was first described in application to simula-
tions [Park 1981]. For transition system (S, 7→), define an operator F on relations
R ⊆ S × S as follows: (s, t) ∈ F (R) iff ∀s′ | s 7→ s′ ⇒ ∃t′ | t 7→ t′ ∧ (s′, t′) ∈ R.
The greatest fixpoint of F is the similarity relation and similarity of s, t can be
ACM Journal Name, Vol. V, No. N, January 2009.

January 20, 2009 · 17

RefCalc �gen
AnnotSrc

strip- SrcCode
optim- SrcCode

comp- ObjCode

Frmla

awp?

Pred

F?
� lift�

wp

Behd

deno

?
� - Behe

eval

?
� -

eval

-

Beh � R -

trans

-

Beh′

trans ′

-

Fig. 4. Conceptual sketch of links comprising a verifying compiler. Verification conditions (VCs)
are generated by translation to an intermediate language, RefCalc, to which formula-transformer
semantics, awp, is applied. Links justify that if the VCs are provable (by a sound theorem prover,
not shown) then the object code is correct.

proved by exhibiting some R such that (s, t) ∈ R and R ⊆ F (R). Coinduction is
attractive because it is not restricted to chain-complete predicates. Gordon [1994]
gives a succinct tutorial. Pitts [1996] applies coinduction to the difficult problem
of reasoning about recursively defined domains.

4. MODULARITY AND LINKING

To make a case that specific software running on specific hardware behaves as
required, one needs program semantics that unquestionably models the hardware
and the code it executes —but also specification semantics that unquestionably
models people’s understanding of the specifications. The two must be linked but
may be based on quite different semantic theories. Consider the Verisoft project,
which aims to verify application programs in a dialect of C, with respect to a gate
level hardware model. This involves links between software layers (compiler, OS
layers, instruction set architecture) and in some cases multiple models per layer
(e.g., big- and small-step semantics of the source language) [Alkassar et al. 2008].
In another scenario, application software is comprised of components designed and
implemented in different languages, each of which may have its own model for
stating and proving correctness. For modular verification of the integrated system,
it must be proved that the components agree on the interpretation of their common
interfaces.

The term link is used loosely in this survey. One simple example is a compila-
tion function which maps source programs to object programs. Another kind of
link is what we call a coupling : a relation between two state spaces or data rep-
resentations. For example, a coupling could define how bit strings in input and
output date correspond to abstract notions like “user identifiers” and “integers”
in a requirements specification. A more interesting kind of link is the statement
and proof of some property involving simple links. For example, suppose optim is
a source to source translation that serves as one stage of an optimizing compiler.
An interesting link is the statement and proof that the evaluation semantics, eval,
is preserved by the translation. This is depicted by a triangle in Fig. 4. To its
right is a triangle that depicts a link that says eval is consistent with transition
semantics trans, modulo a coupling between the behaviors given by eval (Behe)
and those given by trans. The figure shows a link between a denotational seman-
tics (deno) and semantic weakest preconditions (wp) which is routine and given
by a standard lifting to predicate transformers. Other links may involve difficult

ACM Journal Name, Vol. V, No. N, January 2009.

18 · January 20, 2009

proofs and specialized techniques. Besides exact matches, some links may be ap-
proximate. For example, let the leftmost vertical arrow in the figure (awp) be a
formula-transformer semantics composed with the semantics of formulas; for use in
verification it may suffice for it to conservatively approximate the semantic weakest
preconditions (wp). Sect. 4.1 describes some typical links, including the standard
link between operational and denotational semantics.

For verified software, many different models and links are needed, so there is both
engineering and scientific interest in modularity of models and their links. Ideally,
adding a new construct to programming or specification language is achieved by
modular extension of existing compilers and other tools. Such extensions are an-
other kind of link. Sect. 4.2 considers ways in which operational and denotational
methods can facilitate modularity in semantic modeling.

There is no widely accepted unifying framework for models and their links, nor
indeed agreement on the need for such a framework. However, category theory
(Sect. 4.3) provides unifying definitions which are widely used in semantic modeling,
from the design of static analyses (Sect. 5.3) to construction of models for complex
programming languages and logics. Semantic models and links are not only defined
“on paper”, with ordinary mathematics as the meta-theory, but also formalized
within theorem provers in ways discussed in Sect. 4.4.

4.1 Linking operational and denotational

Figure 4 sketches a possible organization for proofs by a (simplified) verifying com-
piler. The input is a program with annotations that specify some properties to be
checked. On the left is the flow for verification of whatever properties are expressed
by the annotation. We return to this in Sect. 5. Rightward along the top, the
annotations are discarded and the compiler does source level optimization followed
by code generation. The downward arrows are semantic mappings, e.g., trans gives
the behaviors of source code as defined by the transition semantics of Sect. 2.1.1
and eval gives them as defined in Sect. 3.1. Whereas the program’s properties are
verified using an axiomatic semantics (the formula-transformer awp), we wish to
conclude that the properties are true of the actual machine behavior as modeled
by its low level semantics trans′. The proof is decomposed via several links that
we describe starting from the lowest level, rightmost in the figure.

We write σ for processor/memory states, � for its transition relation, and trans′

for the behaviors given by �. Coupling R links abstract states with concrete ones:
〈c, s〉Rσ if the compilation of some command cmain is in certain locations in σ
and the program counter register points to the beginning of the compilation of c,
and moreover the valuation s corresponds to the contents of designated registers or
memory locations in σ. For those variables used in the annotation and therefore
considered observable, the correspondence with memory locations (mapped to I/O
devices) is part of the system specification. Like any specification, we take it as
given when considering proofs of correctness. Relation R also connects internal
registers, using fixed bitwidth integers, with local variables, in whatever manner
is needed for the link to be provable. The linking property says the following: If
〈c, s〉Rσ then 〈c, s〉 7→ 〈c′, s′〉 implies σ �∗ σ′ for some σ′ such that 〈c′, s′〉Rσ′,
and conversely σ � σ′ implies 〈c, s〉 7→∗ 〈c′, s′〉 for some c′, s′ such that 〈c′, s′〉Rσ′.
Use of reflexive, transitive closure of the transition relations caters for steps that
ACM Journal Name, Vol. V, No. N, January 2009.

January 20, 2009 · 19

do not match exactly (e.g., several instructions for a single assignment in source).
To justify abstract reasoning about correctness of a particular program, we only

need the links for that one program. Typically, however, such links are established
for a class of programs, e.g., a well behaved subset (“dialect”) of the programming
language that admits a simpler model of storage. Here we refrain from saying just
what are the sets ObjCode, AnnoProg, etc.

The rightmost triangle in Fig. 4 links the abstract transition semantics with
the evaluation semantics, which is more convenient for reasoning about optimizing
transformations. Here there is no difference in the representation of state, so the
desired relation is that both semantics give the same set of initial/final states (so
Behe is Beh). The link is proved by mutual implication. We prove 〈c, s〉 ⇓ s′

implies 〈c, s〉 7→∗ 〈skip, s′〉 by rule induction on the evaluation semantics, ⇓, using
the lemma 〈c, s〉 7→n 〈skip, s′〉 ∧ 〈c′, s′〉 7→∗ 〈skip, t〉 ⇒ 〈c; c′, s〉 7→∗ 〈skip, t〉
proved by induction on n. The proof that 〈c, s〉 7→∗ 〈skip, s′〉 implies 〈c, s〉 ⇓ s′

goes by induction on c, using for the while case a nested induction on the length of
〈c, s〉 7→∗ 〈c′, s′〉 which in turn uses another lemma proved by induction.

The denotational semantics serves, in this particular scenario, as bridge to the
axiomatic semantics used for verifying correctness of the annotated source program.
For simple imperative commands, the link between evaluation and denotational
semantics is simple: 〈c, s〉 ⇓ t iff (s, t) ∈ [[c]]. The implication left-to-right can be
proved by rule induction on ⇓. The converse can be proved by structural induction
on c, using an inner least-fixpoint induction in the case of while. (See Nipkow
[1998] for these particular proofs.) The same notion of observation is used for both
semantics and in Fig. 4 the link between Behd and Behe is the identity. For a more
complicated language this would be a nontrivial relation between different sets.

In the case of a more complex programming language, there could be many more
links of various kinds. It is possible, e.g., to use denotational semantics to validate
source to source transformations. Or to directly link the axiomatic semantics, wp,
with evaluation semantics. Ideally, a number of models and links are available,
offering scientific insight as well as engineering options.

Recall the extension of simple imperative commands with parameterized com-
mands and integer value arguments (Sect. 2.1.1). The transition semantics of-
fers no direct observations of (λx.c) that could be linked to P[[λx.c]]. This would
be true as well in an evaluation semantics or transition semantics with explicit
frame stack. The desired link is via contextual equivalence or approximation. Ad-
equacy says the denotational semantics can be used to prove refinements (hence
equivalences): P[[p]] v P[[p′]] ⇒ p �ctx p′. Full abstraction [Plotkin 1977] says
that denotational equality is complete for reasoning about contextual equivalence:
p �ctx p′ ⇐⇒ P[[p]] v P[[p′]]. A fully abstract semantics makes no distinctions
that cannot be observed. For many complex languages full abstraction is difficult
to achieve (see Sect. 6). In some case it can be achieved by fiat, using a quotient
construction from an operational or other semantics: a term denotes the set of
all observationally equivalent terms [Milner 1977]. But this offers little help for
reasoning or understanding.

Just as domains can be defined inductively on type structure, so too can coupling
relations be. The technique called logical relations [Plotkin 1973] can be used to

ACM Journal Name, Vol. V, No. N, January 2009.

20 · January 20, 2009

prove contextual equivalences [Crary and Harper 2007] and also to link operational
with denotational. For simplicity we explain its use to link two denotational seman-
tics. The idea is that T [[b]] might differ from T ′[[b]] if b is a base type (say int) but
both T and T ′ are defined inductively like [[τ → τ ′]] = [[τ]] → [[τ ′]]. Given a relation
Rb for each base type b, the relation Rτ→τ ′ ⊆ [[τ → τ ′]]× [[τ → τ ′]] is defined so that
(f, f ′) is in Rτ→τ ′ just if (f(v), f ′(v′)) ∈ Rτ ′ for all (v, v′) ∈ Rτ .

4.2 Linking theories

Feng et al. [2008] demonstrate economy of reasoning in logics tailored to small sets
of language features. Reasoning about the implementation of thread primitives like
context switch involves higher types (code pointers in queued task blocks) but is se-
quential (because interrupts are disabled). The implementation of synchronization
primitives relies on the thread interface, but nothing higher order; it does involve
concurrency. Consistency between the two logics (and others) is a link expressed
and proved in terms of a foundational logic which serves as a unifying theory, itself
proved sound with respect to transition semantics of machine code. How can links
be made directly and features modeled modularly?

The most powerful means to link different models is to focus on their signatures
and laws. Algebraic laws can capture properties of individual constructs that re-
main true in combination with other constructs —e.g., associativity of sequential
composition, or monoids extended to commutative groups. This is motivation for
algebraic and logical semantic methods (Sect. 5) —but to justify the laws, we need
other models.

In transition semantics, modular composition of features is relatively easy, e.g.,
by adding new instructions and transitions, perhaps with components added to
the state. Fig. 2 shows how transition semantics of sequential commands lifts
easily to transition semantics of multi-threaded programs (notation 9). Combining
mechanisms, though, does not predict the properties of the combination. However,
for the structural style (Sect. 2.1.1) there is a theory of rule formats that gives
general results, e.g., when is bisimulation a congruence [Aceto et al. 2001] and thus
suitable to justify algebraic laws. The abstract state machine (ASM) approach
endows transition semantics with a high level of abstraction by taking states to be
first order models. Stärk et al. [2001] use ASMs to give modular semantics of many
features of Java source and JVM bytecode through a series of refinements.

For denotational semantics, addition of program constructs and observations of-
ten requires change to the underlying domains, with pervasive consequences. In-
deed, the domains of a good denotational semantics manifest core features such as
the difference between by-name, using D ∼= D →c D, and lazy evaluation, using
D ∼= (D →c D)⊥ in which ⊥ is distinguished from the function λx.⊥. Moggi [1991]
shows that the notion of monad from category theory (Sect. 4.3) unifies various
computational effects. A term or command denotes a function State → F (State)
where F could be ⊥-lifting, a powerdomain, etc.. To combine effects, say exceptions
with nondeterminacy, F is composed from two simpler monads.

Hoare and He [1998] adapt Hehner’s [1984] predicative programming with the
intent to provide a unifying theory of programming (UTP) encompassing many
features and links. This is a style of denotational semantics in which observations
of all kinds are equated with valuations of designated observation variables, e.g., a
ACM Journal Name, Vol. V, No. N, January 2009.

January 20, 2009 · 21

sequence variable that records an observed trace. A specification is a predicate on
observation variables. A program or design is a predicate as well, but one which
satisfies some some “healthiness conditions”, often expressed by closure conditions
or algebraic laws. In this way, semantics of different constructs and notions of
observation can be investigated without the clutter of syntax: a program just is a
predicate, or if you like a set of observations. Economy of notation and definition
is achieved through uniform use of predicates on observation variables of various
types, and use of Galois connections for linking.

4.3 Category theory and Galois connections

A widely applicable unifying theory is category theory. Sometimes called the al-
gebra of types, it offers not so much strong theorems as powerful definitions that
organize and abstract from complex structures. A category consists of a set of ob-
jects and a set of arrows, where each arrow f has a source and target object, written
f :S → T . Moreover there is a partial composition operator, e.g., from g :T → U
obtain (f ; g) :S → U . Composition is associative and there is an identity arrow
for each object. There is a category Set whose objects are “all” sets, and arrows
S → T are total functions from S to T , whence the notation. Another example
is Cpo, whose objects are complete partial orders and arrows continuous functions.
The objects of any preordered set form a category, with an arrow s → t (unique
and therefore anonymous) just if s ≤ t. A functor from one category to another
maps objects and arrows to the same, preserving sources, targets, and composition.
A functor between preordered sets is thus a monotonic function. (Pierce [1991] is
a slim textbook on category theory.)

Functors serve to abstract from details of type constructions, for example disjoint
sum. One representation of the set S + T uses pairs (0, s) and (1, t) for s ∈ S and
t ∈ T . What matters is that there are injection functions inl :S ↪→ S + T and
inr :T ↪→ S + T . Moreover, functions from S + T to some set U can be defined
by cases: for any f :S → U and g :T → U there is a unique [f, g] : S + T → U
such that inl; [f, g] = f and inr; [f, g] = g. This gives a way to define + on pairs
of functions and the laws characterize S + T up to isomorphism. This algebraic
characterization works for Set, for Cpo, and for various other categories of domains.

One key notion of category theory is adjunction, involving a pair of functors back
and forth between two categories. In the case of preordered sets, it is called a Galois
connection and consists functions f : (P,6) → (Q,.) and g : (Q,.) → (P,6) with
the property

f(p) . q ⇐⇒ p 6 g(q) for all p, q (3)

Here f and g are approximate inverses, each mapping elements of one set to clos-
est approximations in the other set. The lub property can be put in this form:
t(p, p′) . q ⇐⇒ (p, p′) 6 ∆(q) where P is Q × Q and ∆(q) = 〈q, q〉. So too the
axiom for disjoint sums, except that in a category of domains there may be many
arrows (functions) from one object to another. Instead of equivalence (3) there is
a bijection between arrows h :S + T → U and pairs (f, g) : (S, T) → ∆(U).

Domain equations can be described in terms of functors. A solution D of an
equation X ∼= F (X) in a category is the colimit of a chain of embeddings obtained
from the inclusion e : I ↪→ F (I) as F (e) :F (I) ↪→ F 2(I) etc. [Smyth and Plotkin

ACM Journal Name, Vol. V, No. N, January 2009.

22 · January 20, 2009

1982]. Solutions are characterized by axioms similar to —indeed, generalizing—
the above for disjoint sums and also generalizing least upper bounds in that there
is an embedding F i ↪→ D for each i.

Galois connections can be used to link different semantic domains, e.g., a model
for partial correctness versus a model that considers divergence observable. For
a given transition system there is a hierarchy of approximate semantic models
(abstract interpretations Sect. 5.3) forming a chain of Galois connections that en-
compasses transition, denotational, and axiomatic semantics [Cousot 2002].

The Curry-Howard isomorphism is an adjunction that links types with proofs
and underlies some higher order theorem provers [Bertot and Castéran 2004]. In
propositional logic, if q′ can be proved assuming p and q, written p, q ` q′, then also
p ` q ⇒ q′, and vice versa. One can adapt the typing rule (2) to say that proof M
of q′ assuming p, q corresponds to a function taking proofs x of q to proofs of q′.

Cartesian products are dual to disjoint sums. For a pair f, g there is 〈f, g〉 :U →
S × T such that 〈f, g〉; outl = f and 〈f, g〉; outr = g. In the presence of effects —
divergence, nondeterminacy, etc— these laws weaken to inequations but still hold
as equalities for the effect-free arrows. Lax notions of adjunction makes possible the
axiomatization of effects together with data structures [Martin et al. 1991; Power
and Robinson 1997; Naumann 1998; Hyland et al. 2007].

4.4 On depth of embedding in machine checked theory

A deep embedding of a programming language in an automated theorem prover
formalizes the syntax as data in the logic. A shallow embedding defines some or all
of the object language in “semantic” terms only, i.e., as entities in the logic —cf.
Kleene’s theory, and UTP. A deep embedding of the simple imperative language
represents the grammar of expressions, say e ::= n | x | e + e as an inductive
datatype and so too the grammar of commands. Then the semantic definitions
map abstract syntax trees to semantic objects. In a shallow embedding, only the
semantic objects are defined; an expression just is a state function. The translation
of concrete syntax to such expressions is still needed in tools, but it is defined outside
the logic and not subject to formal reasoning; in particular there is no syntax
on which to do structural induction. A mixed embedding could treat commands
as a data type, to support proofs by structural induction, while using a shallow
embedding of expressions (e.g, the datatype constructor for assignment would apply
to a variable name and a state function). Structural induction can be useful to prove
laws that hold for programs but not for all elements of a model; on the other hand,
its absence is impetus to find a better model. Nipkow [1998] discusses embeddings
and uses a shallow one to streamline a proof rule for procedures [2002]. Shallow
embedding raises the question of what full abstraction means, and it can happen
that powerful features of the ambient logic render expected laws invalid.

Deep embedding for languages with binding constructs requires formalization
of substitution and its properties. A theorem prover already provides such for-
malization for its logic. Higher order abstract syntax is a kind of shallow em-
bedding that uses lambda abstraction in the metalanguage to interpret binding
constructs [Harper et al. 1993]. Several other approaches are also under active
investigation [Pitts 2003; 2006; Gordon and Melham 1996].

Another form of mixed embedding reconciles nondeterminacy with logics based
ACM Journal Name, Vol. V, No. N, January 2009.

January 20, 2009 · 23

on total functions. Nondeterministic transition systems are defined using a de-
terministic next-state function that takes as a parameter an oracle that resolves
nondeterministic choices (e.g., by a scheduler or physical device). There is some
loss of compositionality because the oracle is threaded through the semantic defi-
nitions. Moreover extensional equality of functions on oracles may fail to validate
simple laws like p u q = q u p.

5. AXIOMATIC SEMANTICS

To establish that a program satisfies a specification, a reasoner uses not only specific
details of the particular program and specification but also generalities about the
semantics of programs and specifications. For example, if a command has the
partial correctness properties (p, q) and (p, q′) it also has (p, q ∧ q′). For a given
programming and specification language, it may be possible to find a collection of
sufficiently general rules to support a fixed factoring of the reasoning task: prove
the rules once and for all and then use only the rules in reasoning about specific
programs. Such a factoring amounts to a program logic. Whereas operational
and denotational semantics relate a program to its behaviors, a formal program
logic relates a program to formulas describing its properties. Floyd [1967] proposed
to take verification conditions as the specification of the programming language’s
semantics, whence the standard term axiomatic semantics.

In some ways the term “axiomatic” is misleading. The idea of specifying a pro-
gramming language by means of nothing more than a correctness logic is not widely
accepted. Operational semantics is needed as a guide for implementation and for
standardization of important details that will not be observable in models used for
functional specification. (But it is possible to use operational semantics to describe
unimplementable languages.) Rarely is there practical motivation to consider all
models of an axiomatic semantics. Standard models are of interest because they
reflect artifacts in actual use, and reasoners profit by moving freely between linked
models. The author was tempted to coin the term “property-oriented” to describe a
range of methods —formal logics, refinement algebras, and predicate transformers—
all of which directly associate programs with properties and are applied directly in
tools for proving correctness.

5.1 Hoare logic

The machine programs of Sect. 2.3.2 are assumed to be single-exit, but an individual
ifnz instruction is usually not single-exit. The syntax of structured commands makes
every sub-program single-exit, so any sub-program can be given a partial correctness
specification. As a result, Hoare [1969] could adapt the inductive assertion method
to a formal system based on correctness judgements (also called partial correctness
assertions or Hoare triples) of the form {p} c {q} where p and q are formulas.
Using the denotational semantics of commands (Sect. 3.2), validity of a correctness
judgement is defined by |= {p} c {q} iff pc([[p]], [[c]], [[q]]) where pc is defined by

pc(P,R, Q) ⇐⇒ ∀s, t | s ∈ P ∧ (s, t) ∈ R ⇒ t ∈ Q (4)

In logic terminology, this is truth of the judgement, in some standard model to
interpret the primitive predicates and functions in p, q, and c. One may also
consider a notion of validity with respect to a class of interpetations, e.g., those

ACM Journal Name, Vol. V, No. N, January 2009.

24 · January 20, 2009

{p} c0 {R} {R} c1 {q}
{p} c0; c1 {q}

(seq)
{p ∧ e 6= 0} c {p}

{p} while e do c {p ∧ e = 0}
(loop)

p ⇒ p′ {p′} c {q′} q′ ⇒ q

{p} c {q}
(conseq)

{p} c {q} {p′} c {q′}
{p ∧ p′} c {q ∧ q′}

(conj)

Fig. 5. Selected rules of Hoare logic.

satisfying an axiomatization of arithmetic encompassing hardware implementations
as well as the standard model of the integers.

Hoare logic differs from the inductive assertion method in that it does not ex-
plicitly use basic paths or annotation. It uses inference rules (Fig. 5) for deriving
judgements about compound commands from judgements about their parts —and
the specifications of those parts play the role of assertions at intermediate control
points. Antecedents of some proof rules include first order validities as well as
correctness judgements, so the proof system includes rules for first order reasoning
over whatever data types are included in the language.

Besides the compositional rules associated with syntax, structural rules are needed
for reasoning based on the meaning of specifications and correctness judgements.
An example is the rule of consequence, which embodies refinement of specifica-
tions: p′, q′ is more refined because any command that satisfies it also satisfies p, q.
Adaptation rules also embody refinement [Hoare 1971; Kleymann 1999].

The essential link is that if {p} c {q} is derivable then |= {p} c {q} —that is,
the logic is sound with respect to denotational semantics (and thus, by other links,
with respect to transition semantics). This is proved by induction on proof trees.
For each proof rule, truth of the consequent follows from truth of the antecedents.
The case of while goes by fixpoint induction, using that for any P,Q, the predicate
pc(P,−, Q) on state relations is chain complete.

For a formal system to be most useful —certainly for it to serve to specify the
semantics of programs— we would like it to be complete: If a correctness assertion
is valid there proof of it. This is impossible, owing to incompleteness of first order
logic for the standard model of the integers. Cook’s [1978] relative completeness
says every valid correctness assertion can be proved, given an oracle for all first
order validities. With a shallow embedding (Sect. 4.4) of assertions, the ambient
logic serves as the oracle.

5.2 Weakest preconditions

In case c is a sequence of assignments, validity of {p} c {q} is the same as correctness
of a basic path where p is the start assertion and q the end assertion (Sect. 2.3.2).
This brings us back to the notion of verification condition. Given a set X of
states, the weakest semantic condition under which all terminating computations
of c establish X, written wp(c)(X), is the set defined by

s ∈ wp(c)(X) ⇐⇒ ∀t | (s, t) ∈ [[c]] ⇒ t ∈ X

(This is often written wlp and called “weakest liberal precondition”, when con-
sidered together with the version for total correctness. Program logic for total
correctness, and the links with semantics and weakest preconditions, are similar to
ACM Journal Name, Vol. V, No. N, January 2009.

January 20, 2009 · 25

what we discuss here.) By definitions, |= {p} c {q} iff [[p]] ⊆ wp(c)([[q]]).
Imagine that for any c and q there is a formula wp(c)(q) that expresses wp,

in the sense that [[wp(c)(q)]] = wp(c)([[q]]). Then relative completeness could be
shown as follows. Assume |= {p} c {q}. Thus p ⇒ wp(c)(q) is valid. Show a
provability lemma saying that {wp(c)(q)} c {q} is derivable for all c, q. Use the rule
of consequence to conclude that {p} c {q} is provable.

How can the formula transformer wp be defined? For assignment it is straightfor-
ward (absent aliasing) to justify the clause wp(x : = e)(q) = q/x→e. For sequence,
the definition comes immediately from the semantic property wp(c0; c1)(X) =
wp(c0)(wp(c1)(X)). (And the sequence case in the provability lemma goes by using
wp(c1) to get the intermediate assertion.) For loops, wp(while e do c)(X) can be ex-
pressed as a fixpoint of a monotonic function on state sets, based on [[e]] and wp(c).
These semantic properties serve as an alternate definition of wp by structural in-
duction on commands —which amounts to a denotational semantics at the level of
properties, depicted by the arrow labeled wp in Fig. 4. The link with denotational
semantics (of Sect. 3.2) dictates that wp(while e do c)(X) is the greatest fixpoint.
(The least fixpoint is used for total correctness.)

To define wp(while e do c)(q), the fixpoint definition of wp(while e do c)([[q]])
must be expressed as a formula. If the first order language is sufficiently rich this
is possible and the assertion language is called expressive. For simple imperative
commands, expressiveness is achieved using integers [Cook 1978; Winskel 1993] or
finite sequences [Pierik and de Boer 2005] to encode traces. Infinitary [Back 1988]
or higher order logic supports direct expression of the fixpoint. In Dynamic logic,
wp(c) itself is added to the assertion language (see Sect. 5.4). A rich assertion
language is at hand in the case of a shallow embedding of the assertion language in
a higher order prover [Kleymann 1999; Nipkow 2002]. Even so, deductive reasoning
about loops is impractical without given or inferred loop invariants.

For programs annotated with loop invariants (and procedure specifications), an
annotated-wp function, awp, can be defined by recursion on program structure,
such that [[awp(c)(q)]] ⊆ wp(c)([[q]]) and hence |= {awp(c)(q)} c {q} [Floyd 1967].
It serves as a practical verification condition generator. In some tools, verification
conditions are generated by first translating annotated source code to a collection
of statements in an intermediate representation, shown leftmost in Fig. 4. This re-
finement calculus (Sect. 5.5) includes idealized commands that encode annotations,
with semantics wp(assert p)(q) = (p∧ q) and wp(assume p)(q) = (p ⇒ q). With this
we can complete the story about basic paths and branch conditions: the example
discussed Sect. 2.3.2 can now be written assume z 6= 0; z : = z−1;x : = x∗(y−z). The
formula transformer awp generates verification conditions that may be discharged
by a theorem prover. Links in Fig 4 ensure that provability of the verification
conditions implies correct behavior.

5.3 Abstract interpretation

Although wp(c) applies to all concrete predicates, i.e., sets of states, it is those
denotable by formulas that occur in specifications. It is possible to find restricted
classes of formulae whose denotations are closed under wp. Still more, if the result-
ing collection of concrete predicates is finite then direct “execution” of the fixpoint
definition of wp will converge. This effectively infers loop invariants, without re-

ACM Journal Name, Vol. V, No. N, January 2009.

26 · January 20, 2009

course to annotation!
An abstract interpretation of a language is often given by a domain of abstract

predicates and a predicate-transformer semantics using that domain [Cousot and
Cousot 1977]. The theory uses Galois connections as links between abstract in-
terpretations, to justify use of the abstract semantics to prove properties of the
concrete semantics. For example, let γ : (Frm,V) → (P(State),⊆) be the “con-
cretization function”, previously written [[−]], that sends each formula in Frm to
its satisfying states. If Frm is to provide an abstract interpretation, there should
be a weak inverse α : (P(State),⊆) → (Frm,V) that satisfies the condition (3) of
Sect. 4.3, i.e., α(X) V p ⇐⇒ X ⊆ γ(p). Here V means valid-implication (which
preorders the formulas in Frm). This situation together with results on “fixpoint
transfer” ensures that certain properties of concrete semantics can be proved using
abstract semantics. For theoretical purposes, abstract domains can be given as
subsets of P(State) in which case γ is the identity and α a closure operator.

Viewing formulas as representatives of concrete predicates we are led to contem-
plate other representations. For example, a token x : (i, j) could serve to express
the set of states where i ≤ x < j and x : (i,+∞) to express i ≤ x. This is one
way to design efficient fixpoint-based analysis algorithms. Many useful abstrac-
tions have infinitely many predicates but admit “widening operators” that can be
applied to leap up an approximation chain and reach fixpoints in finite time [Cousot
and Cousot 1977]. (See this issue’s model checking survey for much more.)

An abstract interpretation can be given by any domain D together with function
D → D, the least fixpoint of which is the semantics. Cousot [2002] uses this
general theory to account for the links between an arbitrary transition system and
its denotational and predicate transformer semantics, formalizing the consistent
and complementary theories advocated by Hoare and Lauer [1974].

5.4 Other program logics

Hoare logic is convenient for theoretical study but in verification tools it is more
convenient to work with programs in which some assertions (such as loop invari-
ants) are included in the program syntax. A proof outline logic [Owicki and Gries
1976; Pierik and de Boer 2005] provides rules for manipulating correctly annotated
programs that serve to directly specify generation of verification conditions.

A compositional logic for machine code must deal with the fact that a sequence
of instructions may have multiple entries and exits. Tan and Appel [2006] develop
a partial correctness logic where the correctness judgement has a precondition for
each entry and a postcondition for each exit. The interpretation is in continuation
style: if the code’s exits are linked to code that does not err in states satisfying
the associated postconditions, then the code does not err in states satisfying the
preconditions. This is akin to an encoding of correctness used in some verifiers,
which check whether wp(assume pre; c; assert post)(true) equals true.

Hoare logic is an example of endogenous program logic, where the program is
explicit in the judgements. Another example is Dynamic Logic [Pratt 1976; Harel
et al. 2000], in which the formula [c]p denotes the weakest (liberal) precondition for
c to establish p. The modal [c] has a dual 〈c〉 that says c has some computation
that establishes p. In boolean combinations, dynamic logic formulas can express
incorrectness and other properties beyond partial correctness. For command c on
ACM Journal Name, Vol. V, No. N, January 2009.

January 20, 2009 · 27

variables h, l, the formula ∀l∃r∀h.[c](l = r) says that the “low security” variable l
is not influenced by the initial value of h [Darvas et al. 2005]. Another alternative
is to allow quantification and boolean connectives to be applied to correctness
judgements, e.g., to express correctness of a command under hypotheses about
correctness of procedures it calls [Reynolds 1982].

Temporal logics are exogenous, meaning that formulas are interpreted with re-
spect to structures that include a fixed program [Pnueli 1977]. Linear time tem-
poral logic formulas are interpreted on computations and feature modal operators
to express “next state”, “always”, etc. Branching time formulas are interpreted on
the tree of computations and combine linear operators with path quantification.
Modalities can be indexed over observable events [Hennessy and Milner 1985; Stir-
ling 1985]. The modalities can all be defined in terms of the next-state modality
together with least and greatest fixpoint operators, e.g., “on all path, eventually p”
is the least fixpoint of λq.p∨AX q where AX is the “all next states” modality. See
Kozen [1983] or Harel et al. [2000] for more on modal fixpoint calculus.

Secure information flow requirements cannot be specified simply as a set of runs
(see Sect. 2.2), but it can be expressed using relations. Benton [2004] and Yang
[2007] formalize program logics that capture such properties and also reasoning
about program transformations and data refinement.

Many programming and specification languages rely on typing to express and
enforce invariant conditions on single identifiers, e.g., x ∈ Z or “f is a function
mapping each positive natural n to an array of length n”. The examples might be
written x : int and f : (n : nat) → Array(n). Sound typing rules are often defined by
structural recursion on program phrases, although value-dependent typing like that
of f can be undecidable. Type systems are the subject of the textook by Pierce
[2002], which includes pointers to the deep connections between dependent type sys-
tems and higher order logics. Verification conditions are combined with dependent
typing by Nanevski et al. [2006], [2008].

Linear logic [Girard 1987] disentangles the structural rules that allow duplication
or discarding of hypotheses (or variables, according to the Curry-Howard isomor-
phism, Sect. 4.3). This leads to type systems that encode single-threaded use of
program state including the heap (Sect. 6.3).

5.5 Refinement algebra

Weakest precondition calculus and assume commands opens the door to other con-
structs that are not feasible to implement (cf. [Smyth 1983; Abramsky 1991]), e.g.,
havoc x sets x to an arbitrary value and is unboundedly nondeterministic. These
commands serve to express specifications and to express correctness as refinement.
Thus calculational proofs of correctness may be carried out in terms of the refine-
ment ordering, v, modeled by the pointwise ordering on predicate transformers
which captures the intrinsic refinement ordering (Sect. 2.4) for partial or total cor-
rectness. Early development of the idea is due to Back [1978; Morris [1987; Morgan
[1988]. See the textbooks by Back and von Wright [1998] and Morgan [1994]. A
key advantage is that intermediate steps are designs which need not be restricted
to efficiently implementable program constructs (cf. the use of imaginary numbers).

Predicate transformers ordered by v form a complete lattice and the least upper
bound operator (not restricted to ascending chains) is needed to interpret some

ACM Journal Name, Vol. V, No. N, January 2009.

28 · January 20, 2009

uses of ghost variables —which embody angelic nondeterminacy. Although pred-
icate transformers are commonly used for semantics of refinement algebra, a gen-
eralization to transformers on other types is possible, using a sort of powerdo-
main construction that models the combination of angelic and demonic nondeter-
minacy [Morris and Tyrrell 2008].

Kleene algebra is a very expressive calculus of programming that subsumes Hoare
logic [Kozen 1999; 2008] using conditional equations. Bloom and Ésik [1991] give
a purely equational formalism that encompasses Hoare logic and fixpoints.

The treatment of refinement as reduction of nondeterminacy can be seen as a
deliberate pun, confusing nondeterministic program behavior with underspecified
behavior. Refinement of nondeterminacy can lead to violation of information flow
properties. Abadi [1998] describes the issue in terms of fully abstract translation.
Morgan [2006] uses ghost state to interpret assertions with a knowledge modality
for which the intrinsic refinement order (Sect. 2.4) preserves ignorance. Joshi and
Leino [2000] specify information flow by a semantic equation involving havoc.

6. SOME LANGUAGE FEATURES AND CHALLENGES

Many language features and feature combinations in common use pose challenges
for modeling and reasoning. Some remain unsolved while others have been solved
by elegant and practical theories. This section considers some of the areas most
broadly relevant to VSI.

6.1 Functional programming

In case a sufficiently restrictive type system is used, it is possible to find tractable
denotational models and to reason about functional programs using using exten-
sional equality. Systems to be verified are seldom purely functional, but verification
tools are often largely functional programs. The extreme case is functions defined
within the logic of a theorem prover [Moore 2008], or extracted from its proofs
via the Curry-Howard isomorphism [Bertot and Castéran 2004]. The categorical
algebra of functions embeds in an algebra of relations that serve as specifications
from which efficient programs are derived [Bird and de Moor 1996; Cousot 1999].

The cpo-based models (Sect. 3.2) for simply typed lambda calculus with integers
and recursion [Scott 1993] turn out not to be fully abstract because at higher types
there are “inherently parallel” functions in the model that are not denoted by
any term [Plotkin 1977]. The search for a fully abstract model that captures the
inherent sequentiality of functional programs led to game semantics where a term
denotes a strategy for interacting with the term’s environment [Abramsky et al.
1994; Hyland and Ong 2000]. It also led to refinements of domain theory that in
turn led to linear logic [Girard 1989; Abadio and Curien 1998]. The search also led
to development of logical relations (Sect. 4.1), including a generalization that uses
a family of relations indexed by states of an abstract transition system. At arrow
types one puts (f, f ′) in Rs

τ→τ ′ , for state s, just if (f(v), f ′(v′)) ∈ Rs′

τ ′ for all future
states s′ and all (v, v′) ∈ Rs′

τ [O’Hearn and Riecke 1995]. Quantifying over futures
proves to be useful, e.g., to reason about states of dynamically allocated memory.

Sophisticated type systems including recursion at the type level have been studied
mostly for functional programs but offer a theoretical basis for modular components
ACM Journal Name, Vol. V, No. N, January 2009.

January 20, 2009 · 29

in imperative and object-oriented programming. Data abstraction and hiding is
expressed using ∀ and ∃ types. Consider a function rev reverses any type of list.
Its type can be written ∀α.List(α) → List(α) in the polymorphic lambda calculus.
It is parametric, i.e., its behavior is uniform in the type variable α, i.e., it is a
single algorithm. Consider a semantics in which rev denotes a family of functions
revτ :List(τ) → List(τ), indexed by types τ . (We elide semantic brackets, recall
Sect. 4.4.) Uniformity of this family implies that rev commutes with any function
on list elements. That is, for any f : τ → τ ′ we have revτ ;List(f) = List(f); revτ ′ .
Here List(f) maps f over lists; indeed, List distributes over function composition
and is a functor (Sect. 4.3). A collection of arrows like rev that commutes with a
functor is a natural transformation. To reason about uniformity, in particular for
representation independence and contextual equivalences, naturality is generalized
to a condition akin to logical relations [Reynolds 1984; 1998; Girard 1989] (but see
also Sumii and Pierce [2005], Koutavas and Wand [2006]).

6.2 Shared mutable objects

For verification of imperative source code, syntactic restrictions are often used to
entirely avoid the need to model aliasing of variable identifiers by means of sep-
arate mappings V ars → Locs and Locs → V als. (The well known distinction
between L-value and R-value is an early contribution of theory.) Still, many lan-
guages include implicit or explicit references to heap-allocated objects. Several
current verification systems for source languages like Java use arrays (functions)
to model the heap, sometimes hidden by syntactic sugar in the assertion language.
Variations date back to the 1970’s and are reviewed in a paper where Bornat [2000]
explores Burstall’s ideas on expressing spatial separation. Straightforward use of
array models can break full abstraction, in languages where references are opaque
and programs cannot distinguish between isomorphic heap graphs. Storeless mod-
els provide unique representation of the heap in terms of access paths, at the cost
of being more complicated than array representations [Deutsch 1992].

Reynolds introduced a separating conjunction by which separation is expressed
by a logical connective, ∗, and with O’Hearn and Yang developed a logic in which
locality of heap effects is manifest in specifications. A triple {p}c{q} expresses that
the footprint ’ of c, i.e., the part of the heap it acts on, is within the part that
affects the truth of p. Owing to this tight interpretation of specifications, the logic
supports a frame rule that, like Hoare’s rule of Invariance, says that a predicate on
separate state is preserved: if {p}c{q} then {p ∗ r}c{q ∗ r} —without need for side
conditions about aliasing in the heap!

For data abstraction in imperative languages, where invariants on encapsulated
data structures are not exposed in module interface specifications [Hoare 1972],
separation is needed to express and enforce encapsulation for heap objects. One
of many fruitful lines of current research in Separation Logic is data abstrac-
tion [O’Hearn et al. 2004; Mijajlović and Yang 2005; Birkedal and Yang 2007].
For reasoning using standard first order assertions, notions of ownership are made
explicit [Leino and Müller 2004] and have been used to achieve relational para-
metricity in restricted forms [Banerjee and Naumann 2005].

ACM Journal Name, Vol. V, No. N, January 2009.

30 · January 20, 2009

6.3 Higher order imperative programming

Higher order procedures appear in a number of guises. Function pointers are com-
monly used in low level system software. Verification tools are implemented in im-
pure functional languages like ML. Object-oriented programs use design patterns for
higher order structure. Attempts to extend imperative programming to higher order
encounter limits to the use of first order assertions [Clarke 1979] and it is difficult
to find fully abstract models of the encapsulation provided by local variables and
local procedures as parameters [Reynolds 1981; Meyer and Sieber 1988; O’Hearn
and Reynolds 2000; Reynolds 1998; O’Hearn and Tennent 1997]. Some progress has
been made using denotational models [Reus and Streicher 2005; Birkedal et al. 2009]
but the domains needed to model commands that can be stored in variables involve
mixed variance equations like Cmd = ((V ar → (Z+Cmd)) → (V ar → (Z+Cmd)).
These can be solved, but are unwieldy to use to justify proof rules in Hoare logics.
Other recent work relies on more operational models [Honda et al. 2005]. Consid-
erable progress has been made based on the model of Appel and McAllester [2001]
in which types are interpreted denotationally based on a transition semantics for
commands [Ahmed et al. 2009]. Instead of a chain of approximated domains in the
category of cpos, the definitions use the number of future execution steps as an in-
dex of approximation (which, however, seems inherently tied to partial correctness).
None of these models are able yet to prove all the expected contextual equivalences
for programs using parameterized types and higher order mutable state.

6.4 Inheritance and object orientation

Inheritance gains its power from dynamically dispatched method calls, for which
compositional models are higher order and thus involve the challenges mentioned
above [Reus 2003] as well as issues for recursive types etc. [Pierce 2002]. A key
modular reasoning technique, behavioral subtyping, is discussed in this issue’s sur-
vey on specification languages. Design patterns are idioms for encapsulation and
reentrant method invocations on mutable objects. Reasoning about inheritance and
design patterns has been investigated using higher order separation logic [Bierman
and Parkinson 2005] as well as first order assertions over ghost state [Leino and
Müller 2004] and techniques from refinement calculus [Shaner et al. 2007].

7. CONCLUSION

For the basic constructs of first order imperative programming, for pure concur-
rent processes, and for pure functional programming including sophisticated types
and module constructs, there are consistent and complementary semantics using
operational, denotational and axiomatic methods to support implementation, spec-
ification, proof of correctness and refinement. However, the programming languages
is current use combine subtle forms of concurrency and distribution, dynamically
allocated mutable state, higher order structure, etc. Software systems are built
using scripts that orchestrate the integration of components written in a variety of
languages. Code is dynamically generated at multiple stages including run time.
Requirements include security properties outside the scope of conventional specifi-
cations.

The literature is rich with information about interaction among some of these
ACM Journal Name, Vol. V, No. N, January 2009.

January 20, 2009 · 31

language features and numerous semantic models accomodate various sets of fea-
tures. But many of these models are far from being implementable in verification
tools and many necessary links are missing. Theorists may revel in the astonishing
capabilities of current tools, achieved thanks to critical theories rendered (directly
or not) in core algorithms. But the verification tools of the future will be built on
models and unifying theories that remain to be discovered.

REFERENCES

Abadi, M. 1998. Protection in programming-language translations. In 25th International Collo-
quium on Automata, Languages and Programming. LNCS, vol. 1443. 868–883.

Abadi, M. and Lamport, L. 1988. The existence of refinement mappings. In Proceedings of
LICS.

Abadio, R. M. and Curien, P.-L. 1998. Domains and Lambda-Calculi. Cambridge U. Press.

Abramsky, S. 1991. Domain theory in logical form. Annals of Pure and Applied Logic 51, 1–77.

Abramsky, S., Jagadeesan, R., and Malacaria, P. 1994. Full abstraction for PCF. Inf.
Comput. 163, 409–470.

Abramsky, S. and Jung, A. 1994. Domain theory. In Handbook of Logic in Computer Science,
S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, Eds. Vol. 3. Clarendon Press, 1–168.

Aceto, L., Fokkink, W., and Verhoef, C. 2001. Structural operational semantics. In Handbook
of Process Algebra, J. Bergstra, A. Ponse, and S. Smolka, Eds. Elsevier, 197–292.

Ahmed, A., Dreyer, D., and Rossberg, A. 2009. State-dependent representation independence.
In ACM Symp. on Prin. of Prog. Lang.

Alkassar, E., Hillebrand, M. A., Leinenbach, D., Schirmer, N. W., and Starostin, A. 2008.
The Verisoft approach to systems verification. In VSTTE. LNCS, vol. 5295. 209–224.

Alpern, B. and Schneider, F. B. 1985. Defining liveness. Inf. Process. Lett. 21, 4, 181–185.

Appel, A. W. and McAllester, D. 2001. An indexed model of recursive types for foundational
proof-carrying code. ACM Trans. Program. Lang. Syst. 23, 5, 657–683.

Back, R. 1988. A calculus of refinements for program derivations. Acta Inf. 25, 593–624.

Back, R.-J. 1978. On the correctness of refinement steps in program development. Tech. Rep.
A-1978-4, Department of Computer Science, University of Helsinki.

Back, R.-J. and von Wright, J. 1998. Refinement Calculus: A Systematic Introduction. Grad-
uate Texts in Computer Science. Springer-Verlag.

Banerjee, A. and Naumann, D. A. 2005. Ownership confinement ensures representation inde-
pendence for object-oriented programs. J. ACM 52, 6, 894–960.

Benton, N. 2004. Simple relational correctness proofs for static analyses and program transfor-
mations. In ACM Symp. on Prin. of Prog. Lang. 14–25.

Bergstra, J. A., Ponse, A., and Smolka, S. A. 2001. Handbook of Process Algebra. Elsevier.

Bertot, Y. and Castéran, P. 2004. Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Springer.

Bierman, G. and Parkinson, M. 2005. Separation logic and abstraction. In ACM Symp. on
Prin. of Prog. Lang. 247–258.

Bird, R. and de Moor, O. 1996. Algebra of Programming. Prentice-Hall.

Birkedal, L., Stovring, K., and Thamsborg, J. 2009. Relational parametricity for references
and recursive types. In TLDI.

Birkedal, L. and Yang, H. 2007. Relational parametricity and separation logic. In Foundations
of Software Science and Computational Structures. LNCS, vol. 4423. 93–107.

Blackburn, P., de Rijke, M., and Venema, Y. 2001. Modal Logic. Cambridge U. Press.

Bloom, S. L. and Ésik, Z. 1991. Floyd-Hoare logic in iteration theories. J. ACM 38, 4, 887–934.

Bornat, R. 2000. Proving pointer programs in Hoare logic. In Math. Prog. Construction. LNCS,
vol. 1837. 102–126.

Bradley, A. R. and Manna, Z. 2007. The Calculus of Computation: Decision Procedures with
Applications to Verification. Springer-Verlag.

ACM Journal Name, Vol. V, No. N, January 2009.

32 · January 20, 2009

Brookes, S. D., Hoare, C. A. R., and Roscoe, A. W. 1984. A theory of communicating
sequential processes. J. ACM 31, 3, 560–599.

Church, A. 1936. An unsolvable problem of elementary number theory. American Journal of
Mathematics 58, 345–363.

Clarke, E. 1979. Programming language constructs for which it is impossible to obtain good
Hoare-like axioms. J. ACM 26, 129–147.

Clarkson, M. R. and Schneider, F. B. 2008. In IEEE Computer Security Foundations Sym-
posium. 51–65. Long version submitted for publication, see http://hdl.handle.net/1813/11660.

Cook, S. 1971. The complexity of theorem proving procedures. In Third Annual ACM Symposium
on Theory of Computing. 151–158.

Cook, S. A. 1978. Soundness and completeness of an axiom system for program verification.
SIAM J. Comput. 7, 1, 70–90.

Cousot, P. 1999. The calculational design of a generic abstract interpreter. In Calculational
System Design, M. Broy and R. Steinbrüggen, Eds. NATO ASI Series F. IOS Press, Amsterdam.

Cousot, P. 2002. Constructive design of a hierarchy of semantics of a transition system by
abstract interpretation. Theo. Comp. Sci. 277, 1–2, 47–103.

Cousot, P. and Cousot, R. 1977. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In ACM Symp. on Prin.
of Prog. Lang. 238–252.

Cousot, P. and Cousot, R. 1992. Inductive definitions, semantics and abstract interpretation.
In ACM Symp. on Prin. of Prog. Lang. 83–94.

Cousot, P. and Cousot, R. 2000. Temporal abstract interpretation. In ACM Symp. on Prin.
of Prog. Lang. 12–25.

Crary, K. and Harper, R. 2007. Syntactic logical relations for polymorphic and recursive types.
In Computation, Meaning and Logic: Articles dedicated to Gordon Plotkin. Electronic Notes
in Theoretical Computer Science, vol. 172. 259–299.

Darvas, A., Hähnle, R., and Sands, D. 2005. A theorem proving approach to analysis of secure
information flow. In Conf. on Security in Pervasive Computing. LNCS, vol. 3450. 193–209.

de Roever, W.-P. and Engelhardt, K. 1998. Data Refinement: Model-Oriented Proof Methods
and their Comparison. Cambridge U. Press.

DeNicola, R. and Hennessy, M. 1984. Testing equivalences for processes. Theo. Comp. Sci. 34,
83–133.

Deutsch, A. 1992. A storeless model of aliasing and its abstractions using finite representations
of right-regular equivalence relations. In IEEE Conference on Computer Languages. 2–13.

Emerson, E. A. and Clarke, E. M. 1982. Using branching time temporal logic to synthesize
synchronization skeletons. Sci. Comput. Program. 2, 3, 241–266.

Feng, X., Shao, Z., Guo, Y., and Dong, Y. 2008. Combining domain-specific and foundational
logics to verify complete software systems. In VSTTE. LNCS, vol. 5295. 54–69.

Floyd, R. W. 1967. Assigning meanings to programs. In Mathematical Aspects of Computer
Science, J. T. Schwartz, Ed. Symposia on Applied Math., vol. 19. Amer. Math. Soc., 19–32.

Girard, J.-Y. 1987. Linear logic. Theor. Comput. Sci. 50, 1–102.

Girard, J.-Y. 1989. Proofs and Types. Cambridge U. Press. With Paul Taylor and Yves Lafont.

Goguen, J. and Meseguer, J. 1982. Security policies and security models. In Proceedings of the
1982 IEEE Symposium on Security and Privacy. 11–20.

Gordon, A. D. 1994. A tutorial on co-induction and functional programming. In Glasgow
functional programming workshop. 78–95.

Gordon, A. D. and Melham, T. F. 1996. Five axioms of alpha-conversion. J. von Wright,
J. Grundy, and J. Harrison, Eds. LNCS, vol. 1125. 173–190.

Gunter, C. A. and Scott, D. S. 1990. Semantic domains. In Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics. 633–674.

Halpern, J. Y. and O’Neill, K. R. 2008. Secrecy in multiagent systems. ACM Trans. Inf. Syst.
Secur. 12, 1.

Harel, D., Kozen, D., and Tiuryn, J. 2000. Dynamic Logic. MIT Press.

ACM Journal Name, Vol. V, No. N, January 2009.

January 20, 2009 · 33

Harper, R., Honsell, F., and Plotkin, G. 1993. A framework for defining logics. J. ACM 40, 1,
143–184.

Harper, R. and Stone, C. 1997. An interpretation of Standard ML in type theory. Tech. Rep.
CMU–CS–97–147, Carnagie Mellon University, Pittsburgh, PA. June.

Hehner, E. C. R. 1984. Predicative programming part I. Commun. ACM 27, 134–143.

Hennessy, M. and Milner, R. 1985. Algebraic laws for nondeterminism and concurrency. J.
ACM 32, 1, 137–161.

Hoare, C. and He, J. 1998. Unifying Theories of Programming. Prentice-Hall.

Hoare, C. A. R. 1969. An axiomatic basis for computer programming. Commun. ACM 12,
576–80, 583.

Hoare, C. A. R. 1971. Procedures and parameters: An axiomatic approach. In Symposium on
Semantics of Algorithmic Languages, E. Engeler, Ed. Springer-Verlag.

Hoare, C. A. R. 1972. Proofs of correctness of data representations. Acta Inf. 1, 271–281.

Hoare, C. A. R. and Lauer, P. E. 1974. Consistent and complementary formal theories of the
semantics of programming languages. Acta Inf. 3, 135–153.

Honda, K., Yoshida, N., and Berger, M. 2005. An observationally complete program logic for
imperative higher-order frame rules. In IEEE Symp. on Logic in Comp. Sci. 260–279.

Hyland, J. M. E. and Ong, C.-H. L. 2000. On full abstraction for PCF. Inf. and Comput. 163,
285–408.

Hyland, M., Levy, P. B., Plotkin, G., and Power, J. 2007. Theo. Comp. Sci. 375, 1–3, 20–40.
Festschrift for John C. Reynolds’s 70th birthday.

Jones, C. B. 2003. The early search for tractable ways of reasoning about programs. IEEE
Annals of the History of Computing 25, 2, 26–49.

Joshi, R. and Leino, K. R. M. 2000. A semantic approach to secure information flow. Science
of Computer Programming 37, 1–3, 113–138.

Kahn, G. 1987. Natural semantics. In Symp. Theo. Aspects Comput. Sci., F.-J. Brandenburg,
G. Vidal-Naquet, and M. Wirsing, Eds. 22–39.

Kleene, S. C. 1936. Lambda-definability and recursiveness. Duke Mathematical Journal 2,
340–353.

Kleymann, T. 1999. Hoare logic and auxiliary variables. Formal Aspects of Computing 11,
541–566.

Koutavas, V. and Wand, M. 2006. Small bisimulations for reasoning about higher-order imper-
ative programs. In ACM Symp. on Prin. of Prog. Lang. 141–152.

Kozen, D. 1981. Semantics of probabilistic programs. J. Comput. Syst. Sci. 22, 328–350.

Kozen, D. 1983. Results on the propositional mu-calculus. Theo. Comp. Sci. 27, 3, 333–354.

Kozen, D. 1999. On Hoare logic and Kleene algebra with tests. Trans. Comput. Logic 1, 167–172.

Kozen, D. 2008. Nonlocal flow of control and Kleene algebra with tests. In IEEE Symp. on Logic
in Comp. Sci. 105–117.

Lamport, L. 1977. Proving the correctness of multiprocess programs. IEEE Trans. Softw.
Engr. SE-3, 2, 125–143.

Landin, P. J. 1964. The mechanical evaluation of expressions. The Computer Journal 6, 4,
308–320.

Leino, K. R. M. and Müller, P. 2004. Object invariants in dynamic contexts. In European
Conf. on Object-Oriented Programming. 491–516.

Leroy, X. and Grall, H. 2008. Coinductive big-step operational semantics. Inf. Comput.. To
appear.

Lynch, N. and Vaandrager, F. 1996. Forward and backward simulations part II: Timing-based
systems. Inf. Comput. 128, 1, 1–25.

Manna, Z. and Pnueli, A. 1990. A hierarchy of temporal properties (invited paper, 1989). In
9th Annual ACM Symposium on Principles of Distributed Computing. 377–410.

Manna, Z. and Pnueli, A. 1995. Temporal Verification of Reactive Systems: Safety. Springer-
Verlag.

ACM Journal Name, Vol. V, No. N, January 2009.

34 · January 20, 2009

Manolios, P. and Trefler, R. 2003. A lattice-theoretic characterization of safety and liveness.
In 22d Annual Symposium on Principles of Distributed Computing. 325–333.

Martin, C., Hoare, C. A. R., and He, J. 1991. Pre-adjunctions in order enriched categories.
Mathematical Structures in Computer Science 1, 141–158.

Mazurkiewicz, A. W. 1986. Trace theory. In Advances in Petri Nets, W. Brauer, W. Reisig,
and G. Rozenberg, Eds. LNCS, vol. 255. 279–324.

McIver, A. and Morgan, C. 2005. Abstraction, Refinement and Proof for Probabilistic Systems.
Springer-Verlag.

Meyer, A. R. and Sieber, K. 1988. Towards fully abstract semantics for local variables: Pre-
liminary report. In ACM Symp. on Prin. of Prog. Lang. 191–203.

Mijajlović, I. and Yang, H. 2005. Data refinement with low-level pointer operations. In Asian
Symposium on Programming Languages and Systems. 19–36.

Milner, R. 1971. An algebraic definition of simulation between programs. In Proceedings of
Second Intl. Joint Conf. on Artificial Intelligence. 481–489.

Milner, R. 1977. Fully abstract models of typed lambda-calculi. Theor. Comput. Sci. 4, 1, 1–22.

Milner, R. 1980. A Calculus of Communicating Systems. LNCS, vol. 92. Springer-Verlag.

Milner, R. 1992. Functions as processes. Math. Struct. Comput. Sci. 2, 2, 119–141.

Milner, R. 1999. Communicating and Mobile Systems: the π-Calculus. Cambridge U. Press.

Milner, R. and Sangiorgi, D. 1992. Barbed bisimulation. In Automata, Languages and Pro-
gramming. LNCS, vol. 623.

Moggi, E. 1991. Notions of computation and monads. Inf. Comput. 93, 55–92.

Moore, J. S. 2006. Inductive assertions and operational semantics. International Journal on
Software Tools for Technology Transfer 8, 4–5, 359–371.

Moore, J. S. 2008. A mechanized program verifier. In VSTTE. LNCS, vol. 4171. Springer-Verlag,
268–276.

Morgan, C. 1988. The specification statement. ACM Trans. Program. Lang. Syst. 10, 3, 403–419.

Morgan, C. 1994. Programming from Specifications, second edition. Prentice Hall.

Morgan, C. 2006. The Shadow knows: Refinement of ignorance in sequential programs. In Math.
Prog. Construction, T. Uustalu, Ed. LNCS, vol. 4014. 359–378.

Morris, J. M. 1987. A theoretical basis for stepwise refinement and the programming calculus.
Sci. Comput. Program. 9, 287–306.

Morris, J. M. and Tyrrell, M. 2008. Dually nondeterministic functions. ACM Trans. Program.
Lang. Syst. 30, 6, 1–34.

Nanevski, A., Morrisett, G., and Birkedal, L. 2006. Polymorphism and separation in Hoare
type theory. In ICFP. 62–73.

Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., and Birkedal, L. 2008. Ynot:
Dependent types for imperative programs. In ICFP. 229–240.

Naumann, D. A. 1998. A categorical model for higher order imperative programming. Mathe-
matical Structures in Computer Science 8, 4, 351–399.

Nipkow, T. 1998. Winskel is (almost) right: Towards a mechanized semantics textbook. Formal
Asp. Comput. 10, 2, 171–186.

Nipkow, T. 2002. Hoare logics for recursive procedures and unbounded nondeterminism. In
Computer Science Logic. LNCS, vol. 2471. 155–182.

O’Hearn, P., Yang, H., and Reynolds, J. 2004. Separation and information hiding. In ACM
Symp. on Prin. of Prog. Lang. 268–280.

O’Hearn, P. W. and Reynolds, J. C. 2000. From algol to polymorphic linear lambda-calculus.
J. ACM 47, 1, 167–223.

O’Hearn, P. W. and Riecke, J. G. 1995. Kripke logical relations and pcf. Inf. Comput. 120,
107–116.

O’Hearn, P. W. and Tennent, R. D., Eds. 1997. Algol-Like Languages. Vol. 1. Birkhauser,
Boston.

Owicki, S. and Gries, D. 1976. An axiomatic proof technique for parallel programs I. Acta
Inf. 6.

ACM Journal Name, Vol. V, No. N, January 2009.

January 20, 2009 · 35

Park, D. 1981. Concurrency and automata on infinite sequences. In Theoretical Computer
Science, P. Deussen, Ed. LNCS, vol. 104. 167–183.

Petri, C. A. 1962. Fundamentals of a theory of asynchronous information flow. In IFIP Congress.
386–390.

Pierce, B. C. 1991. Basic Category Theory for Computer Scientists. MIT Press.

Pierce, B. C. 2002. Types and Programming Languages. MIT Press.

Pierik, C. and de Boer, F. S. 2005. A proof outline logic for object-oriented programming.
Theo. Comp. Sci. 343, 3, 413–442.

Pitts, A. M. 1996. Relational properties of domains. Inf. Comput. 127, 66–90.

Pitts, A. M. 2003. Nominal logic, a first order theory of names and binding. Inf. Comput. 186,
165–193.

Pitts, A. M. 2006. Alpha-structural recursion and induction. Journal of the ACM 53, 459–506.

Plotkin, G. 1973. Lambda definability and logical relations. Tech. Rep. SAI-RM-4, University
of Edinburgh, School of Artificial Intelligence.

Plotkin, G. D. 1977. LCF considered as a programming language. Theo. Comp. Sci. 5, 3,
225–255.

Plotkin, G. D. 2004. A structural approach to operational semantics. Journal of Logic and
Algebraic Programming 60–61, 17–139.

Pnueli, A. 1977. The temporal logic of programs. In 18th Annual Symposium on Foundations
of Computer Science. 46–57.

Podelski, A. and Rybalchenko, A. 2004. Transition invariants. In IEEE Symp. on Logic in
Comp. Sci. 32–41.

Power, J. and Robinson, E. 1997. Premonoidal categories and notions of computation. Math-
ematical Structures in Computer Science 7, 453–468.

Pratt, V. R. 1976. Semantical consideration on Floyd-Hoare logic. In 17th Annual Symposium
on Foundations of Computer Science. 109–121.

Reus, B. 2003. Modular semantics and logics of classes. In Computer Science Logic, M. Baaz
and J. A. Makowsky, Eds. LNCS, vol. 2803. 456–469.

Reus, B. and Streicher, T. 2005. About Hoare logics for higher-order store. In Automata,
Languages and Programming. LNCS, vol. 3580. 1337–1348.

Reynolds, J. C. 1981. The essence of Algol. In Algorithmic Languages, J. W. de Bakker and
J. C. van Vliet, Eds. North-Holland.

Reynolds, J. C. 1982. Idealized ALGOL and its specification logic. In Tools and Notations
for Program Construction: An advanced course, D. Néel, Ed. Cambridge U. Press, 121–161.
Reprinted in [O’Hearn and Tennent 1997].

Reynolds, J. C. 1984. Types, abstraction, and parametric polymorphism. In Information Pro-
cessing ’83, R. Mason, Ed. North-Holland, 513–523.

Reynolds, J. C. 1993. The discoveries of continuations. Lisp and Symbolic Computation 6, 3–4,
233–247.

Reynolds, J. C. 1998. Theories of Programming Languages. Cambridge U. Press.

Scott, D. and Strachey, C. 1971. Towards a mathematical semantics for computer languages. In
Proceedings of the Symposium on Computers and Automata. Polytechnic Institute of Brooklyn.

Scott, D. S. 1970. Outline of a mathematical theory of computation. Technical Monograph
PRG–2, Oxford University Computing Laboratory. November.

Scott, D. S. 1993. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theo. Comp.
Sci. 121, 1-2, 411–440. Manuscript circulated since 1969.

Shaner, S. M., Leavens, G. T., and Naumann, D. A. 2007. Modular verification of higher-order
methods with mandatory calls specified by model programs. In ACM Conf. on Object-Oriented
Prog. Lang., Sys., and Applic. 351–368.

Sistla, A. P. 1994. Safety, liveness and fairness in temporal logic. 495–511.

Smyth, M. and Plotkin, G. 1982. The category-theoretic solution of recursive domain equations.
SIAM J. Comput. 11, 4, 761–783.

ACM Journal Name, Vol. V, No. N, January 2009.

36 · January 20, 2009

Smyth, M. B. 1983. Power domains and predicate transformers: A topological view. In ICALP.
LNCS 154.

Stärk, R. F., Schmid, J., and Börger, E. 2001. Java and the Java Virtual Machine: Definition,
Verification, Validation. Springer-Verlag.

Stirling, C. 1985. A proof-theoretic characterization of observational equivalence. Theo. Comp.
Sci. 39, 27–45.

Sumii, E. and Pierce, B. C. 2005. A bisimulation for type abstraction and recursion. In ACM
Symp. on Prin. of Prog. Lang. 63–74.

Tan, G. and Appel, A. W. 2006. A compositional logic for control flow. In Conf. on Verification,
Model Checking, and Abstract Interpretation. LNCS, vol. 3855. 80–94.

Tarski, A. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics 5, 2, 285–309.

Turing, A. M. 1937. On computable numbers, with an application to the entscheidungsproblem.
Proc. London Math. Soc. 2, 42, 230–265. A correction appears in number 43, pages 544–6.

Winskel, G. 1993. Formal Semantics of Programming Languages. MIT Press.

Wright, A. K. and Felleisen, M. 1994. A syntactic approach to type soundness. Inf. Com-
put. 115, 1, 38–94.

Yang, H. 2007. Relational separation logic. Theo. Comp. Sci. 375, 308–334.

Received ...

ACM Journal Name, Vol. V, No. N, January 2009.

