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Automated deduction uses computation to perform symbolic logical reasoning. It has been a core technology
for program verification from the very beginning. Recent advances in satisfiability procedures have made it
possible to significantly automate the task of deductive program verification. We introduce some of the basic
deduction techniques and the ways in which they are used in software and hardware verification. We outline the
theoretical and engineering issues in building deductive tool support for various aspects of verification, including
requirements analysis, test case generation, extended type checking, refinement checking, abstraction, and prop-
erty checking. Beyond verification, deduction techniques can also be used to support a variety of applications
including planning, program optimization, and program synthesis.
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1. INTRODUCTION

The feasibility of large-scale verification rests squarely on the development of robust, so-
phisticated, and scalable verification tools. Recent advances in verification technology on
a number of fronts have made it possible to contemplate a major push toward large-scale
software verification [Hoare 2003; Hoare and Misra 2008]. These advances have already
yielded practical tools for solving hard verification problems. Many of these tools are al-
ready in industrial use. Deductive techniques are used both for finding bugs and for stating
and proving correctness properties. They can also be used to construct and check models
and proofs, and to synthesize functions and formulas in a wide range of logical formalisms.
We survey deductive approaches to verification based on satisfiability solving, automated
proof search, and interactive proof checking. We examine some of the recent progress and
outline a few of the most promising avenues for dramatic improvements in the technologies
of verification.

Theorem provers and interactive proof checkers have been associated with verification
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from the beginning [King 1969; King and Floyd 1970]. Jones [1992] covers the history
of verification research. McCarthy [1963], who initiated the formal study of program ver-
ification, was also involved in the construction of one of the early proof checkers. The
early nexus between verification and deduction is beautifully surveyed by Elspas, Levitt,
Waldinger, and Waksman [1972]. Hantler and King [Hantler and King 1976] give a brief
overview of the early results in program verification.

In the 1970s, several research groups began working on the use of theorem provers in
verification. These included the Gypsy project at the University of Texas at Austin [Smith
et al. 1988]; the Affirm project [Gerhart et al. 1980] at USC-ISI; the FDM project at Sys-
tem Development Corporation; the Jovial Verifier [Elspas et al. 1979] and HDM [Robin-
son et al. 1979], and STP [Shostak et al. 1982] at SRI International; the Boyer–Moore
prover [Boyer and Moore 1979] (initiated at the University of Edinburgh and later contin-
ued at Xerox PARC, SRI International, and the University of Texas at Austin); the LCF
(Logic for Computable Functions) project [Gordon et al. 1979] (initiated at Stanford Uni-
versity and continued at the University of Edinburgh and the University of Cambridge); and
the FOL [Weyhrauch 1980] and Stanford Pascal Verifier [Luckham et al. 1979] projects at
Stanford University.

More recently, dramatic improvements in solvers for propositional and theory satisfiabil-
ity have yielded powerful tools that can be used in a variety of ways in formal verification.

(1) Logic-based formalisms can be used to capture software specifications and proper-
ties [Jones 1990; Spivey 1993].

(2) Programs can be directly expressed in logical form using the logics supported by the-
orem provers. The Boyer–Moore family of theorem provers [Boyer and Moore 1979]
is used in this way to verify programs written in an applicative fragment of Common
Lisp.

(3) Other languages can be embedded into this fragment through the use of interpreters.
Such interpreters can handle both sequential and concurrent languages.

(4) The semantics of a programming language or a program logic can be embedded in the
logic used by the theorem prover [Gordon 1989].

(5) Theorem provers to discharge verification and termination conditions generated from a
program that has been annotated with assertions [Naur 1966; Floyd 1967; King 1969].

(6) Automated deduction can be used to synthesize programs from the specification [Manna
and Waldinger 1980; Darlington 1981] or to refine them in stages to yield executable
software [Abrial 1996].

(7) Programs can be developed in a logical notation from which code is generated [Boyer
and Moore 1988; Berghofer and Nipkow 2002; Shankar 2002].

(8) Automated deduction can be used in transforming, optimizing, and specializing pro-
grams [Smith 1990], and in validating specific applications of such optimizations [Pnueli
et al. 1998; Zuck et al. 2005].

(9) Theorem provers can be used construct and refine abstractions of programs that are
analyzed by model checking [Saı̈di and Graf 1997; Clarke et al. 2000; Ball et al.
2001].

(10) Decision procedures can be used to assist in the static analysis of programs [Detlefs
et al. 1998; Gulwani and Tiwari 2006] and in discharging type constraints [Owre et al.
1995].
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(11) Constraint solvers can be used to symbolically execute programs to generate test
cases according to some coverage criterion [Boyer et al. 1975; King 1976; Clarke
1976; Hamon et al. 2004; Godefroid et al. 2005].

The above applications share many of the same basic deductive techniques. Automated
deduction is a vast and growing field and there are hundreds of systems that support logic-
based automated verification. Our survey covers a cross-section of the deductive tools that
are used in verification, with a particular emphasis on satisfiability solvers. The exposi-
tion here is directed at non-experts who are interested in a deeper understanding of the
techniques of automated deduction. We mainly focus on those techniques that are rele-
vant for formal verification. A recent book by Harrison [Harrison 2009] contains a more
comprehensive modern treatment of automated deduction.

2. BACKGROUND

David Gries and Fred Schneider [1993] have observed that logic is the glue that binds
together methods of reasoning, in all domains. Many different domains can be related
through their interpretation within logic. Inference procedures for logic can be applied to
these embedded formalisms. Logic has been “unreasonably effective” in computer sci-
ence [Halpern et al. 2001; Feferman 2006] with deep connections to computability, com-
plexity, database theory, hardware design, and programming language semantics, as well
as the formal specification and verification of hardware and software. A strong facility
with logic is an essential skill for a computer scientist. We review formal logic from the
point of view of automated and semi-automated verification.

Mathematical logic is basic to the operation of verification tools. Verification tools make
formal claims about software. We need a language in which these claims are expressed.
We also need a calculus in which these claims are justified and combined to yield new
claims. Logic is the calculus of computing. Within the purview of logic, there are a range
of formalisms for dealing with different aspects of software. First, there is propositional
logic, where the expressions are built from propositional variables using the connectives
for conjunction, disjunction, negation, implication, and equivalence. Various modal and
temporal logics extend propositional logic to reason about modalities like time, neces-
sity, knowledge, and belief over propositions. First-order logic extends propositional logic
over predicates and terms built from variables and function symbols, and serves as a formal
foundation for arithmetic and set theory. Equational logic is a fragment of first-order logic
that provides the foundation for algebraic reasoning using equalities. Higher-order logic
allows quantification over functions and predicates and is suitable for modeling computa-
tion at varying levels of abstraction and for formalizing much of classical mathematics.

Each logic explores a trinity of a formal language, a formal semantics, and a formal
proof system. The language captures the rules for forming statements and circumscribes
the range of concepts that can be expressed. The formal semantics defines the intended
interpretation of these statements. It fixes the meaning of certain symbols and allows the
meaning of other symbols to vary with certain bounds. The formal proof system is a
framework of rules for deriving valid statements. While the textbook presentation of a
proof system is usually minimalist, any practical system will employ quite sophisticated
proof rules that can be justified in foundational terms. Many practical proof checking
systems also allow new proof rules to be added.

Logic can be used in all kinds of interesting ways. It can highlight the limitations of a
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formal language by demonstrating that certain concepts are not definable in it. It can of
course be used to prove theorems, and this is the use that will be most interesting here.
Logic also has a dual use which is to generate concrete instances of a given formula as in
planning, constraint solving, and test case generation. At the metatheoretic level, relation-
ships between logics can be used to map results from one logic to another, or to reduce
problems from one logic to another [Meseguer 1989].

We briefly introduce propositional logic, equational logic, first-order logic, and higher-
order logic. A reader familiar with these topics can safely skip over this introduction.
Good introductions to logic are available from several sources including Barwise’s article
An Introduction to First-Order Logic [Barwise 1978c], and books by Kleene [1952; 1967];
Shoenfield [1967]; Boolos and Jeffrey [1989]; Enderton [1972]; Mendelson [1964]; van
Dalen [1983]; Fitting [1990]; Girard, Lafont, and Taylor [1989]; and Ebbinghaus, Flum,
and Thomas [1984]. The topic of logic in computer science is well covered in the book
by Huth and Ryan [2000]. There are several handbooks including those on Mathematical
Logic [Barwise 1978b], Philosophical Logic [Gabbay and Guenthner 1983; 1984; 1985],
Logic in Computer Science [Abramsky et al. 1992a; 1992b], Theoretical Computer Sci-
ence [van Leeuwen 1990], Automated Reasoning [Robinson and Voronkov 2001], Tableau
Methods [D’Agostino et al. 1999], and a forthcoming one on Satisfiability [Biere et al. ].

2.1 Propositional Logic

Propositional logic plays an important role in digital hardware design as well as hardware
and software verification. Propositional formulas are built from propositional atoms using
the logical operators ¬ (negation), ∨ (disjunction), ∧ (conjunction), ⇒ (implication), and
⇔ (equivalence). In the classical interpretation, propositional formulas are evaluated with
respect to a Boolean truth assignment of > or ⊥ to the atoms. A formula is satisfiable if
there is some truth assignment under which the formula evaluates to >. Thus p ∧ (p⇒ q)
is satisfied by the truth assignment {p 7→ >, q 7→ >}. On the other hand, p ∧ ¬p is
not satisfiable. If a formula is unsatisfiable, then its negation is valid, i.e., evaluates to
> under any assignment of truth values to the atoms. Since a formula has finitely many
distinct propositional atoms, each of which has two possible truth values, the satisfiability
of a formula with n atoms can obviously be decided by evaluating the formula on the
2n possible truth assignments. Later, we will examine more refined methods for finding
satisfying truth assignments or showing that the formula is unsatisfiable. However, since
the satisfiability problem is NP-complete, there is no known sub-exponential algorithm for
it.

Language and Semantics. For our purpose, a propositional formula φ is either an atom
from a set A of atoms, a negation ¬φ1, or a disjunction φ1 ∨φ2. Conjunction, implication,
and equivalence can be easily defined from negation and disjunction. A structure or a
truth assignment M maps atoms in A to truth values from the set {>,⊥}. The truth table
semantics for the connectives is given in Figure 1 by defining interpretations of ¬ and ∨.

The interpretation of a formula φ with respect to a structure M is given by M [[φ]] as
defined below.

M [[p]] = M(p), for p ∈ A
M [[¬φ]] = ¬M [[φ]]

M [[φ1 ∨ φ2]] = M [[φ1]]∨M [[φ2]]
ACM Journal Name, Vol. V, No. N, Month 20YY.
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x ¬x

⊥ >
> ⊥

x y x∨y
⊥ ⊥ ⊥
⊥ > >
> ⊥ >
> > >

Fig. 1. Truth table semantics for ¬ and ∨

A structure M is a model for a formula φ, i.e., M |= φ, if M [[φ]] = >. A formula φ is
satisfiable if for some structure M , M |= φ. A formula φ is valid if for all structures M ,
M |= φ. For example, the formula p ∧ ¬q is satisfied in the model {p 7→ >, q 7→ ⊥}. The
formula p ∨ ¬p is valid, and its negation ¬(p ∨ ¬p) is unsatisfiable.

Normal Forms. By introducing conjunction into the language, a formula in classical
propositional logic can be converted into a normal form. The negation normal form (NNF)
applies rules like ¬(p ∧ q) = ¬p ∨ ¬q, ¬(p ∨ q) = ¬p ∧ ¬q, and ¬¬p = p to ensure that
only atoms can appear negated. An atom or its negation is termed a literal. A clause is a
disjunction of literals. Any formula can be converted to conjunctive normal form (CNF)
where it appears as a conjunction of clauses. Dually, a formula can also be expressed in
disjunctive normal form (DNF) where it appears as a disjunction of cubes, where a cube
is a conjunction of literals. For example, the formula ¬(p ∨ q) ∨ ¬(¬p ∨ ¬q) can be con-
verted into the NNF (¬p ∧ ¬q) ∨ (p ∧ q). The latter formula is already in DNF. It can be
converted into CNF as (¬q ∨ p) ∧ (¬p ∨ q), which happens to be the (¬,∨)-formula rep-
resenting p⇔ q. The conversion of a propositional formula to an equisatisfiable CNF can
be done in linear time by introducing new propositional atoms to represent subformulas.
Practical algorithms for CNF conversion try to minimize the number of clauses generated
by identifying equivalent subformulas [Jackson and Sheridan 2004; Manolios and Vroon
2007].

Intuitionistic Logic. In contrast to the classical interpretation of the logical connectives
described above, intuitionistic logic [Troelstra and van Dalen 1988] disallows the excluded
middle rule p ∨ ¬p and double negation elimination ¬¬p ⇒ p. Whereas classical logic
is about proving that a formula is valid in all interpretations, intuitionistic logic is about
supporting the conclusion with actual evidence. Thus, p ∨ ¬p is classically valid, but
evidence for a disjunction must be either evidence for p or for ¬p, and we do not have
such evidence. Similarly, evidence for ¬p shows that any evidence for p can be used to
construct a contradiction. Then evidence for ¬¬p demonstrates the absence of evidence for
¬p, which is not taken as evidence for p. The excluded middle rule allows non-constructive
proofs of existence as is illustrated by the following demonstration that there exist irrational

numbers x and y such that xy is rational. Either
√

2
√

2
is rational, in which case x and y

can both be taken as
√

2, or we pick x to be
√

2
√

2
and y to be

√
2 so that xy is just

√
2
2

which simplifies to 2. We have demonstrated the existence of x and y without providing

a construction since we do not have an effective way of determining whether
√

2
√

2
is

rational. We survey some interactive proof checkers for intuitionistic proofs in Section 5.4.
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Left Right

Ax
Γ, A ` A, ∆

¬ Γ ` A, ∆

Γ,¬A ` ∆

Γ, A ` ∆

Γ ` ¬A, ∆

∨ Γ, A ` ∆ Γ, B ` ∆

Γ, A ∨B ` ∆

Γ ` A, B, ∆

Γ ` A ∨B, ∆

∧ Γ, A, B ` ∆

Γ, A ∧B ` ∆

Γ ` A, ∆ Γ ` B, ∆

Γ ` A ∧B, ∆

⇒ Γ, B ` ∆ Γ ` A, ∆

Γ, A ⇒ B ` ∆

Γ, A ` B, ∆

Γ ` A ⇒ B, ∆

Cut
Γ ` A, ∆ Γ, A ` ∆

Γ ` ∆

Fig. 2. A Sequent Calculus for Propositional Logic

Proof systems for propositional logic. In Hilbert-style proof systems, each inference
rule has zero or more premise formulas and one conclusion formula, and a proof is a tree
of inference rule applications. The rule of modus ponens which derives ` ψ from the
premises ` φ and ` φ ⇒ ψ is a typical Hilbert-style rule. In the natural deduction style
due to Gentzen, proof rules involve conditional judgments that assert the derivability of
a consequent formula from some assumption formulae. Examples of natural deduction
rules are shown in Figure 12 and the exact form of these rules is explained in Section 5.4.
Gentzen’s sequent calculus shown in Figure 2 has a Hilbert-style inference form but the
premises and conclusions are sequents, which are of the form Γ ` ∆, where Γ is a finite
set of antecedent formulas and ∆ is a finite set of consequent formulas. A sequent Γ ` ∆
asserts that the conjunction of the formulas in Γ implies the disjunction of the formulas
in ∆. Hence, if a sequent is not valid, then there is an interpretation under which all the
formulas in Γ evaluate to > and all the formulas in ∆ evaluate to ⊥. Figure 2 displays the
rules for ⇒ and ∧. These rules could easily be derived from their definitions in terms of ¬
and ∨, but in the sequent calculus, the connectives are defined by their proof rules.

For example, the validity of Peirce’s law ((p⇒ q) ⇒ p) ⇒ p in classical propositional
logic can be demonstrated semantically by the truth-table method, or it can be proved in
the sequent calculus.

p ` p, q
Ax

` p, p⇒ q
`⇒

p ` p Ax

(p⇒ q) ⇒ p ` p
⇒`

((p⇒ q) ⇒ p) ⇒ p
`⇒

The cut rule of the sequent calculus is admissible in terms of the remaining inference
rules, i.e., if the premises are provable, then so is the conclusion of the cut rule. Note that
the cut rule is not derivable: the conclusion cannot be proved from the premises without
the use of the cut rule. Every derivable rule is also admissible. The equivalence rule

p⇔ q

φ⇔ φ{p 7→ q}
,
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where φ{p 7→ q} is the result of substituting the proposition q for p in φ is an example of
a derived rule.

An intuitionistic sequent calculus is obtained from the classical one by restricting the
consequents in any sequent in a proof to at most one formula. It can be checked for example
that Peirce’s formula is not provable with this restriction since the proof requires a sequent
of the form ` p, p⇒ q.

Soundness and Completeness. For soundness, every provable statement must be valid.
For the sequent calculus, this can be shown by induction on proofs since each axiom is
valid and each proof rule asserts a valid conclusion when given valid premises. Note that
a sequent Γ ` ∆ is valid if for any interpretation M , either M 6|= γ for some γ ∈ Γ or
M |= δ for some δ ∈ ∆.

A proof calculus is complete if every valid statement is provable. In particular, if formula
φ does not have a proof, then there is an M such that M |= ¬φ. There are several ways to
prove completeness. One way is to start with a set H which is initially set to {¬φ} and an
enumeration of the formulas ψi, i ≥ 0. We say that a (¬,∨)-formula ψ is consistent with
H if 6` (

∨
θ∈H ¬θ) ∨ ¬ψ in the proof calculus. For each, ψi, if ψi is consistent with H ,

we add ψi to H , and otherwise we add ¬ψi. We can then check with respect to the proof
system that

(1) If ψ ∈ H then ¬ψ 6∈ H
(2) If ¬ψ ∈ H then ψ 6∈ H
(3) If ψ ∨ ψ′ ∈ H , then either ψ ∈ H or ψ′ ∈ H .

Note that for each atom p, either p or ¬p is in H . We construct the model MH so that
MH(p) = > ⇐⇒ p ∈ H . It is easy to check that for each formula ψ ∈ H , MH |= ψ. In
particular, we have MH |= ¬φ.

Since propositional logic is decidable, any decision procedure that produces a proof
corresponding to a valid formula and model corresponding to the negation of an invalid
formula, also establishes completeness. For example a valid formula φ can be proved by
applying the non-cut sequent proof rules in any order starting from ` φ. Since the premises
generated from a conclusion sequent are always logically equivalent to the conclusion, it
is clear that if the proof fails, it is because there is an invalid open premise, i.e., one that
cannot serve as the conclusion of a non-cut rule. Hence, in this case, the original goal
formula φ must also not be valid.

Modal Logics. Propositional logic captures reasoning over truth assignments to the
propositions. In particular, a statement is valid if it holds for all possible truth assignments.
Modal logics admit modal operators for possibility, belief, and time that are indexed by
truth assignments (worlds). A Kripke model consists of a set of worlds with an accessibil-
ity relation between worlds. The modality 2φ when evaluated in a world w signifies that
φ holds in all the worlds w′ accessible from w. Dually, 3φ holds in w if there some acces-
sible w′ where φ holds. Most modal logics contain the inference rules of modus ponens,
substitution, and necessitation

p

2p
.

They also satisfy the distributivity axiom K: 2(p ⇒ q) ⇒ 2p ⇒ 2q. With a reflexive
accessibility relation, we get the logic T corresponding to the axiom 2p⇒ p. A reflexive
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and transitive accessibility relation yields S4 with the added axiom 2p ⇒ 22p. The
modal logic S5, where the accessibility relation is reflexive, symmetric, and transitive, is
obtained by adding the axiom p ⇒ 23p to S4. Naturally, the valid formulas of T are a
subset of those of S4, which are in turn a subset of those of S5.

Several modal logics are widely used in formal verification including those for linear
time LTL, branching time CTL, the logic CTL* which combines branching and linear
time logics, interval temporal logics, real-time temporal logics, dynamic logic, epistemic
logics, and deontic logics. Modal and temporal logics are surveyed by Goldblatt [1992],
Mints [1992], Emerson [1990], and Blackburn, de Rijke, and Venema [2002].

Applications. Propositional logic has innumerable applications. It can be used to model
electrical circuits by representing the presence of a high voltage on a wire as a proposition.
A half adder with inputs a and b and output sout can be represented as sout = (a ⊕ b),
where ⊕ is the exclusive-or operator so that a ⊕ b is defined as a ⇒ ¬b. An n-bit adder
that adds two n-bit bit-vectors ~a and~b with a carry-in bit cin to produce an n-bit sum ~sout

and a carry-out bit cout can be defined using the half adder to produce the sum and carry
in a bit-wise manner.

Propositional logic can be used to express constraints. For example, the pigeonhole
principle asserts that is impossible to assign n + 1 pigeons to n holes so that there is at
most one pigeon per hole. For this, we need n(n + 1) atoms pij for 0 ≤ i < n and
0 ≤ j ≤ n expressing the proposition that the i’th hole holds the j’th pigeon. We can
assert that each pigeon is assigned a hole as

∧n
j=0

∨n−1
i=0 pij . The constraint that no hole

contains more than one pigeon is expressed as
∧n−1

i=0

∧n
j=0

∧
k<j(¬pij ∨ ¬pik).

Planning is another application of constraint solving in the Boolean domain [Kautz and
Selman 1996]. Consider the problem of planning truck routes to transfer packages between
cities given the initial location of each truck and its fuel gauge reading, the source and
destination of each package, the routes connecting the cities with the fuel needs, and the
locations of the gas stations. The goal is to find the shortest plan that gets the packages
delivered so that in each step of the plan, a truck can load a package, unload a package, fill
gas, or drive between two adjacent cities.

Scheduling is similar to planning and can also be encoded by means of a propositional
formula. For example, consider the problem of constructing a timetable for a sports league
consisting of n teams that must each play n/2 home games and n/2 away games so that
each team plays every other team at least once and never has more than two away games
in a row.

Program behavior for programs with bounded-size state can also be modeled using
propositional logic [Kroening et al. 2003]. For example, a program which computes the
absolute value of a 32-bit two’s-complement word can be verified purely in Boolean terms.
That is, given a procedure abs on a 32-bit bit-vector ~x, we can check that

~y = abs(~x)) ⇒ (~y ≥ 0 ∧ (~y = ~x ∨ ~y = −~x)).

More generally, a state of bounded size can be represented as a bit-vector of length
n. The initial state of the program can be specified by a state predicate I . The (pos-
sibly nondeterministic) transition relation for the program can be encoded as a relation
N on the state bit-vectors. A state predicate P is an invariant for the transition sys-
tem 〈I,N〉 if for any infinite state sequence ξ of the form 〈ξ0, ξ1, ξ2, . . .〉, the assertion
I(ξ0) ∧ (∀i.N(ξi, ξi+1) ⇒ ∀i.P (ξi) is valid. We can check that a predicate P is inductive
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by verifying that I(~x) ⇒ P (~x) and P (~x) ∧N(~x, ~x′) ⇒ P (~x′) are both valid. An induc-
tive predicate is an invariant. In bounded model checking [Biere et al. 1999; D’Silva et al.
2008] we want to check that the property P is not violated within k steps by verifying that

I(~x0) ∧
k−1∧
i=0

N(~xi, ~xi+1) ∧ (
k∨

j=0

¬P (~xj))

is not satisfiable. If this formula turns out to be satisfiable, we can construct a sequence
of states ξ0, . . . , ξk from the Boolean assignment to each Boolean variable ~xi[j], for 0 ≤
i ≤ k and 0 ≤ j < n. Invariant checking can be strengthened through the use of k-
induction [Sheeran et al. 2000] to check that state predicate P is k-inductive. Here, the
base case is exactly the bounded model checking step above, and the induction step is

k∧
i=0

N(~xi, ~xi+1) ∧ (
k∧

j=0

P (~xj)) ⇒ P (~xk+1).

A k-inductive predicate is also an invariant.
For symbolic model checking [Burch et al. 1992; McMillan 1993; Clarke et al. 1999],

the set of reachable states is computed by representing each iteration as a propositional
formula Ri so that R0 = I(~x) and Ri+1 = image(N(~x, ~x′))(Ri), where image(φ)(ψ) =
(∃~x.φ ∧ ψ){x′0 7→ x0, . . . , x

′
n 7→ xn}. The fixed point in the iteration is reached when

Ri+1 ⇔ Ri. Symbolic model checkers use representations of propositional formulas such
as reduced ordered binary decision diagrams [Bryant 1986; 1992] for representing and
computing images and fixed points efficiently and compactly. The image computation can
also be done by a variant of satisfiability that generates the representation of all satisfying
solutions. A different use of bounded model checking based on the construction of inter-
polants has proved to be quite effective in building over-approximations of the reachable
state space [McMillan 2003]. Different SAT-based approaches to symbolic model check-
ing are surveyed and compared by Amla et al. [2005].

Bounded model checking can also be used for generating test cases corresponding to
paths through the control flow graph [Hamon et al. 2005; Godefroid et al. 2005]. This is
done by checking the satisfiability of the conjunction of conditions and transitions corre-
sponding to the path. If it is satisfiable, a test case is generated as a satisfying assignment.
If not, we know that the path is infeasible. The same approach can also be used to modify
an existing test case to direct the computation along a different symbolic path.

Propositional logic is useful for model finding over a bounded universe. The Alloy
language and system translate the problem of model finding in a relational logic to propo-
sitional satisfiability [Jackson 2006]. Alloy is a first-order logic where the variables range
over m-ary relations over a bounded universe of cardinality n. The term language allows
relations to be constructed using operations such as union, intersection, transposition, join,
comprehension, and transitive closure. The basic predicates over these relational terms are
those of subset, emptiness, and singularity. As we saw with the pigeonhole example, anm-
ary relation over a universe of cardinality n can be represented by nm propositional atoms
and constants. The relational operations are defined as matrix operations. The resulting
formulas are then translated to Boolean form for satisfiability checking. Many problems
over sets and relations exhibit symmetry. It is therefore enough to look for just one model
in each equivalence class given by a partitioning of the universe with respect to symmetry.
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By searching for models over a finite universe, Alloy is able to detect the presence of bugs
and anomalies in specifications and programs [Torlak and Jackson 2007].

2.2 First-Order Logic

In propositional logic, the propositions are treated as atomic expressions ranging over truth
values. Thus the proposition “Mary has a book” is either true or false. First-order logic
admits individual variables that range over objects such as “Mary”, predicates such as
Book(x ) that represents the claim that the variable x is a book, and relations such as
Has(y, x) that expresses the claim that person y has object x. It also has existential quan-
tification to represent, for example, the proposition “Mary has a book” as ∃x.Book(x) ∧
Has(Mary, x). Universal quantification can be used to express the claim “Mary has only
books” as ∀x.Has(Mary, x) ⇒ Book(x). First-order logic also has function symbols that
can be used to assert, for example, that “Mary’s father has a book”, by writing ∃x.Book(x)∧
Has(father(Mary), x).

The equality relation has a special role in first-order logic. It can be treated as a relation
that satisfies certain axioms, or it can be treated as a logical symbol with a fixed interpre-
tation. We take the latter approach and present first-order logic as a series of increasingly
expressive fragments. A first-order language logic is built from a signature Σ[X] contains
functions and predicate symbols with associated arities, and X is a set of variables.

The signature Σ[X] can be used to construct terms and formulas, where x ranges over
the variables in X , f ranges over the n-ary function symbols in Σ, and p ranges over the
n-ary predicate symbols in Σ.

—Terms t := x | f(t1, . . . , tn)

—Formulas ψ := p(t1, . . . , tn) | t0 = t1 | ¬ψ0 |
ψ0 ∨ ψ1 | ψ0 ∧ ψ1 | (∃x.ψ0) | (∀x.ψ0)

Given a first-order signature Σ, a first-order Σ-structure M consists of

—A non-empty domain |M |
—A map M(f) from |M |n → M , for each n-ary function symbol f ∈ Σ

—A map M(p) from |M |n → {>,⊥}, for each n-ary predicate symbol p.

For example, If Σ = {0,+, <}, then we can define a Σ-structure M such that |M | =
{a, b, c} + interpreted as addition modulo 3, where a, b, and c represent 0, 1, and 2,
respectively.

M(0) = a

M(+) =
{
〈a, a, a〉, 〈a, b, b〉, 〈a, c, c〉, 〈b, a, b〉, 〈c, a, c〉,
〈b, b, c〉, 〈b, c, a〉, 〈c, b, a〉, 〈c, c, b〉

}
M(<)(x, y) =

{
>, if 〈x, y〉 ∈ {〈a, b〉, 〈b, c〉}
⊥, otherwise.

A Σ[X]-structure M also maps variables in X to domain elements in |M |. The inter-
pretation M [[s]] of a Σ[X]-term s as an element of |M | is defined as

M [[x]] = M(x)
M [[f(s1, . . . , sn)]] = M(f)(M [[s1]], . . . ,M [[sn]])
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Given a Σ[X]-structure M , let M [x 7→ a] be an interpretation that maps x to a but
behaves like M , otherwise. The interpretation M [[φ]] of a Σ[X]-formula φ in a Σ[X]-
structure M is defined as

M |= s = t ⇐⇒ M [[s]] = M [[t]]
M |= p(s1, . . . , sn) ⇐⇒ M(p)(〈M [[s1]], . . . ,M [[sn]]〉) = >

M |= ¬ψ ⇐⇒ M 6|= ψ

M |= ψ0 ∨ ψ1 ⇐⇒ M |= ψ0 or M |= ψ1

M |= ψ0 ∧ ψ1 ⇐⇒ M |= ψ0 and M |= ψ1

M |= (∀x.ψ) ⇐⇒ M [x 7→ a] |= ψ, for all a ∈ |M |
M |= (∃x.ψ) ⇐⇒ M [x 7→ a] |= ψ, for some a ∈ |M |

For example, the following claims hold of the Σ-structure given above, where Σ =
{0,+, <}.

(1) M |= (∀x, y.(∃z.+ (y, z) = x)).
(2) M 6|= (∀x.(∃y.x < y)).
(3) M |= (∀x.(∃y.+ (x, y) = x)).

A Σ[X]-formula φ is satisfiable if there is a Σ[X]-interpretation M such that M |= φ.
Otherwise, the formula φ is unsatisfiable. The set of free variables vars(φ) in a term or a
formula is defined by the following equations.

vars(x) = {x}
vars(f(t1, . . . , tn)) = vars(t1) ∪ . . . ∪ vars(tn)
vars(p(t1, . . . , tn)) = vars(t1) ∪ . . . ∪ vars(tn)

vars(¬φ) = vars(φ)
vars(φ1 ∨ φ2) = vars(φ1) ∪ vars(φ2)

vars(∃x.φ) = vars(φ)− {x}
vars(∀x.φ) = vars(φ)− {x}

For example, the set of free variables of the formula ∀x.x < y ∨ ∃y.x < y is {x, y}.
A formula with an empty set of free variables is a sentence. For a sequence of variables
x1, . . . , xn abbreviated as x, let ∃x.φ represent ∃x1. . . .∃xn.φ. If a formula φ is satisfiable,
so is its existential closure ∃x.φ, where x is vars(φ). If a formula φ is unsatisfiable, then
the negation of its existential closure ¬∃x.φ is valid, e.g., ¬(∀x.(∃y.x < y)). Note that if
φ ∧ ¬ψ is unsatisfiable, φ⇒ ψ is valid.

We introduce the proof theory of first-order logic in a series of fragments. Propositional
logic is the fragment of first-order logic where there are no terms and all predicate symbols
are 0-ary. The proof rules from Figure 2 however apply not just to propositional logic but
to the propositional skeleton of formulas where the atoms can be atomic formulas which
include both atoms of the form s = t and p(t1, . . . , tn) for an n-ary predicate p, as well as
quantified formulas.

The first set of sequent calculus proof rules shown in Figure 3 introduce equality with
rules for reflexivity, symmetry, transitivity, and congruence.

These rules in sequent form lack the symmetry of the inference rules for the propo-
sitional connectives. Reflexivity is presented as an axiom, i.e., a rule with no premises,
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Reflexivity
Γ ` a = a, ∆

Symmetry
Γ ` a = b, ∆

Γ ` b = a, ∆

Transitivity
Γ ` a = b, ∆ Γ ` b = c, ∆

Γ ` a = c, ∆

Function Congruence
Γ ` a1 = b1, ∆ . . . Γ ` an = bn, ∆

Γ ` f(a1, . . . , an) = f(b1, . . . , bn), ∆

Predicate Congruence
Γ, p(a1, . . . , bn) ` a1 = b1, ∆ . . . Γ, p(a1, . . . , an) ` an = bn, ∆

Γ, p(a1, . . . , an) ` p(b1, . . . , bn), ∆

Fig. 3. Proof rules for equality

Axiom
E ` (a = b)σ

, for a = b ∈ E and substitution σ

Reflexivity
E ` a = a

Transitivity
E ` a = b E ` b = c

E ` a = c

Congruence
E ` a1 = b1 . . . E ` an = bn

E ` f(a1, . . . , an) = f(b1, . . . , bn)

Fig. 4. Equational Logic

whereas symmetry, transitivity, and function and predicate congruence are presented as
proof rule schemas. There is a congruence rule for each application of a function or pred-
icate symbol to a sequence of terms. These congruence rules can also be captured by
the axiom scheme a1 = b1, . . . , an = bn ` f(a1, . . . , an) = f(b1, . . . , bn), for each
n-ary function symbol f , and the axiom scheme a1 = b1, . . . , an = bn, p(a1, . . . , an) `
p(b1, . . . , bn), for each n-ary predicate symbol p.

Equational Logic. This is a fragment of first-order logic restricted to equality judgments
which are sequents of the form E ` a = b, where E is a set of equations [Burris and
Sankappanavar 1981]. A natural deduction presentation of equational logic is given by
the rules in Figure 4. A substitution σ maps variables to terms so that f(a1, . . . , an)σ =
f(a1σ, . . . , anσ). Equational logic is sound and complete in the sense that E ` a = b
is derivable iff every model of E is a model of a = b. The inference rules of equational
logic are obviously sound with respect to the interpretation of equality. Conversely, if
E ` a = b is not provable, then the term model obtained by taking the quotient of the terms,
adding a constant if needed, with respect to the set of term equalities derivable from E, is
a model for E ∪ {a 6= b}. Many theories such as semigroups, monoids, groups, rings, and
Boolean algebras can be formalized in equational logic. Term rewriting systems [Baader
and Nipkow 1998] can be used to prove equalities in certain equational theories.

McCune’s celebrated proof of the Robbins conjecture with the EQP theorem prover is
an exercise in equational logic. Given a binary operator + and a unary operator n such that
+ is associative and commutative, a Robbins algebra satisfies Robbins’ equation

n(n(x+ y) + n(x+ n(y))) = x,
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Left Right

∀ Γ, A{x 7→ t} ` ∆

Γ, ∀x.A ` ∆

Γ ` A{x 7→ c}, ∆
Γ ` ∀x.A, ∆

∃ Γ, A{x 7→ c} ` ∆

Γ, ∃x.A ` ∆

Γ ` A{x 7→ t}, ∆
Γ ` ∃x.A, ∆

Fig. 5. Sequent proof rules for quantification. The constant c must be fresh: it must not occur in the conclusion
sequents of the proof rules forall-right and exists-left.

whereas a Boolean algebra satisfies Huntington’s equation

n(n(x+ y) + n(x+ n(y))) = x.

The question of whether Robbins’ equation implied Huntington’s equation remained open
for sixty years until McCune [1997] in 1996 used EQP to show that Robbin’s equation
does imply Huntington’s equation. The actual proof shows that Robbins’ equation implies
∃C.∃D.n(C+D) = n(C) which was already known to imply Huntington’s equation. The
existential quantification suggests that this proof is beyond equational logic, but the actual
proof demonstrates a specific C and D, that can be used to construct an equational proof
(see http://www.cs.unm.edu/∼mccune/ADAM-2007/robbins/).

First-Order Logic. The next step is to introduce quantification. We have already seen a
limited use of quantification in the equational logic framework where the equations inE are
implicitly universally quantified. The sequent proof rules for the universal and existential
quantifiers are given in Figure 5. In any application of the ∀-right and ∃-left rules, the
constant c that appears in the premise sequents must be chosen so that it does not appear
in the conclusion sequent. With this proviso, it is easy to check that the inference rules
are sound. If the premise of the ∀-left rule is valid because M [[A{x 7→ t}]] = ⊥, then
M [[∀x.A]] = ⊥ also holds. In the ∀-right rule, if the conclusion is not valid because
there is an M such that M [[γ]] = > for each γ ∈ Γ, M [[δ]] = ⊥ for each δ ∈ ∆, and
M [[∀x.A]] = ⊥, then for some a in |M |, M{x 7→ a}[[A]] = ⊥. In this case, the premise is
also invalid because M{c 7→ a}[[A{x 7→ c}]] = ⊥.

First-order logic as we have presented it is sound and complete. Soundness is easily
established since each proof rule yields a valid conclusion when given valid premises. Let
¬∆ abbreviate the set {¬φ | φ ∈ ∆}. For completeness [Gödel 1930; Henkin 1949; 1996],
we must show that whenever Γ ` ∆ is not provable, then the set of formulas Γ ∪ ¬∆ has
a model. We show that any consistent set of formulas Γ, i.e., where Γ ` is not provable,
has a model. For this, we first introduce a fresh constant cφ for each existential formula φ
of the form ∃x.ψ along with the Henkin axioms (∃x.ψ) ⇒ ψ{x 7→ cφ}. Let Γ′ denote the
result of adding all the Henkin axioms to Γ. As with the completeness proof in Section 2.1,
page 7, we order the formulas into a sequence φ0, φ1, . . . and define Θi so that Θ0 = Γ′,
and Θi+1 = Θi ∪ {φi} if Θi 6` ¬φi, and Θi+1 = Θi ∪ {¬φi}, otherwise. It is easy to
see that the set Θ is consistent. Moreover, note that for any φ1 ∨ φ2 in Θ, either φ1 or φ2

is in Θ. Also, whenever φ of the form ∃x.φ1 is Θ, then φ1[cφ/x] is in Θ. Exactly one
of φ or ¬φ is in Θ. This means that we can read off a model from Θ where the domain
consists of the equivalence classes of the ground (i.e., variable-free) terms with respect to
the equalities in Θ, and the ground atoms in Θ are all assigned true.

First-order logic has a number of other interesting metatheoretic properties. A set of
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(1) S(x) 6= 0

(2) S(x) = S(y) ⇒ x = y

(3) x + 0 = x

(4) x + S(y) = S(x + y)

(5) x ∗ 0 = 0

(6) x ∗ S(y) = (x ∗ y) + x

(7) 0 ≤ x

(8) S(x) ≤ S(y) ⇒ x ≤ y

(9) An axiom scheme such that for each formula φ, φ[0/x] ∧ (∀x.φ ⇒ φ[S(x)/x]) ⇒ (∀x.φ)

Fig. 6. Axioms for a first-order theory of arithmetic

first-order sentences is satisfiable if every finite subset of it is (compactness). A satis-
fiable, countable set of sentences has a model of any infinite cardinality (Löwenhiem-
Skolem theorem). The amalgamation theorem for first-order logic yields a way of con-
structing an amalgamated model from two compatible models over possibly overlapping
signatures. Meta-theorems like the Robinson’s joint consistency theorem, the Craig inter-
polation theorem, and the Beth definability theorem are corollaries of the amalgamation
theorem [Hodges 1997]. Church [Church 1936] and Turing [Turing 1965] showed that the
problem of deciding validity for first-order logic is sentences is undecidable. The halting
problem for Turing machines, which is easily seen to be unsolvable, can be expressed in
first-order logic.

First-Order Theories. Given a signature Σ, a Σ-theory is a set of Σ-structures that is
closed under isomorphism. A first-order theory is the set of models of a set of first-order
sentences. Many theories can be captured in first-order logic by means of non-logical
axioms. Some of these theories can be captured in equational form. For example, a simple
theory of lists is given by the axioms:

(1) car(cons(x, y)) = x

(2) cdr(cons(x, y)) = y

Other theories need to make use of the logical connectives, as with the theory of non-
extensional arrays below.

(1) select(update(a, i, v), i) = v

(2) i 6= j ⇒ select(update(a, i, v), j) = select(a, j)

Both theories above are missing extensionality axioms that can be used to show that two
lists or two arrays are equal if they share the same elements.

The theory of arithmetic is given by the standard model of 〈0, 1,+, ∗〉. This theory is
captured by the Dedekind–Peano axioms which, however, make use of quantification over
sets. The first-order theory of arithmetic shown in Figure 6 employs the unary successor
operation S and the binary operations of addition + and ∗, and a binary ordering predicate
≤.

A sentence is disprovable when its negation is provable. For theories like arithmetic
which are intended to capture the meaning of the arithmetic operations over the natu-
ral numbers, a sentence must either be valid or falsifiable in this arithmetic interpre-
tation. However, the first-order theory of arithmetic is incomplete as demonstrated by
Gödel [1967]: there are undecidable sentences that are neither provable nor disprovable.
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Gödel’s second incompleteness theorems demonstrates that the consistency of the theory
of arithmetic is itself such an undecidable sentence. The second incompleteness theo-
rem effectively defeats Hilbert’s programme of establishing the consistency of formalized
mathematics by finitistic methods. This was the second of his twenty-three problems pre-
sented at the International Congress of Mathematics in 1900 [Hilbert 1902].

Notes. Barwise [1978a] is an excellent introduction to first-order logic. Hodges [1997]
contains a readable introduction to model theory. Proof systems for first-order logic are
covered by Kleene [1952], Gentzen [1969], and Smullyan [1968].

Other First-Order Theories. Presburger arithmetic [Presburger 1929] is the theory of
arithmetic restricted to 〈0, 1,+〉. Presburger arithmetic is both complete and decidable.
There is a quantifier elimination method that can transform any Presburger arithmetic for-
mula into one that is free of quantifiers without introducing any new free variables. In
particular, when quantifier elimination is applied to a sentence, the truth value of the re-
sulting quantifier-free formula can be determined purely by evaluation.

Primitive recursive arithmetic (PRA) was introduced by Skolem [Skolem 1967] and
Goodstein [Goodstein 1964] to provide a finitist foundation for mathematics. In addition
to the basic constant, successor, and projection operations, the theory allows new functions
to be defined in terms of old ones by the schemas of composition and primitive recursion.
A definition by composition has the form

f(x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)),

where the new function f is defined in terms of existing functions g, h1, . . . , hm. A defi-
nition by primitive recursion has the form

f(0, x1, . . . , xn) = b(x1, . . . , xn)
f(S(x), x1, . . . , xn) = h(f(x, x1, . . . , xn), x, x1, . . . , xn)

Goodstein’s rule of Recursion-Induction [Goodstein 1964] asserts that two expressions
that satisfy the same primitive recursion scheme are equivalent. This rule was indepen-
dently proposed by McCarthy [1963] in the context of his theory of pure Lisp. McCarthy’s
formalization of Lisp is also the foundation for the Boyer–Moore family of interactive
theorem provers [Boyer and Moore 1979; 1988; Kaufmann et al. 2000].

Set Theory. Many concepts in mathematics such as structures, orders, and maps can
be encoded using sets. The original conception of a set as a collection of all elements
satisfying a property were found to be unsound. For example, Russell’s paradox introduces
the set of elements R that consisting of all elements that do not belong to themselves, so
that R ∈ R ⇐⇒ R 6∈ R. Similarly, the Burali-Forti paradox which constructs the
set Ω of all ordinal numbers. Then Ω is both an ordinal number and is larger than all
the ordinal numbers. These paradoxes drove the first-order formalization of set theory by
Zermelo, Fraenkel, and Skolem. In ZF set theory, there is one basic predicate ∈ denoting
set membership. Sets are constructed by means of pairing, union, infinity, power set,
comprehension, and replacement. Comprehension is restricted to defining as a set, a subset
{x ∈ A|φ(x)} of a given set A satisfying a stated property φ(x). The replacement axiom
defines as a set, the image of a set with respect to a map specified by a formula. The
axiom of regularity or foundation asserts that each set x contains an element y that has
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no elements in common with x. The axiom of extensionality asserts that two sets are
equal if all their elements are in common, so that sets are completely characterized by their
members.

Set theory is used in various systems for specification and verification such as Z [Abrial
1980; Spivey 1993], B [Abrial 1996], Z/Eves [Saaltink 1997], and Isabelle/ZF [Paulson
1994]. First-order logic theorem provers have been successful in formalizing proofs in set
theory [Boyer et al. 1986; Quaife 1992; Belinfante 1999]. Good introductions to set theory
include Skolem [1962], Halmos [1960], Suppes [1972], and Kunen [1980].

Higher-Order Logic. In first-order logic, the variables range over individuals whereas
the function and predicate symbols are treated as constants. A first-order formula such as
∀x.p(x, f(x)) ⇒ ∀x.∃y.p(x, y) is valid if it is true in all interpretations of the function and
predicate symbols. Higher-order logic allows quantification over function and predicate
symbols. Second-order logic admits quantification over first-order function and predicate
symbols: for example, second-order logic can assert ∃f.∀x.p(x, f(x)) ⇒ ∀x.∃y.p(x, y).
Second-order logic can be used to define the concept of injective and surjective functions,
formalize finiteness, define inductive predicates like transitive closure and reachability,
and formalize recursive datatypes like the natural numbers, lists, and trees. Third-order
logic admits quantification over functions that take first-order functions as arguments, and
predicates that take first-order functions and predicates as arguments. Higher-order logic
includes n-th order logic for any natural number n ≥ 1.

Historically, typed higher-order logic was used to counter the inconsistency in Frege’s
Grundgesetze [Frege 1903] system of logic which admits a form of unrestricted compre-
hension as a way of defining sets. With this, it is easy to derive Russell’s paradox by
defining R as {x | x 6∈ x} so that we have R ∈ R ⇐⇒ R 6∈ R. Zermelo [1908]
avoided the contradiction by restricting the range of comprehension to an existing set, as in
{x ∈ y | φ}. Russell [1903; 1908] developed a hierarchical type system with individuals,
propositions, predicates over individuals, and predicates of predicates, and so on.

Church’s simple theory of types [Church 1940] starts with two basic types of individuals
i and propositions o at level 0 and builds a hierarchy of functions such that if S is a type at
level n and T is a type at level n+ 1, then S→T is a type at level n+ 1.

T := i | o | T1→T2.

The type hierarchy rules out the self-membership or self-application needed to define
the Russell set. The terms of higher-order logic are defined from the basic constants of the
type i and o using lambda-abstraction λ(x : S).a and application a b.

s := x | λ(x : T ).s | s1 s2.

Terms are typed relative to a context Ξ of the form x1 : T1, . . . , xn : Tn, where xj 6≡ xk

for j 6= k and each Ti is a type. Typing judgments have the form Ξ ` s : T for context
Ξ, term s, and type T . The typing rules allow Ξ ` λ(x : S).a : S→T to be derived
from Ξ, x : S ` a : T , and Ξ ` (s t) : T to be derived from Ξ ` s : S→T and
Ξ ` t : S. These typing rules are the same as the proof rules for natural deduction given
by the Curry–Howard isomorphism in Figure 12.

There are many different ways to axiomatize higher-order logic depending on which
primitives are assumed. Andrews [1986; 1940] presents a system Q0 with equality as
primitive so that we have ⇔: o→(o→o) and =: i→(i→o). With this, we can define the
ACM Journal Name, Vol. V, No. N, Month 20YY.



Verifying Software with Theorem Provers · 17

truth value > as = (⇔)(⇔). We revert to the infix notation for familiar symbols so that
we write > as ⇔=⇔. With this, we can define the everywhere-> function over some
type T as λ(x : T ).>. With this, ⊥ abbreviates λ(x : o).x = λ(x : o).>, and universal
quantification ∀ for a predicate P of type T→o can be defined so that ∀p abbreviates
p = λ(x : T ).>. A further abuse of notation abbreviates ∀λ(x : T ).a as ∀(x : T ).a. The
negation operator ¬ can be defined as λ(x : o).x = ⊥. The conjunction operator ∧ can be
defined as λ(x : o).λ(y : o).∀(p : o→(o→o)).p(x)(y) = p(>)(>). From these primitives,
it is easy to define implication and existential quantification.

A term context is a λ-term with a single occurrence of a hole {} in it.

s0 := {} | λ(x : T ).s0 | s0 s | s s0.

We write a{} to represent a term context so that a{b} is the term that results from filling
the hole in a{} with b. Note that free occurrences of variables in b can become bound in
a{b}.

The system Q0 is a Hilbert-style system with one rule of inference

c{a} a = b

c{b}
.

It has four axioms:

(1) ` (g > ∧ g ⊥) = ∀(x : i).g x, for g : o→o

(2) ` x = y ⇒ (g x⇔ g y), for g : S→o and x : T, y : T
(3) (f = g) ⇔ ∀(x : S).f x = g x, for f : S→T , g : S→T

(4) λ(x : S).a b = a{x 7→ b}, where no free occurrences of variables in b appear bound
in a{x 7→ b}.

The first axiom asserts that > and ⊥ are the sole elements of o. The second axiom is
the usual congruence rule for equality. The equivalence asserted in the third axiom can
be read as a congruence rule in one direction, and an extensionality principle in the other.
The last axiom introduces the equality between a redex term λ(x : S).s t and its β-reduct
s{x 7→ t}. Two λ-terms are α-equivalent if one term can be obtained from the other one by
uniformly renaming bound variables. Thus λ(x : S).x y is α-equivalent to λ(z : S).z y.
Such α-equivalent terms are treated as being syntactically interchangeable in the proof
system.

Additionally, higher-order logic also has axioms asserting the existence of an infinite
set and a choice operator choose(P) such that ∃x.P (x) ⇒ P (choose(P)). These axioms
correspond to the axioms of infinity and choice in set theory described below. Lambda-
abstraction is similar to the comprehension principle for defining new sets.

Since higher-order logic can express finiteness, it does not satisfy compactness. The
induction axiom scheme can be expressed as a single axiom, which makes it possible to
define the natural numbers and other recursive datatypes directly in second-order logic.
The µ-calculus [Park 1976] which extends first-order logic with least and greatest fixed
points is also definable in higher-order logic. Many verification systems are based on
higher-order logic since it is both simple and expressive [Gordon 1986].

In the above standard interpretation, even second-order logic is incomplete by Gödel’s
incompleteness theorem. However, higher-order logic is complete for Henkin models
where the function type T1→T2 is interpreted as any set of maps from M [[T1]] to M [[T2]]
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that contains interpretations M [[λ(x : T1).s]] for any lambda-abstraction λ(x : T1).s of
type T1→T2 [Henkin 1950; 1996].

There are several excellent expositions of higher-order logic including Feferman [1978],
Leivant [1994], and van Benthem and Doets [1983].

3. SATISFIABILITY SOLVERS

Satisfiability is a core technology for many verification tasks. We briefly survey the tools
for propositional satisfiability and satisfiability modulo theories and their use in verifica-
tion.

3.1 Inference Systems

Decision procedures for satisfiability are used to determine if a given formula has a model.
If the procedure fails to find a model, it must be because the original formula is unsatis-
fiable. Inference systems [Shankar and Rueß 2002; Shankar 2005; de Moura et al. 2007]
provide a unifying framework for defining such satisfiability procedures.

An inference system is a triple 〈Ψ,Λ,`〉 consisting of a set Ψ of inference states, a
mapping Λ from an inference state to a formula, and a binary inference relation ` between
inference states. For each formula φ, there must be at least one state ψ such that Λ(ψ) = φ.
There is a special unsatisfiable inference state ⊥. The inference relation must be

(1) Conservative: If ψ ` ψ′, then Λ(ψ) and Λ(ψ′) must be equisatisfiable.

(2) Progressive: For any subset S of Ψ, there is a state ψ ∈ S such that there is no ψ′ ∈ S
where ψ ` ψ′.

(3) Canonizing: If ψ ∈ Ψ is irreducible, then either ψ ≡ ⊥ or Λ(ψ) is satisfiable.

We say that a function f is an inference operator when ψ ` f(ψ) if there is a ψ′ such
that ψ ` ψ′, and otherwise, f(ψ) = ψ. Given an inference operator f , let f∗(ψ) = f i(ψ),
for the least i such that f i+1(ψ) = f i(ψ). We can use the operation f∗ as a decision
procedure since ψ is unsatisfiable iff f∗(ψ) = ⊥.

As an example, we present an inference system for ordered resolution in propositional
logic as an illustration. The problem is to determine the satisfiability of a set K of input
clauses. This setK also happens to be the input inference state. We assume thatK does not
contain any clause that is a tautology, i.e., one that contains both a literal and its negation.
It is also assumed that duplicate literals within a clause are merged. We are also given an
ordering p � q on atoms, which can be lifted to literals as ¬p � p � ¬q � q. Clauses are
maintained in decreasing order with respect to this ordering. In binary resolution, a clause
κ containing k and a clause κ′ containing k are resolved to yield (κ−{k})∪(κ′−{k}), but
in ordered resolution, only the maximal literals in a clause can be resolved. The inference
system for ordered resolution is shown in Figure 7. The resolution rule Res adds the clause
κ1 ∨ κ2 obtained by resolving the clauses k ∨ κ1 and k ∨ κ2 to K, provided κ1 ∨ κ2 is
not a tautology and is not already in K, and k and k are the maximal literals in k ∨ κ1 and
k ∨ κ2, respectively.

The resolution inference system can be applied to the example ¬p∨¬q∨r, ¬p∨q, p∨
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Res
K, k ∨ κ1, k ∨ κ2

K, k ∨ κ1, k ∨ κ2, κ1 ∨ κ2

κ1 ∨ κ2 6∈ K
κ1 ∨ κ2 is not tautological

Contrad
K

⊥
if p,¬p ∈ K for some p

Fig. 7. Inference System for Ordered Resolution

r, ¬r to achieve a refutation as shown below.

(K0 =) ¬p ∨ ¬q ∨ r, ¬p ∨ q, p ∨ r, ¬r
(K1 =) ¬q ∨ r, K0

Res

(K2 =) q ∨ r, K1

Res

(K3 =) r, K2

Res

⊥
Contrad

The correctness of the inference system is interesting since the resolution rule has been
restricted to resolving only on maximal literals. The inference system is progressive since
the input K0 has a bounded number of atoms and every clause in K is constructed from
these atoms. For n atoms, there are at most 3n clauses that can appear in K. Since each
resolution step generates at least one new clause, this bounds the size of the derivations.
The inference system is conservative since any modelM of k∨κ1 and k∨κ2 is also a model
of κ1 ∨ κ2. Conversely, if K ′ is derived from K ′ by a resolution step, then K ⊆ K ′, and
hence any model of K ′ is also a model of K. Finally, the inference system is canonizing.
Given an irreducible non-⊥ configuration K in the atoms p1, . . . , pn with pi ≺ pi+1 for
1 ≤ i ≤ n, build a series of partial interpretations Mi as follows:

(1) Let M0 = ∅.
(2) If pi+1 is the maximal literal in a clause pi+1 ∨ κ ∈ K and Mi 6|= κ, then let Mi+1 =

Mi{pi+1 7→ >}.
Otherwise, let Mi+1 = Mi{pi+1 7→ ⊥}.

Each Mi satisfies all the clauses in the atoms pj for j ≤ i, and hence M = Mn satisfies
K. Many inference procedures can be presented and analyzed as inference systems.

3.2 The DPLL procedure for Propositional Satisfiability

Given a propositional formula φ, checking whether there is an M such that M |= φ is a
basic problem that has many applications. For simplicity, the formula is first transformed
in CNF so that we are checking the satisfiability of a set of clauses K. One easy solution is
to enumerate and check all possible assignments of truth values to the propositional atoms
in K. We can systematically scan the space of assignments while backtracking to try a
different assignment each time a branch of the search tree is found to contain no feasible
assignments. This approach has two sources of redundancy. Truth assignments to some
variables are implied by those of other variables. For example, if p is assigned ⊥ and there
is a clause p∨ q in K, then clearly q must be assigned > and there is no need to pursue the
branch where q is assigned ⊥. A partial assignment triggers a conflict when, for example,
there is a clause p∨¬q where p is assigned ⊥ and q is assigned >. Typically, only a small
subset of the partial assignment is needed to trigger such a conflict. Even when the other
assignments are varied during the search, the same conflict is going to be triggered. The

ACM Journal Name, Vol. V, No. N, Month 20YY.



20 · Natarajan Shankar

above redundancies are eliminated in modern satisfiability solvers [Zhang 1997; Marques-
Silva and Sakallah 1999; Moskewicz et al. 2001; Zhang and Malik 2002; Goldberg and
Novikov 2002; Ryan 2004] based on the Davis–Putnam–Logemann–Loveland [Davis and
Putnam 1960; Davis et al. 1962], procedure. The first source of redundancy is handled
by using Boolean constraint propagation to find assignments that are implied as in the
example. We show below that the second source of redundancy can be eliminated using
conflict-directed backjumping to identify a conflict clause that can be used to jump to an
assignment containing more implied information.

The DPLL inference system looks for a satisfying assignment for a set of n clauses K
over m propositional variables [de Moura et al. 2007]. It does this by building a partial
assignment M in levels l and a set of implied conflict clauses C. A partial assignment
M up to level l has the form M0;M1; . . . ;Ml. The partial assignment M0 is a set of
pairs ki[γi] with literal ki and source clause γi ∈ K ∪ C. For 0 < i < l, each Mi has
the form di : k1[γ1], . . . , kn[γn] with decision literal di and implied literals ki and their
corresponding source clause γi. When k occurs as an implied literal in M , let M<k be
the prefix of the partial assignment preceding the occurrence of k in M . We maintain the
invariant that the source clause for an implied literal k in M has the form k ∨ γ where
M<k |= ¬γ. We can view M as a partial assignment since M(p) = > if p occurs in M ,
M(p) = ⊥ if ¬p occurs in M , and M(p) is undefined, otherwise.

The inference state set Ψ consists of all 4-tuples of the form 〈l,M,K,C〉 containing
the decision level l, the partial assignment M , the input clause set K that remains fixed,
and the conflict clause set C. The operation Λ(〈l,M,K,C〉) returns

∧
M0 ∪K ∪ C. The

DPLL inference system involves four basic components

(1) Propagation is used to add all the implied literals k to the partial assignment M at the
current decision level l. A literal k is implied if there is a clause k∨ γ in K ∪C where
M |= ¬γ. Propagation can also detect an inconsistency when there is a clause γ in
K ∪ C where M |= ¬γ. If this inconsistency is detected at decision level 0, then this
reflects a contradiction in K since the clauses in C are implied by those in K.

(2) Analysis is applied when propagation detects an inconsistency that is not at level 0 and
it constructs a conflict clause γ such that M |= ¬γ and γ contains exactly one literal
at the current level l. When propagation detects an inconsistency, there is a clause γ
in K ∪ C such that M |= ¬γ. This clause can contain one or more literals that are
falsified by M at the current level l. If we have just one such literal, then γ can be
taken as a conflict clause. If we have more than one such literal, then one of these
must be maximal in terms of the position of its assignment in M . We replace γ by the
result of resolving γ with the source clause k ∨ γ′ for this maximal literal k. Since
M<k |= ¬γ, we know that this resolution step only replaces k with literals whose
negations precede k in M , so that the new clause γ is still falsified by M and has a
smaller maximal literal. Since there are only a bounded number of literals at level l,
we will eventually terminate with a conflict clause that has exactly one literal at level
l.

(3) Backjumping is used to reset the partial assignment based on the conflict clause γ
constructed by analysis. We know that γ is of the form k ∨ γ′, where k is falsified at
level l and γ′ is falsified at some level l′ < l. Let M l′ represent the restriction of M
to the assignments in levels at or below l′. The backjumping step replaces M with the
partial assignment M l′ , k[γ] while adding γ to the conflict clause set C.
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step l M K C γ

select s 1 ; s K ∅
select r 2 ; s; r K ∅
propagate 2 ; s; r,¬q[¬q ∨ ¬r] K ∅
propagate 2 ; s; r,¬q, p[p ∨ q] K ∅
conflict 2 ; s; r,¬q, p K ∅ ¬p ∨ q

analyze 0 ∅ K q

backjump 0 q[q] K q

propagate 0 q, p[p ∨ ¬q] K q

propagate 0 q, p, r[¬p ∨ r] K q

conflict 0 q, p, r K q ¬q ∨ ¬r

Fig. 8. The DPLL procedure with input {p ∨ q,¬p ∨ q, p ∨ ¬q, s ∨ ¬p ∨ q,¬s ∨ p ∨ ¬q,¬p ∨ r,¬q ∨ ¬r}

(4) When propagation has been applied to extract all the implied literals at the current level
l and no conflicts have been detected, then we can move to the next level incrementing
l by one and selecting a decision literal k for this level from those literals that are
unassigned inM . The partial assignmentM is then replaced byM ; k. Note that when
there are no more unassigned literals, the partial assignment M is a total assignment,
and since it yields no conflict, we have M |= γ for each clause γ in K ∪ C.

An example of the procedure is shown in Figure 8. The given input clause set K is
{p∨q,¬p∨q, p∨¬q, s∨¬p∨q,¬s∨p∨¬q,¬p∨r,¬q∨¬r}. Since there are no unit (single
literal) clauses, there are no implied literals at level 0. We therefore select an unassigned
literal, in this case s as the decision literal at level 1. Again, there are no implied literals at
level 1, and we select an unassigned literal r as the decision literal at level 2. Now, we can
add the implied literals ¬q from the input clause ¬q∨¬r and p from the input clause p∨q.
At this point, propagation identifies a conflict where the partial assignment M falsifies the
input clause ¬p∨q. The conflict is analyzed by replacing ¬pwith q to get the unit clause q.
Since the maximal level of the empty clause is 0, backjumping yields a partial assignment
q at level 0 while adding the unit clause q to the conflict clause set C. Propagation then
yields the implied literals p from the input clause p∨¬q and r from the input clause ¬p∨r,
which leads to the falsification of the input clause ¬q ∨ ¬r. Since this conflict occurs at
level 0, we report unsatisfiability.

Generating Proofs. The DPLL search procedure can be augmented to generate proofs
by annotating the conflict clauses with proofs corresponding to the analysis steps used in
generating them [Zhang and Malik 2003]. In the example above, the conflict q can be
annotated with the proof resolve(p,¬p ∨ q, p ∨ q) to indicate that the clause is generated
by resolving ¬p ∨ q and p ∨ q on the atom p. The final conflict clause ¬q ∨ ¬r can also
be analyzed to construct the proof shown below. The conflict clause q is used as an input
here, but its proof computed during analysis can be spliced into the proof.

¬q ∨ ¬r ¬p ∨ r
¬q ∨ ¬p p ∨ ¬q

¬q q

⊥
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Generating Interpolants. The Craig Interpolation Lemma [Craig 1957] states that if we
have two sets of first-order logic formulas Γ and ∆ such that Γ ∪ ∆ is inconsistent, then
there is a formula φ in the intersection of the function and predicate symbols from Γ and
∆ such that Γ entails φ and ∆ entails ¬φ. For sets of propositional formulas Γ and ∆, the
interpolant φ is a propositional formula whose atoms appear in both Γ and ∆. Interpolants
are useful for finding useful program assertions including invariants [McMillan 2003]. For
example, we already saw with bounded model checking that when the assertion

I(~x0) ∧
k−1∧
i=0

N(~xi, ~xi+1) ∧ (
k∨

j=0

¬P (~xj))

is unsatisfiable, we do not have any violations of property P in the first k steps of the
computation. An interpolant can be constructed from this proof of unsatisfiability where Γ
consists of I(~x0)∧N(~x0, ~x1)∧(¬P (~x0)∨¬P (~x1)) and ∆ consists of

∧k−1
i=1 N(~xi, ~xi+1)∧

(
∨k

j=2 ¬P (~xj)). Now Γ and ∆ only overlap on ~x1 so that their interpolant yields an
assertion on ~x1 that can be used as the initial state in the next iteration of bounded model
checking. We examine the construction of an interpolant from a refutational proof based
on resolution.

Let the input clause set K be partitioned into K1 with atoms atoms(K1) and K2 with
atoms atoms(K2). We show that if K is unsatisfiable, there is a formula (an interpolant) I
such thatK1 ⇒ I andK2∧I ⇒ ⊥. Furthermore, atoms(I) ⊆ atoms(K1)∩atoms(K2).

An interpolant IΓ can be constructed for each clause Γ in the proof. The interpolant
for the proof is then just I⊥. Each clause Γ in the proof is partitioned into Γ1 ∨ Γ2 with
atoms(Γ2) ⊆ atoms(K2) and atoms(Γ1) ∩ atoms(K2) = ∅.

The interpolant IΓ has the property that K1 ` ¬Γ1 ⇒ IΓ and K2 ` IΓ ⇒ Γ2, where
¬Γ1 is the set of negations of formulas in Γ1.

For input clauses Γ = Γ1 ∨ Γ2 in K1, the interpolant IΓ = Γ2. For input clauses Γ2 in
K2, the interpolant is >. When resolving Γ′, Γ′′ to get Γ,

(1) If resolvent p is in Γ′1 (i.e., p 6∈ atoms(K2)), then IΓ = IΓ′ ∨ IΓ′′ since ¬(p ∨ Γ′1) ⇒
IΓ′ ⇒ Γ′2 and ¬(¬p ∨ Γ′′1) ⇒ IΓ′′ ⇒ Γ′′2 .

(2) If resolvent p is in Γ′2, then IΓ = IΓ′ ∧ IΓ′′ since ¬(Γ′1 ∨ Γ′′2) ⇒ IΓ ⇒ (p ∨ Γ′2) ∧
(¬p ∨ Γ′′2) ⇒ Γ′2 ∨ Γ′′2 .

To illustrate the construction of an interpolant, let K1 = {a∨ e[e],¬a∨ b[b],¬a∨ c[c]},
and K2 = {¬b ∨ ¬c ∨ d[>],¬d[>],¬e[>]}, with shared atoms b, c, and e.

The annotated proof is given by

a [e]
b [e ∨ b]
c [e ∨ c]
¬c ∨ d [e ∨ b]
d [(e ∨ b) ∧ (e ∨ c)]
⊥ [(e ∨ b) ∧ (e ∨ c)]

Notes. Satisfiability solvers are surveyed by Gomes, Kautz, Sabharwal, and Selman [2008]
and in the Handbook of Satisfiability [Biere et al. ].
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3.3 Satisfiability Modulo Theories

A formula is satisfiable in first-order logic if it has a model. A theory T is a specific
class of models so that a formula is T -satisfiable if it has a model M in T . Typically, a
theory is given by its presentation as (a class of models for) a collection of axioms. Theory
satisfiability procedures have been developed since the late 1970s [Nelson 1981; Shostak
et al. 1982], but it is only recently that the techniques used by the DPLL search procedure
have been adapted for this purpose.

In SMT, unlike SAT, the atoms are not just Boolean variables but can also represent
equalities, inequalities, and applications of various other predicates. For example, the set
of formulas

y = z, x = y ∨ x = z, x 6= y ∨ x 6= z

is unsatisfiable due to the interpretation of equality but its propositional skeleton p, q ∨
r,¬q ∨ ¬r is satisfiable with the assignment {p 7→ >, q 7→ >, r 7→ ⊥}, where p, q, and
r represent y = z, x = y, and x = z respectively. Theory satisfiability can be reduced to
SAT by generating lemmas that capture the theory constraints. In the above example, we
can add the lemmas ¬p∨¬q∨r, ¬p∨¬r∨q, and ¬q∨¬r∨p. The problem with this eager
reduction to SAT is that there are 3n candidate lemmas in n atoms and it is prohibitively
expensive to test each of them for theory validity. The lazy approach uses SAT to generate
a candidate assignment like the one above, which is then refuted by a theory solver.

SMT solvers can deal with other theories including equality over uninterpreted func-
tions, linear arithmetic, bit-vectors, and arrays, as well as combinations of these theories.
SMT solvers have been extended to handle quantified formula through the use of a tech-
nique called e-graph matching. SMT solvers have a large number of applications since
many planning and programming problems can be directly represented as SMT problems.
For example, SMT can be used to check the feasibility of a symbolic program path and to
generate an actual test case that exercises that path. They can be used to capture quantita-
tive constraints in a planning problem. SMT solvers can be embedded within interactive
proof checkers as well as assertion checkers and refinement tools. We only provide a very
brief survey of the basic ideas in SMT solving [Nieuwenhuis et al. 2006; Bradley and
Manna 2007; de Moura et al. 2007; Kröning and Shtrichman 2008; Barrett et al. ].

We first describe the theory satisfiability procedure TDPLL. Recall that the state of the
DPLL procedure is of the form 〈l,M,K,C〉 with decision level l, partial assignment M ,
input clause set K, and conflict clause set C. For satisfiability modulo theories, we add a
fifth element S which is the theory state. The interaction between the DPLL search and
the theory solver is surprisingly simple even if the details of any given implementation
can be quite complicated. The interface for the theory solver consists of the Assert, Ask,
Check, and Retract operations. Whenever a literal is added to M either by selection or
propagation, then it is also added to S through the Assert operation. We can use Ask to
check if a particular literal is implied by S, in which case it is added to the partial assign-
ment M . Also, in this case, the theory solver may have the option of generating a theory
lemma corresponding to this implication which can be added to C. The Check operation
determines if the state S is inconsistent, in which case the theory solver returns a conflict
lemma clause of the form k1 ∨ . . . ∨ kn, where each ki is the negation of a literal in the
explanation for the conflict, namely, the set of input literals asserted to S that are relevant
to the conflict. In the latter case corresponding to a theory conflict, the lemma clause is
added to C and the DPLL procedure also signals a conflict. The conflict is treated as a
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Step M F D C

Prop y = z {y 7→ z} ∅ ∅
Select y = z; x 6= y {y 7→ z} {x 6= y} ∅

Scan
. . . , x 6= z
[x 6= z ∨ y 6= z ∨ x = y]

{y 7→ z} {x 6= y} {x 6= z ∨ y 6= z ∨ x = y}

Prop . . . {y 7→ z} {x 6= y} ∅
Analyze . . . {y 7→ z} {x 6= y} {y 6= z

∨x = y}
Backjump y = z, x = y {y 7→ z} ∅ . . .

Prop . . . , x 6= z[. . .] . . . {x 6= z} . . .

Assert y = z, x = y, x 6= z {x 7→ y, y 7→ z} {x 6= z} . . .

Check y = z, x = y, x 6= z {x 7→ y, y 7→ z} {x 6= z} . . .

Conflict

Fig. 9. Checking the satisfiability of y = z, x = y ∨ x = z, x 6= y ∨ x 6= z

global conflict if it occurs at level 0, or it triggers backjumping as in the DPLL satisfiabil-
ity procedure. When literals are dropped from the partial assignment during backjumping,
they are also retracted from the theory state S using the Retract operation.

An example of the TDPLL search procedure is shown in Figure 9. Here, we consider the
previous example of the input clause set y = z, x = y∨x = z, x 6= y∨x 6= z. The theory
state S here consists of a union-find structure F which maintains the equality information
and a set D of the input disequalities. Initially, the partial assignment M and the theory
state 〈F,D〉 are both empty. By DPLL propagation, we add the unit clause y = z to the
partial assignment at level 0 and assert it to the theory state. Next, at level 0, we select the
literal x 6= y and add it toM and insert it intoD. The scan step checks all the input literals
to collect the ones that are implied or refuted by the theory state. In this case, the literal
x 6= z is implied by the theory solver with the supporting lemma x 6= z ∨ y 6= z ∨ x = y.
This new literal is added to the partial assignment and the supporting lemma is added to C.
Now, DPLL propagation generates a conflict with the clause x = y ∨ x = z. Analyzing
this conflict yields the conflict clause y 6= z ∨ x = y which is added to C. Backjumping
with this conflict clause adds the literal x = y at level 0 while retracting the previously
asserted literal x 6= y. DPLL propagation applied to the input clause x 6= y∨x 6= z causes
x 6= z to be added to M and D. Now, we have a complete assignment and the theory state
〈F,D〉 is clearly inconsistent.

There are many variations on the basic algorithm described above. For example, the
eager approach adds theory lemmas to C prior to the search. The procedure for checking
the theory state for inconsistency can be applied at any point during the search or restricted
to total assignments. Indeed the checking process can be eliminated in favor of a strong
form of Assert that detects inconsistencies in the theory state as soon as they are introduced.
The theory propagation procedure implemented by querying the theory state for implied
literals can be incomplete without affecting the completeness of the search procedure. It
can sometimes be more efficient to use a fast but incomplete theory propagation procedure.
The operation of scanning the unassigned literals to find an implied literal can either be
invoked whenever the theory state is updated or in an intermittent manner. In building
an SMT solver, a great deal of experimentation goes into optimizing these parameters to
achieve robust performance across the spectrum of benchmarks.
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Delete
x = y, G; F ; D

G; F ; D
if F ∗(x) = F ∗(y)

Merge
x = y, G; F ; D

G; F ′; D

if x′ = F ∗(x) 6= F ∗(y) = y′

F ′ = F ∪ {sort(x′ = y′)}

Diseq
x 6= y, G; F ; D

G; F ; x 6= y, D

Contrad
G; F ; x 6= y, D

⊥
if F ∗(x) = F ∗(y)

Fig. 10. Inference system for equality and disequality

The correctness of the TDPLL inference system is along the same lines as the argument
for DPLL. The TDPLL procedure relies on the Check procedure being sound and complete,
and the Ask, Retract, and Assert procedures being sound. SMT solvers have been around
from the late 1970s with the Nelson–Oppen method [Nelson and Oppen 1979; Nelson
1981] used in the Stanford Pascal Verifier and in the Simplify prover [Detlefs et al. 2003]
and Shostak’s STP [Shostak 1984; Shostak et al. 1982]. More recent SMT solvers are built
around the modern versions of the DPLL procedure. In contrast with the lazy approach
used in the earlier systems where theory solving is invoked from within a SAT solver, the
UCLID [Bryant et al. 2002] system employs an eager combination where theory solving is
used to generate theory lemmas that are added to the original formula for checking propo-
sitional satisfiability. The lazy combination of theory solving with modern DPLL solvers
first appeared in the Cooperative Validity Checker (CVC) [Stump et al. 2002; Barrett et al.
2002], ICS [de Moura et al. 2002], MathSAT [Audemard et al. 2002], and Verifun [Flana-
gan et al. 2003]. More recent implementations include Barcelogic [Bofill et al. 2008],
CVC3 [Barrett and Tinelli 2007], MathSAT 4 [Bruttomesso et al. 2008], Yices 1 [Dutertre
and de Moura 2006b] and Yices 2, and Z3[de Moura and Bjørner 2008].

3.3.1 Theory Solvers. We have illustrated the TDPLL procedure with a theory solver
for equality and disequality based on the union–find algorithm. This theory solver can
itself be seen as an inference system. In this algorithm, the only terms are variables. The
inference system is shown in Figure 10. The inference state consists of the input equalities
and disequalities G, the find map F , and the set of input disequalities D. There is a total
ordering x � y. The map F is represented as a set of equalities x = y such that x � y
and for any x = y′ in F , y is identical to y′. The operation F (x) returns y if there is
an equality x = y in F , and x itself, otherwise. The operation F ∗(x) = Fn(x) for the
smallest n such that Fn(x) = Fn+1(x). The operation sort(x = y) returns x = y if
x � y, and y = x, otherwise. It is easy to check that inference system for equality is
conservative, progressive, and canonizing.

How do we implement the interface operations for Assert, Ask, Check, and Retract? The
Assert procedure adds an equality or a disequality to the state 〈F,D〉. The Ask procedure
checks the truth value of an equality x = y against 〈F,D〉 by checking if F ∗(x) = F ∗(y)
in which case the equality x = y is implied. To determine if x 6= y is implied, we check if
there is some disequality x′ 6= y′ inD such that F ∗(x) = F ∗(x′) and F ∗(y) = F ∗(y′). As
an option, we require the Ask operation to generate an economical explanation of the impli-
cation which can be added as a lemma. Generating such explanations requires a version of
union-find where each edge in the find structure corresponds to an input [Nieuwenhuis and
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Oliveras 2005]. The Check operation applies the Contrad rule to see if there is an invalid
disequality in D. As with Ask, generating an explanation for the contradiction requires a
proof-carrying version of union-find. Retraction is an easy operation since a disequality
can be deleted fromD and for an equality, the corresponding sorted equality can be deleted
from F .

Congruence Closure. . For arbitrary terms with arbitrary interpretations, a theory solver
based on the congruence closure procedure can be given [Kozen 1977; Shostak 1978;
Nelson and Oppen 1977; Nieuwenhuis and Oliveras 2005]. In this procedure, the e-graph
data structure used in the union-find algorithm contains nodes for each subterm in the term
universe. For each node corresponding to a term the form f(a1, . . . , an), we have a data
structure that maintains the signature of the term, namely f(F ∗(a1), . . . , F ∗(an)). The e-
graph is maintained in congruence closed form so that whenever two nodes have the same
signature, their equivalence classes are merged. Whenever, there is a disequality s 6= t inD
such that F ∗(s) ≡ F ∗(t), the theory solver signals an inconsistency. The Assert command
is defined to add an equality or disequality to the e-graph and close it under congruence.
The Ask command merely checks if an equality s = t is implied by the e-graph or refuted
by some disequality in D of the form s′ 6= t′, where F ∗(s) ≡ F ∗(s′) and F ∗(t) ≡ F ∗(t′).
Retraction is as in the union-find inference system.

Linear Arithmetic. There are a wide range of theory solvers for constraint solving with
various fragments of linear arithmetic equalities and inequalities. One simple fragment
deals only with interval constraints on variables. An inference system for such a fragment
can be defined to maintain the tightest interval for each variable. If some variable has an
empty interval, then we have a contradiction.

Difference constraints have the form x − y ≤ c or x − y < c, for some constant c.
Strict inequalities x − y < c can be replaced by the non-strict form x − y ≤ c − ε by
introducing a positive infinitesimal ε. Algorithms for processing such constraints include
the Bellman–Ford procedure [Wang et al. 2005] and the Floyd–Warshall procedure. One
important twist in the case of SMT solving is that the algorithms must be incremental so
that new constraints can be added on-the-fly, and easily retractable so that constraints can
be efficiently deleted from the theory solver state in the reverse order in which they were
asserted. For difference constraints over integers, the constant c in the constraint must be
an integer. The solution, if it exists, must assign integer values to the variables, so that the
same algorithms can be applied to both the real and the integer fragment.

In the more general case, we have linear arithmetic constraints of the form A~x ≤ ~b,
where A is a matrix over the rationals and ~b is a vector of rational constants. For this
fragment, inference procedures based on the simplex procedure for linear programming
have proved effective. These procedures demonstrate infeasibility of A~x ≤ ~b by finding a
vector ~y > 0 such that ~yTA~x = 1 and ~yT~b = 0, where ~yT is the transpose of ~y. Linear
arithmetic equalities s = t can be reduced to the equivalent conjunction s−t ≤ 0∧t−s ≤
0. The general form simplex has been particularly effective for the full linear arithmetic
fragment [Dutertre and de Moura 2006a]. Here, input inequalities of the form s ≤ cu or
s ≥ cl are converted into tableau entries of the form xs = s with a freshly chosen variable
xs corresponding to each canonical polynomial s in the input. We thus have a tableau of
the form ~x = A~y, where the variables in ~x are the basis variables and the variables in
~y are disjoint from those in ~x and constitute the non-basis variables. The algorithm then
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maintains the upper and lower bounds U(x) and L(x) for each variable x in the tableau.
Whenever s ≤ cu is added and cu < U(xs), we update U(x) as cu. The algorithm also
maintains an assignment β for the non-basis variables from which the assignment for the
basis variables is computed. Whenever a basis variable has a computed assignment that
violates its bounds, pivoting is used to exchange basis and non-basis variables so as to
find a new assignment β′ that does satisfy the bounds. An inconsistency is determined
when there is no suitable pivot candidate for a basis variable whose assignment violates its
bounds. The main advantage of this general form algorithm is that retraction has very little
cost since we can retain the existing assignment to the variables. The explanation for an
inconsistency can be easily constructed from the simplex tableau.

For the case of linear arithmetic constraints with both the integer and real variables, the
above procedure must be supplemented heuristic methods since complete procedures can
be quite expensive. Strict input inequalities s < c that contain all integer variables can
be replaced by s ≤ dc − 1e during pre-processing. For a tableau entry of the form x =
a1x1 + . . .+ anxn, where the variables all range over the integers and the coefficients are
also integers, we can use the GCD test to check that the interval for x contains a multiple of
the greatest common divisor of the coefficients. For example, if we have x = 3y− 3z with
U(x) = 2 and L(x) = 1, we know that the constraints are not feasible. If the coefficients
ai are non-integer rationals, then the tableau entry can be normalized so that we have
bx = a′1x1 + . . .+ a′nxn, where a′i = ai/b and we can replace bx by x′ while noting that
x′ must be divisible by b. The branch-and-bound method is invoked whenever an integer
variable x has a non-integer assignment β(x) to check if the constraints are feasible when
conjoined with either of x ≤ bcc or x ≥ dce.

Nonlinear Arithmetic. The Gröbner basis algorithm [Buchberger 1976] can be used to
solve the uniform word problem for algebraically closed fields, i.e., fields where every
polynomial of non-zero degree has a root. Showing that (

∧
i pi = 0) ⇒ p = 0 is the same

as showing that polynomial p is a member of the ideal generated by the set of polynomials
{p1, . . . , pn}. Given an ordering on the variables, the monomials can be ordered lexico-
graphically so that, for example, if x � y � z, then x2yz � x2y � xy2z � xyz2 � xy.
This ordering can be lifted lexicographically to polynomials. One polynomial aM + P
can be reduced by another polynomial bN + Q for pure (i.e., with coefficient equal to 1)
monomials M and N with N � Q, nonzero coefficients a and b, and polynomials P and
Q, if M = M ′N for some monomial M ′. The reduction replaces the polynomial aM +P
by −aM ′Q+ bP . Similarly, the superposition of two polynomials aM + P and bN +Q
with M � P and N � Q adds the polynomial aM ′Q− bN ′P , where M ′ and N ′ are the
least polynomials such that MM ′ = NN ′. Superposition must not be applied to a pair
of polynomials where one polynomial can be reduced by the other. If we start with the
original set of polynomials augmented with py − 1 for some fresh variable y, and apply
reduction and superposition to closure while deleting trivial polynomials of the form 0, we
obtain the Gröbner basis B. If the basis B contains the polynomial 1, then we know that
(
∧

i pi = 0) ⇒ p = 0.
The Gröbner basis algorithm does not apply to ordered fields like the real numbers. The

first-order theory of reals, i.e., the set of first-order sentences true in the reals, is indistin-
guishable from the theory of real closed fields, i.e., ordered fields where polynomials of
odd degree have roots. Tarski [1948] gave a decision procedure for the first-order theory of
real-closed fields which has been improved by Cohen [1969] and Hörmander [1983], and
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by Collins [1975]. Tiwari [2005] has developed a semi-decision procedure for the universal
fragment of real closed fields combining the simplex algorithm and Gröbner basis compu-
tations. Parrilo [Parrilo 2003; Harrison 2007] gives an alternative approach based on the
decomposition into a sum of squares of polynomials of a positive semi-definite polynomial
p where ∀~x.p ≥ 0 holds for ~x = vars(p).

Arrays. The extensional theory of arrays employs the axioms in page 14 along with an
extensionality axiom asserting that (∀i.select(a, i) = select(b, i)) ⇒ a = b. The array
theory can be obtained by lazily instantiating the axioms. For example, whenever a 6= b
is asserted, a fresh Skolem constant k is generated along with the lemma select(a, k) =
select(b, k) ⇒ a = b. Whenever the array term update(a, i, v) appears in the e-graph,
we add the lemma select(update(a, i, v), i) = v. Additionally, if term b is in the same
equivalence class as a or update(a, i, v) , then for any term b(j) in the e-graph, we add the
lemma i = j ∨ select(update(a, i, v), j) = select(a, j).

Bit Vectors. The theory of bit-vectors deals with fixed-width bit-vectors and the bit-wise
logical operations, various left and right shift operators, as well as signed and unsigned
arithmetic operations. If an n-bit bit-vector b is 〈bn−1, . . . , b0〉, then the unsigned interpre-
tation is uval(b) is 2n−1bn−1+. . .+20b0 and the signed (two’s complement) interpretation
is uval(〈bn−2, . . . , b0〉)−bn−12n−1. A simple approach to a bit-vector solver is to bit-blast
the expression by replacing each bit-vector term b by n bits 〈bn−1, . . . , b0〉 and translating
all the operations into the bit representations. This can be expensive and should be done
only as needed. Bit-vector problems that require only equality reasoning can be handled
efficiently within the e-graph itself.

Combining Theory Solvers. In applying SMT solvers to problems in verification, one
typically finds proof obligations that span multiple theories including arrays, arithmetic,
uninterpreted function symbols, and bit-vectors. The Nelson–Oppen method [Nelson and
Oppen 1979; Nelson 1981; Oppen 1980] is a general approach for combining multiple
theory solvers as long as the theories involved are over disjoint signatures. A cube φ over a
combined signature Σ1∪Σ2, where Σ1∩Σ2 = ∅, is satisfiable in the union of theories if it
has a modelM whose projection to signature Σi is a structure in theory i, for i = 1, 2. The
first step is to purify the formula into an equisatisfiable conjunction φ1 ∧ φ2, where each
φi is a cube entirely in the signature Σi. Purification is done in stages by replacing a pure
subterm s of φ in theory i by a fresh variable x while conjoining x = s to the formula.
Eventually, we have a cube of the form φ′ ∧

∧n
i=1 xi = si, where each literal in the cube

φ′ is a pure formula in one of the theories and each equality xi = si is also pure. This
conjunction can then be easily partitioned into φ1 ∧ φ2.

We could now apply the individual theory solvers to check if each φi is satisfiable in
theory i, but this does not guarantee satisfiability in the union of the theories since the in-
dividual models might not be the projections of a single model. To ensure that the models
are compatible, we guess an arrangement A of the variables in vars(φ1) ∩ vars(φ2). An
arrangement is a conjunction of equalities and disequalities between these variables corre-
sponding to some partition of the variables into equivalence classes so that we have x = y
for any two variables x and y in the same equivalence class and x 6= y for any two variables
x and y in distinct equivalence classes. We can then check that there is some arrangement
A among the finitely many arrangements, such that φi ∧ A is satisfiable in theory i for
i = 1, 2. If there is such an arrangement, then it guarantees that the original formula φ is
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satisfiable in the union of the theories provided the theories in question are stably infinite:
if a formula has a model, it has a countable one. Without this proviso, we might still have
an incompatibility since the finite cardinalities of the two models might not match. The
two countable models M1 and M2 that agree on an arrangement can be amalgamated into
a single model M for φ1 ∧ φ2 by defining a bijection h between M2 and M1 such that
h(x) = M1(x) = M2(x) by identifying elements in M1 and M2, and letting |M | = |M1|,
M(f) = M1(f) for f ∈ Σ1, andM(g)(a1, . . . , an) = h(M2(g)(h−1(a1), . . . , h−1(an)))
for g ∈ Σ2. Conversely, if the formula φ1 ∧ φ2 is satisfiable, then this model yields an ar-
rangement A such that each φi ∧A is satisfiable in theory i.

For example, the literal

select(update(a, 2i+ 1, select(a, 3i− 1)), i+ 3) 6= select(a, i+ 3)

can be purified to φ1 of the form select(update(a, x, select(a, y)), z) 6= select(a, z) and
φ2 of the form x = 2i + 1 ∧ y = 3i − 1 ∧ z = i + 3. The shared variables are x, y, and
z, and it can be checked that there is no arrangement A where φ1 ∧ A is satisfiable in the
theory of arrays and φ2 ∧A is satisfiable in the theory of integer linear arithmetic.

E-graph Matching. While there is no complete method for handling first-order quan-
tification, there are some useful heuristic approaches for instantiating quantifiers in or-
der to derive unsatisfiability within the context of an SMT solver. The E-graph matching
method [Nelson 1981; Detlefs et al. 2003] developed in the Stanford Pascal Verifier is one
such approach. The e-graph contains vertices corresponding to terms. A quantified for-
mula φ can be Skolemized so that it is of the form φ1 ∧ . . . ∧ φn, where each φi is of the
form ∀xi.κi, and κi is just a clause.

E-graph matching [Nelson 1981] tries to find a ground instance of the clause κi that
can be added to the set of clauses in SMT procedure. There are usually infinitely many
instances so we need to be selective about adding only those instances that are relevant to
the search. When it comes to matching a rule of the form f(g(x)) = g(f(x)), the e-graph
term universe might not contain terms of the form f(g(a)) or g(f(a)), but it might contain
terms of the form f(a), where a and some other term g(b) are in the same equivalence class.
E-graph matching is able to find such a match so that the instance f(g(b)) = g(f(b)) is
added to the set of clauses in the SMT procedure. E-graph matching can be controlled by
identifying triggers, which are sets of terms in the clause covering all the free variables
that must be matched before the corresponding instance is added.

4. PROOF SEARCH IN FIRST-ORDER LOGIC

The early approaches to proof search [Gilmore 1960; Prawitz 1960] in the late 1950s were
based on Herbrand’s theorem. The idea was to start with a sentence φ in first-order logic
(without equality) and generate the equivalent prenex normal form a first-order formula of
the form Q1x1 : . . . Qnxn : ψ, where each Qi is either a universal or an existential quanti-
fier and ψ is a quantifier-free formula. The prenex formula can be Skolemized by iteratively
replacing the existential quantifiers in the formula by Skolem functions as follows. Let Qi

be the first existential quantifier in the prefix of the formula so that it is preceded by the
universally quantified variables x1, . . . , xi−1. We then transform ∀x1. . . .∀xi−1.∃xi.ψ to
∀x1. . . .∀xi−1.ψ{xi 7→ fi(x1, . . . , xi−1)}, where fi is a freshly chosen (Skolem) function
symbol. By successively eliminating existential quantifiers in this manner, we arrive at a
formula of the form ∀x1. . . .∀x′n.ψ̂, with a quantifier-free ψ̂, that is equisatisfiable with
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φ. Herbrand [1967] noted that such a formula is unsatisfiable iff there some Herbrand
expansion of the form ϕ1 ∧ . . . ∧ ϕk that is unsatisfiable, where each ϕi is of the form
ϕ{x1 7→ ti1, . . . , x

′
n 7→ tin′} for Herbrand terms tij . The Herbrand terms are those built

from variables and the function symbols occurring in ϕ. It was observed by Prawitz [1960],
and also by Herbrand [1967] himself, that the Herbrand instantiation could be constructed
by equation solving. This is done by picking a bound k on the Herbrand expansion and
converting the formula ϕ{x 7→ y1} ∧ . . . ∧ ϕ{x 7→ yk} to disjunctive normal form
Γ1 ∨ . . . ∨ Γw. For the formula to be unsatisfiable, each disjunct Γi, 1 ≤ i ≤ w must
contain an atom p(s1, . . . , su) and its negation ¬p(t1, . . . , tu) generating a constraint of
the form p(s1, . . . , su) = p(t1, . . . , tu). The constraints collected from each disjunct must
be solved simultaneously over Herbrand terms. Such equations are solved by unification
which constructs a single substitution for the equations s1 = t1, . . . , sn = tn such that siσ
is syntactically identical to tiσ for 1 ≤ i ≤ n.

For example, the claim ∀x.∃y.p(x) ∧ ¬p(y) is unsatisfiable. Here ϕ is just p(x) ∧
¬p(f(x)), where the Herbrand expansion p(z)∧¬p(f(z))∧p(f(z))∧p(f(f(z))) with k =
2 is propositionally unsatisfiable. This expansion could have been obtained by unification
from p(x1) ∧ ¬p(f(x1)) ∧ p(x2) ∧ ¬p(f(x2)).

Robinson’s resolution method [Robinson 1965] simplified the application of Herbrand’s
theorem by

(1) Placing ϕ in clausal form ∀κ1 ∧ . . . ∧ ∀κm, where the ∀κi indicates that the free
variables in each clause κi are universally quantified.

(2) Introducing a resolution inference rule which generates the clause ∀(κ ∨ κ′)θ from
k∨κ and ¬k′∨κ′, where θ is the most general unifier of k and k′. For θ to be a unifier
of k and k′, the substituted forms kθ and k′θ must be syntactically identical. For θ to
be the most general unifier of k and k′, it must be the case that for any other unifier
θ′, the substituted forms kθ′ and k′θ′ must be instances of kθ and k′θ, respectively.
The clauses k ∨ κ and ¬k′ ∨ κ′ are assumed to have no variables in common. Note
that this extends the propositional binary resolution rule to the first-order case by using
unification.

(3) Adding a factoring rule to derive (k∨κ)θ from k∨k′∨κ, where θ is the most general
unifier of k and k′. Otherwise, if we resolve P (x) ∨ P (x′) with ¬P (y) ∨ ¬P (y′), we
get P (x′) ∨ ¬P (y′) and we would never be able to construct a refutation.

Resolution inferences are repeated until the empty clause is generated. The above ex-
ample p(x) ∧ ¬p(f(x)) generates two clauses p(x) and ¬p(f(y)) which can be resolved
to yield the empty clause. Since first-order logic validity is undecidable, resolution can
only be a semi-decision procedure. When the input clause set is in fact unsatisfiable, the
procedure will eventually termination with the empty clause. However, when the input is
satisfiable, the procedure might not terminate. By the Herbrand theorem, we know that
some Herbrand expansion of the input clause set is propositionally unsatisfiable. The cor-
responding propositional resolution refutation can be easily simulated by the first-order
resolution procedure above as long as the rules are applied fairly, i.e., each applicable in-
stance of the resolution or factoring rule is eventually applied.

There are many variants and refinements of resolution [Bachmair and Ganzinger 2001].
For efficiency, subsumption is used to delete clauses that are implied by other clauses in
the clause set. The unification algorithm can be enhanced to incorporate theory reason-
ACM Journal Name, Vol. V, No. N, Month 20YY.



Verifying Software with Theorem Provers · 31

Right
(Γ′ =) x = y ∨ L, x = z ∨K, Γ

y = z ∨ L ∨K, Γ′

Left
(Γ′ =) x = y ∨ L, x 6= z ∨K, Γ

y 6= z ∨ L ∨K, Γ′

EqRes
(Γ′ =) x 6= x ∨ L, Γ

L, Γ′
L nonempty

Factor
(Γ′ =) x = y ∨ x = z ∨ L, Γ

x = z ∨ y 6= z ∨ L, Γ′

Contrad
x 6= x, Γ

⊥

Fig. 11. Inference system for Superposition

ing [Stickel 1985]. Associative-commutative unification [Baader and Snyder 2001a] and
higher-order unification [Dowek 2001] are two such examples.

The resolution rule can itself also be enriched to handle equality (using demodulation,
paramodulation, and superposition) [Nieuwenhuis and Rubio 2001] and inequality [Stickel
1985; Manna et al. 1991]. Most modern proof search systems use superposition, which
applies to clauses that contain equality and disequality literals. Non-equality literals of the
form p and ¬p can be rewritten to p = > and p 6= >, respectively. We briefly introduce an
inference system for the simplest form of superposition where the atoms are of the form
x = y. We assume an ordering� on variables. Equalities are kept ordered so that if x = y,
x � y. Ordering is lifted to literals so that x = y � x′ = y′ (x 6= y � x′ = y′) iff x � x′

or x ≡ x′ and y � y′, and x 6= y � x = y′ for any y, y′. Literals of the form x 6= x
are deleted from input clauses. Clauses are maintained in decreasing order, and tautologies
containing k and k or x = x are deleted from the input. For example, given the order
x � y � z, the set {y = z, x = y ∨x = z, x 6= y ∨x 6= z} contains three ordered clauses.

The superposition inference system is shown in Figure 11. In each inference step, we
either derive a contradiction or add a new clause to the premise clauses Γ′.

The following derivation shows how a contradiction can be derived from the above
clause set by applying the inference rules in Figure 11.

(Γ1 =) y = z, x = y ∨ x = z, x 6= y ∨ x 6= z

(Γ2 =) x = z ∨ y 6= z, Γ1

(Γ3 =) x 6= z ∨ y 6= z, Γ2

(Γ4 =) z 6= z ∨ y 6= z, Γ3

(Γ5 =) y 6= z, Γ4

z 6= z, Γ5

⊥
Contrad

Left

EqRes

Left

Left

Factor

The above rules can be extended to the ground case where we have ground terms instead
of variables, and also lifted to the non-ground case by using unification instead of syntactic
equality.

Theorem provers based on resolution include Otter [McCune 1990], E [Schulz 2002],
Snark [Stickel et al. 2000], SPASS [Weidenbach et al. 2002], Vampire [Riazanov and
Voronkov 2002], and Prover9 [McCune ]. The annual CASC competition(CADE ATP
System Competition) [Sutcliffe and Suttner 2006] evaluates the performance of theorem
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proving systems in various categories of first-order logic with and without equality.

5. INTERACTIVE PROOF CHECKERS

A correct program can be constructed by many means but a demonstration of correctness
amounts to the proof of a theorem. A lot of the time and effort in constructing such a proof
is devoted to debugging incorrect definitions, conjectures, and putative proofs. Regardless
of the level of automation provided by a theorem proving tool, interactivity is needed for
delving into the details of an attempted proof. Interactive proof checking has its origins in
the work of McCarthy [1962] and de Bruijn’s Automath project [de Bruijn 1970; 1980;
Nederpelt et al. 1994]. The technology for interactive proof checking was further devel-
oped by Bledsoe [Bledsoe and Bruell 1974], Milner [Milner 1972], Weyhrauch [Weyhrauch
and Thomas 1974], and Boyer and Moore [Boyer and Moore 1975]. We briefly sur-
vey a few of the systems that are actively used in major verification projects including
ACL2 [Kaufmann et al. 2000], Coq [Bertot and Castéran 2004], HOL [Gordon and Mel-
ham 1993], Isabelle [Paulson 1994], Maude [Clavel et al. 1999], Nuprl [Constable et al.
1986], and PVS [Owre et al. 1995].

5.1 ACL2: Recursion and Induction

ACL2 [Kaufmann and Moore 1996; Kaufmann et al. 2000] is the most recent in a line of in-
ductive theorem provers initiated by Boyer and Moore [1979; 1988] in 1973. These provers
are built on a computational logic formalizing pure Lisp given by McCarthy [1963]. The
ACL2 logic is based on an applicative fragment of the widely used programming language
Common Lisp [Steele Jr. 1990]. The theorem prover is itself written in this fragment. It
can be used interactively to construct a formal development consisting of datatypes, ax-
ioms, definitions, and lemmas. The definitions can be compiled and executed as Common
Lisp functions. When a recursive definition is presented to ACL2, the prover attempts to
establish the termination of the recursion scheme. It does this by constructing a measure
or a size function on the arguments that decreases with each recursive call according to a
well-founded ordering, i.e., an ordering without any infinite descending chains. The prover
retains an induction scheme, based on the termination ordering, for use in induction proofs,
and also infers a small amount of useful type information about the definition for future
use.

The ACL2 interactive prover can be used to attempt to prove conjectures. When given
a conjecture, the prover tries to prove the theorem using a series of simplifications which
can generate zero or more subgoals. When there are no remaining subgoals, the proof
has succeeded. Otherwise, the subgoals are successively simplified through the use of
equality and propositional reasoning, and rewriting with definitions and lemmas. When a
conjecture does not succumb to simplification, then the prover attempts a series of proof
steps, and if these fail to prove the conjecture, it finally attempts a proof by induction. The
termination arguments for the recursive definitions that appear in the conjecture are used
to construct an induction scheme. The resulting subgoals are successively simplified. If
some subgoals are left unproven, the prover attempts to generalize these subgoals into a
form where induction can be applied.

We give a brief example of ACL2 at work. The theory of numbers and lists is built into
ACL2. Lists are defined by the constructors NIL and CONS, where the latter construc-
tor has accessors CAR and CDR, and a corresponding recognizer CONSP. The operation
(ENDP X) is defined as (NOT (CONSP X)). Boolean reasoning is internalized so that
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the truth value > is represented by the symbol T and ⊥ is represented by the symbol NIL.
A formula φ with free variables x1, . . . , xn is valid if no ground instance of it is equal to
NIL.

The recursive definition of TRUE-LISTP describes a predicate that holds only when
the argument X is a list that is terminated by NIL. The Common Lisp equality predicate
EQ is used to compare X to the symbol NIL.

(DEFUN TRUE-LISTP (X)
(IF (CONSP X)

(TRUE-LISTP (CDR X))
(EQ X NIL)))

The operation of reversing a list can be defined as below. It can be shown to terminating
by the well-founded ordering on the size of X represented as an ordinal representation of
the ordinals below ε0, the least ordinal α such that α = ωα. These ordinals and their
corresponding ordering can be represented in primitive recursive arithmetic.

(DEFUN REV (X)
(IF (ENDP X)

NIL
(APPEND (REV (CDR X)) (LIST (CAR X)))))

The definition can be evaluated at the prompt so that we can check that (REV ’(3 4
5)) evaluates to the list (5 4 3), and (REV (REV ’(3 4 5))) is (3 4 5). If we
now try to prove the conjecture REV OF REV below, the proof attempt fails.

(DEFTHM REV_OF_REV
(EQUAL (REV (REV X)) X))

Since REV is a recursive function, ACL2 attempts a proof by induction which eventually
yields a subgoal of the form (IMPLIES (NOT (CONSP X)) (NOT X)) which fails
because it is possible for X to be a non-CONSP without being equal to NIL. This claim
obviously only holds if X is constrained to satisfying the TRUE-LISTP predicate. If we
now fix the statement of the conjecture, ACL2 is able to prove this automatically.

(DEFTHM REV_OF_REV
(IMPLIES (TRUE-LISTP X)

(EQUAL (REV (REV X)) X)))

In attempting the proof by induction, ACL2 is able to conjecture that the main induction
subgoal requires the lemma below, which it is able to prove directly by induction.

(EQUAL (REV (APPEND RV (LIST X1)))
(CONS X1 (REV RV)))

Large sequences of definitions and theorems can be developed in this manner and pack-
aged into filed containing definitions and theorems, called books. ACL2 has been used
in an impressive list of verifications, including several proofs of commercial systems that
have been carried out by researchers at AMD on the verification of floating-point hard-
ware [Russinoff 1999] and by Rockwell-Collins [Greve et al. 2003]. Bundy [2001] de-
scribes the various approaches to automating inductive proofs.

ACM Journal Name, Vol. V, No. N, Month 20YY.



34 · Natarajan Shankar

5.2 The LCF Family of Tactical Proof Systems

LCF is actually an acronym for Scott’s Logic for Computable Functions [Scott 1993] but
the name is more closely associated with a class of extensible proof checkers pioneered
by Milner [1979]. The programming language ML [Gordon et al. 1977] was developed to
serve as the metalanguage for defining proof checkers in the LCF style. The key idea is to
introduce a datatype thm of theorems. The constructors of this datatype are the inference
rules that map thm list to thm. Tactics written in ML are used to convert goals to
subgoals so that τ(G) = {S1, . . . , Sn}with a validation v such that v(S1, . . . , Sn) = G. A
proof can be constructed backwards by applying tactics to goals and subgoals or forwards
from axioms by building validations using inference rules.

John Harrison, in a talk entitled The LCF Approach to Theorem Proving, presents a
simple LCF-style implementation of a proof system for equational logic (see Figure 4.
First, the thm datatype is introduced with the signature Birkhoff.

module type Birkhoff =
sig type thm
val axiom : formula -> thm
val inst : (string, term) func -> thm -> thm
val refl : term -> thm
val sym : thm -> thm
val trans : thm -> thm -> thm
val cong : string -> thm list -> thm
val dest_thm : thm -> formula list * formula
end;;

A structure of this signature can then be defined to implement the datatype thm as a
subset of sequents of the form Γ ` φ that are constructed using the implemented inference
rules. The constructor Fn applies a function symbol to a list of arguments, and the con-
structor Atom applies the equality symbol to a list of two arguments. A sequent Γ ` φ
is represented as a pair consisting of the list of assumptions Γ and the equality φ. As an
example of an inference rule, the congruence rule cong takes a list of theorems of the
form Γ1 ` s1 = t1, . . . ,Γn ` sn = tn and returns the sequent

⋃
i Γi ` f(s1, . . . , sn) =

f(t1, . . . , tn).

module Proven : Birkhoff =
struct

type thm = formula list * formula
let axiom p =

match p with
Atom("=",[s;t]) -> ([p],p)

| _ -> failwith "axiom: not an equation"
let inst i (asm,p) = (asm,formsubst i p)
let refl t = ([],Atom("=",[t;t]))
let sym (asm,Atom("=",[s;t])) =

(asm,Atom("=",[t;s]))
let trans (asm1,Atom("=",[s;t]))

(asm2,Atom("=",[t;u])) =
if t = t then (union asm1 asm2,Atom("=",[s;u]))
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else failwith "trans: theorems dont match up"
let cong f ths =

let asms,eqs =
unzip(map (fun (asm,Atom("=",[s;t]))

-> asm,(s,t)) ths) in
let ls,rs = unzip eqs in
(unions asms,Atom("=",[Fn(f,ls);Fn(f,rs)]))

let dest_thm th = th
end;;

By composing the constructors for the thm datatype, we can construct derived infer-
ence rules in terms of functions that take a list of elements of type thm to a thm. It is
also possible to build proofs backwards from goal sequents to subgoal sequents through
the application of a tactic to the goal as described above. Tactics can be defined in the met-
alanguage ML. The application of a tactic to a goal can generate zero or more subgoals,
or terminate with an exception. The application of a tactic could generate an inappropriate
validation in which case the proof would eventually fail. Tactics can be composed using
tacticals such as those for sequencing, alternation, and repetition. Tacticals can also be
defined in the metalanguage ML. The LCF approach thus facilitates the construction of in-
teractive proof checkers that can be extended with derived inference rules while preserving
soundness relative to a small kernel.

Many proof checkers are based on the LCF approach, including HOL [Gordon and Mel-
ham 1993], HOL Light [Harrison 1996], Coq [Bertot and Castéran 2004], Isabelle [Paul-
son 1994], LEGO [Luo and Pollack 1992], and Nuprl [Constable et al. 1986]. We examine
some of these systems in greater detail below.

5.3 HOL and its Variants

Automated reasoning in higher-order logic was actively investigated by Andrews in his
TPS system [Andrews et al. 1988]. The use of higher-order logic in interactive proof
checking was initiated by Hanna [1986] and Gordon [1985b; 1985a] to address hardware
description and verification. Currently, the most popular ones are HOL4 [Slind and Norrish
2008], HOL Light [Harrison 1996], and Isabelle HOL [Nipkow et al. 2002]. These vari-
ants of HOL have been widely used in formalizing mathematics and program semantics,
and in verifying hardware, distributed algorithms, cryptographic protocols, and floating
point algorithms. Recently, Hales [2002; 2009] has initiated the Flyspeck project to verify
his computer-based proof of Kepler’s conjecture about the optimality of the cannonball
packing of congruent spheres. The verification of the proof involves Coq, HOL Light, and
Isabelle/HOL.

The HOL Light system for example is based on a very small kernel with types for
Booleans and individuals, inference rules for equality (reflexivity, symmetry, transitiv-
ity, congruence, β-reduction, extensionality, and equivalence), and axioms for infinity and
choice. In addition, there is a definition principle for defining new constants. New types
can be introduced axiomatically provided they are shown to be interpretable in the existing
type system. The higher-order logic admits parametric polymorphism through the use of
type variables. The resulting kernel runs to about 500 lines of oCaml code. HOL Light
has been used extensively for the verification of floating point hardware algorithms within
Intel [Harrison 2006].
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x1 : φ1, . . . , xn : φn ` xi : φi

Γ ` u : φ1 Γ ` t : φ1 ⇒ φ2

Γ ` tu : φ2

Γ, x : φ1 ` t : φ2

Γ ` λ(x : φ1).t : φ1 ⇒ φ2

Fig. 12. Proof terms for natural deduction

Γ ` u : φ1 ∧ φ2

Γ ` fst(u) : φ1

Γ ` u : φ1 ∧ φ2

Γ ` snd(u) : φ2

Γ1 ` u1 : φ1 Γ2 ` u2 : φ2

Γ1, Γ2 ` (u, v) : φ1 ∧ φ2

Fig. 13. Proof terms for conjunction

Γ ` u : φ1 Γ ` t : (∀(x : φ1).φ2)

Γ ` tu : φ2{x 7→ u}
Γ, x : φ1 ` t : φ2

Γ ` (λ(x : φ1).t) : (∀(x : φ1).φ2)

Fig. 14. Proof terms for quantification

5.4 Nuprl and Coq: Proofs in Constructive Type Theories

Both Nuprl [Constable et al. 1986] and Coq [Coquand and Huet 1985; Bertot and Castéran
2004] are based on the Curry-Howard isomorphism [Howard 1980] between propositions
and types. The implicational fragment of intuitionistic logic offers a simple illustration
of this isomorphism. The natural deduction sequent Γ ` φ represented by the judgment
x1 : γ1, . . . , xn : γn ` t : φ asserts that t is a proof term for A from the hypothetical proof
terms (variables) x1, . . . , xn corresponding to the assumptions Γ = γ1, . . . , γn. Here, the
context x1 : γ1, . . . , xn : γn contains exactly one declaration xi : γi for each variable
xi. The introduction rule for implication builds a proof term using lambda-abstraction,
whereas the elimination rule uses function application corresponding to the use of the
modus ponens rule of inference. Thus, complete proofs are represented by well-typed
closed terms of the typed lambda calculus, and the proposition proved by these proofs
correspond to the types for these terms. A proposition is provable if the corresponding
type is inhabited by a term.

If the above proof rules are viewed as the type rules of a simply typed lambda calculus,
then the formula φ1 ⇒ φ2 corresponds to a type A1→A2. The simply typed lambda
calculus can be extended in several directions. One extension is to add conjunction φ1∧φ2

with the introduction and elimination rules shown in Figure 13. The conjunction φ1 ∧ φ2

then corresponds to the product type [A,B]. Similarly, intuitionistic disjunction can be
presented with rules that correspond to the typing rules for the disjoint union A + B over
types A and B.

One can extend the proof/type rules in the direction of first-order logic by introducing
dependent types. Dependent product types are represented as (∀(x : A).B(x)) and charac-
terize those functions that map elements a of type A to elements of type B(a). Dependent
sum types are represented as (∃(x : A).B(x)), and capture pairs of elements (a, b) such
that a is an element of type A and b is an element of type B(a). The type rules for impli-
cation and conjunction can be modified as shown in Figure 14. In particular, the function
type A→B is just (∀(x : A).B), where B does not contain a free occurrence of x, and
similarly A×B is just (∃(x : A).B), where B does not contain a free occurrence of x.

The typed lambda calculus can be extended along a different dimension to allow type
abstraction. With dependent typing, we had types parameterized by terms, whereas with
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` ∗ : 2

Γ ` A : ∗
Γ, x : A ` x : A

Γ ` κ : 2

Γ, x : κ ` x : κ

Γ, x : A ` B : ∗
Γ ` (∀(x : A).B) : ∗

Γ, x : A ` κ : 2

Γ ` (∀(x : A).κ) : 2

Γ, x : A ` B : ∗ Γ, x : A ` s : B

Γ ` (λ(x : A).s) : (∀(x : A).B)

Γ, x : A ` κ : 2 Γ, x : A ` B : κ

Γ ` (λ(x : A).B) : (∀(x : A).κ)

Γ ` s : (∀(x : A).B) Γ ` t : A

Γ ` st : B{x 7→ t}
Γ ` C : (∀(x : A).κ) Γ ` t : A

Γ ` st : κ{x 7→ t}
Γ ` s : A Γ ` B : ∗ A =β B

Γ ` s : B

Γ ` A : κ Γ ` κ′ : 2 κ =β κ′

Γ ` A : κ′

Fig. 15. The Calculus of Constructions

polymorphism, we have both types and terms parameterized by types. Let ∗ represent the
kind of types so that Γ ` (∀(x : A).B) : ∗ follows from Γ ` A : ∗ and Γ, x : A ` B : ∗.
Then the type of the polymorphic identity function (Λ(α : ∗).(λ(x : α).x)) is (∀(α :
∗).α→α). Polymorphism can also be used introduce representations for inductive types
like natural numbers and lists. We can also define the other logical connectives using type
quantification.

A→B = (∀(x : A).B), x not free in B
A+B = (∀(C : ∗).A→C→B→C→C)

(∃(A : ∗).B) = (∀(C : ∗).(∀(x : A).B→C)→C)

There is one further dimension along which the expressiviness of the calculus can be in-
creased. While the introduction of the kind ∗ yielded types of the form ∀(A : ∗).A→A, we
still do not have lambda-abstraction with respect to type variables. For example, we can-
not construct λ(A : ∗).A→A. For this purpose, the notation 2 is introduced to represent
the class of kinds so that the typing judgment λ(A : ∗).A→A : ∗→∗ holds. These three
dimensions form Barendregt’s cube [1992] of typed lambda-calculi that satisfy strong nor-
malization: all reduction sequences terminate. The Calculus of Constructions [Coquand
and Huet 1988] is the most expressive of these calculi. It is based on a typed lambda
calculus that integrates both dependent typing and polymorphism, while admitting type
abstraction in constructing types. The polymorphic dependently typed lambda calculus is
now augmented with a new kind 2 such that ` ∗ : 2 holds and Γ ` (∀(x : α).β) : 2

if Γ ` α : 2 and Γ, x : α ` β : 2. If two types A and B, when fully β-reduced, are
identical modulo the renaming of bound variables, then any term of type A also has type
B. We then obtain a type system shown in Figure 15 that is the foundation for the Coq
proof checker [The Coq Development Team 2009]. The system also includes a mechanism
for directly defining inductive types [Paulin-Mohring 1993].

The Coq system has been used in several significant proof checking exercises including
a complete proof of the four color theorem [Gonthier 2008], Gödel’s first incomplete-
ness theorem [O’Connor 2005], the correctness of a compiler for a subset of the C lan-
guage [Leroy 2007], and the correctness of various inference procedures [Théry 1998].

The logic of the Nuprl proof checker is based on Martin-Löf’s intuitionistic type the-
ory [Martin-Löf 1980]. Nuprl employs Curry’s version of the typed lambda calculus where
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the variables in the terms are not restricted to specific type, but type inference is used to
derive the types. Propositions in this type system are built from basic types such as int
and void (the empty type) using dependent products (∀(x ∈ A).B(x) corresponding to
universal quantification, and dependent sums (∃(x ∈ A).B(x) corresponding to existential
quantification. Other type constructors include the subset type {x : A | B} which contains
elements a of type A such that the type B(a) is inhabited, and the quotient type A//E,
where E is an equivalence relation on A. The type atom of character strings and the type
Alist of lists over A are also included in the type system. For any type A and terms
a and b of type A, the expression a = b ∈ A is also a type. There is also a primitive
type a < b for a and b of type int. Finally, there is a cumulative hierarchy of type uni-
verses U1, . . . , Ui, . . ., where each Ui is a term of type Ui+1 and every term of type Ui is
also of type Ui+1 for i > 0. Nuprl has been used in optimizing the protocol stack for a
high-performance group communication system [Liu et al. 1999].

5.5 Logical Frameworks: Isabelle, λ-Prolog, and Twelf

A logical framework is a way of defining a wide range of object logics while sharing the im-
plementation of basic operations like substitution. When representing the syntax of object
logics, there is a choice between first-order abstract syntax using Lisp-style s-expressions
or higher-order abstract syntax [Harper et al. 1987; Pfenning 2001] that employs lambda
abstraction at the metalogical level as a way of capturing substitution at the object level.
Logical frameworks such as λ-Prolog [Miller and Nadathur 1986; Nadathur and Miller
1990], Isabelle [Paulson 1994], and Twelf [Pfenning and Schürmann 1999] employ higher-
order abstract syntax. Logics are represented in a small subset of higher-order intuitionistic
logic similar to the Horn fragment used in logic programming. This way, if Φ is the type of
formulas in the object language, then ∧, ∨, and⇒ in the object logic can be represented by
constructors and, or, and implies with the type Φ→Φ→Φ, and ¬ by not with the type
Φ→Φ. Interestingly, however, universal and existential quantification can be represented
by higher-order constructors forall and exists of type i→Φ, where i is the type of
individuals in the higher-order metalogic.

The next step is to represent proofs. One approach is to represent a proof predicate
proof(π, φ) to represent the assertion that π is a proof of φ. Then, we can represent the
proof rules as logic programs so that the natural deduction rules for implication are as

proof(imp i(P1),implies(A,B))
:- (∀P.proof(P,A) ⇒ proof(P1(P ), B)).
proof(imp e(P1, P2, A), B)
:- proof(P1,implies(A,B)),proof(P2, A).

Note that the antecedent of the introduction rule uses universal quantifier and implica-
tion. The logic programming fragment used here is therefore more expressive than the
Horn clause fragment used by Prolog. The introduction and elimination rules for universal
quantification can also be transcribed as logic programming clauses.

proof(forall i(P ),forall(A)) :- (∀(c : i).proof(P (c), A(c))).
proof(forall e(P, t), A(t)) :- proof(P, forall(A)).

The Isabelle logical framework [Paulson 1994] uses intuitionistic higher-order logic with
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implication, universal quantification, and equality with a resolution strategy for construct-
ing object-level proofs by means of theorem proving at the meta-level. Many different
object logics have been formalized in Isabelle, but ZF set theory and higher-order logic
(HOL) are the ones that are most developed. Isabelle has a number of generic interfaces
for defining simplifiers and other inference tools, including a tableau-based proof search
engine for first-order logic. Isar [Wenzel 1999] is a declarative style of proof presentation
and verification for Isabelle inspired by the Mizar proof checking system [Rudnicki 1992].
Isabelle/HOL has been used for verifying a number of cryptographic protocols [Paulson
1998]. It is also used within the Flyspeck project [Hales 2002; Hales et al. 2009], the
Verisoft project for the pervasive verification of a distributed real-time system [Knapp and
Paul 2007], and the ongoing verification of the seL4 microkernel [Elkaduwe et al. 2008].

The λ-Prolog [Nadathur and Miller 1990] logical framework uses hereditarily Harrop
formulas to define a logic programming engine. The Teyjus logic programming frame-
work [Nadathur and Mitchell 1999] implements this form of higher-order logic program-
ming. The Twelf logical framework [Pfenning and Schürmann 1999] takes a slightly dif-
ferent approach to Isabelle and λ-Prolog. It employs dependent typing and a propositions
as judgments interpretation of intuitionistic logic. Proof constructors are given as operators
from their premise judgments to the conclusion judgment.

5.6 PVS: Integrating Type Systems and Decision Procedures

The Prototype Verification System (PVS) [Owre et al. 1995] from SRI International occu-
pies the middle ground between a highly automated theorem prover like ACL2 and a inter-
active checker for formal proofs in the LCF style. In particular, PVS exploits the synergy
between an expressive specification language and powerful built-in inference procedures
including several external packages. PVS is based on higher-order logic enhanced with
predicate subtypes (similar to the subset type from Nuprl), dependent types, structural sub-
types (where a record can have more fields than its supertype), inductive and coinductive
datatypes, parametric theories, and theory interpretations.

The PVS interactive proof checker is based on the sequent calculus and includes proof
commands that make use of rewriting, SAT and SMT procedures (Shostak’s theorem
prover [Shostak et al. 1982] and Yices [Dutertre and de Moura 2006b]), binary decision
diagrams, symbolic model checking [Rajan et al. 1995], predicate abstraction [Saı̈di and
Graf 1997; Saı̈di and Shankar 1999], and decision procedures for monadic second-order
logic and Presburger arithmetic (MONA) [Elgaard et al. 1998].

A significant subset of the PVS language is executable as a functional language. The
code generated from this subset includes optimizations for in-place updates. The PVS
framework is open so that new inference tools can be plugged into the system. PVS has
been used as a back-end inference framework in a number of tools including TLV [Pnueli
and Shahar 1996], Why [Filliâtre and Marché 2007], LOOP [van den Berg and Jacobs
2001], Bandera [Corbett et al. 2000], PVS-Maple [Adams et al. 2001], TAME [Archer
and Heitmeyer 1996], and InVest [Bensalem et al. 1998]. In addition to its use as a back-
end inference engine, PVS has also been applied in a number of significant verification
exercises covering distributed algorithms [Miner et al. 2004], hardware verification [Rueß
et al. 1996], air-traffic control [Carreño and Muñoz 2000], and computer security [Millen
and Rueß 2000].
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5.7 Maude: A Fast Rewrite Engine

The Maude tool from SRI International is a fast and versatile rewrite engine that can be
used for building other semantics-based tools [Clavel et al. 1999]. Maude is a successor
of the OBJ3 system [Goguen et al. 1987] and is based on rewriting logic where differ-
ent rewriting steps applied to the same term need not be confluent. Maude’s rewriting
framework is based on membership equational logic which extends first-order conditional
equational logic with subsorts and membership assertions of the form t : s for term t and
sort s. Each sort is required to be a subsort of a parent kind. The signature, equations
l = r, conditional equations l = r, if b, and rewrite rules l =⇒ r are given in a module.
A functional module must contain no rewrite rules and its equations must form a set of
rewrite rules that are terminating, confluent, and sort-decreasing, i.e., in l = r, the sort
of r must be a subsort of that of l. Maude also allows terms to be treated as equivalent
modulo a theory E with respect to rewriting. Thus a term l′ will be rewritten by a rewrite
rule l =⇒ r if there is a substitution σ such that E ` σ(l) = l′. This allows the language
to capture states as terms and state transitions as rewriting steps.

The Maude rewriter employs term-indexing techniques to achieve high speeds of rewrit-
ing. By the use of rewriting logic, Maude can be used to define computational state and
operational semantics of a wide range of models of computation. Maude can be used
to explore the rewriting space with rewriting and search strategies. It also includes a
model checker for linear-time temporal logic to prove or refute properties about sets of
rewrite-based computations. Maude has several interesting applications in metaprogram-
ming [Clavel et al. 1999], program analysis tools [Meseguer and Rosu 2005], symbolic
systems biology [Eker et al. 2003], and the analysis of cryptographic protocols [Escobar
et al. 2007].

6. LOOKING AHEAD

We have seen that logic is a fertile semantic foundation for writing specifications, building
models, and capturing program semantics. Logic has been used this way in verification for
a very long time, but recent advances in the level of automation have made it possible to
apply these techniques in a scalable way to realistic software. These automated tools in-
clude satisfiability procedures, rewriting engines, proof search procedures, and interactive
proof checkers. Individual tools will of course continue to gain in power and expressive-
ness. They will also find novel applications in verification as well as in areas like artificial
intelligence and computer-aided design. The major advances will be in the integration of
heterogeneous deductive capabilities, particularly

(1) Semantic interoperability between different inference procedures and logics through a
semantic tool bus. One such tool bus is being constructed at SRI based on the shar-
ing of semantic and syntactic judgments over logical expressions. It supports coarse-
grained interaction between satisfiability procedures, static analysis tools, model check-
ers, rewriters, and proof search engines for the purpose of generating and checking
abstractions, assertions, and termination ranking functions.

(2) Better integration of constraint solving, matching, and unification [Baader and Snyder
2001b]. There has already been a lot of work in adding associative-commutative op-
erations and higher-order unification [Dowek 2001], but there is a rich set of theories
such as arithmetic, encryption, arrays, and partial orders, where unification enhanced
with constraint solving can be very effective.
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(3) Satisfiability under quantification is another area where there is plenty of scope for dra-
matic improvements. Quantified Boolean Formulas (QBF) is a useful fragment where
propositional formulas are constructed using Boolean quantification. QBF satisfiabil-
ity procedures are being actively developed for a variety of applications. Inference
procedures for quantified formulas combined with satisfiability modulo theories is a
different approach where quantified theories and constraints add a significant degree
of expressiveness.

(4) Many useful fragments of logic have satisfiability problems that are either infeasible
or undecidable, yet there are many instances where this does not pose an insurmount-
able obstacle to practical use. There is clearly a lot of work that needs to be done in
characterizing the class of problems that are feasibly solvable along with techniques
that are effective in practice.

(5) The synthesis of formulas satisfying certain constraints including interpolants, invari-
ants, abstractions, interfaces, protocols, ranking functions, winning strategies, and
ruler-and-compass constructions.

(6) Combining deduction and optimization is another major opportunity where the tech-
niques of operations research can be lifted to constraints in richer logical formalisms
than linear arithmetic.

7. CONCLUSIONS

Software verification is a challenging problem and some of the most difficult challenges
are in proving precise properties of software. Automated deduction is an important tool
for stating and verifying properties of software, supporting stepwise program refinement,
generating test cases, and building evidence supporting formal claims for software correct-
ness. Recent years have seen exciting progress in the automation and efficiency of theorem
provers as well as in novel applications of automated deduction techniques. While auto-
mated deduction is a highly developed discipline with a sophisticated range of tools and
techniques, there is a coherence to the core underlying techniques that we have presented
here. This is illustrated, for example, in the way that the DPLL satisfiability procedure
generates proofs based on resolution. Different automated deduction techniques also inter-
operate in ways that have not yet been fully explored. Automated deduction could inter-
act with other disciplines like philosophy, biology, economics, knowledge representation,
databases, programming languages, and linguistics. Vannevar Bush, in his prescient 1945
article As We May Think, predicted that

Logic can become enormously difficult, and it would undoubtedly be well to
produce more assurance in its use. . . . We may some day click off arguments on
a machine with the same assurance that we now enter sales on a cash register.

This prediction, like his other ones, may yet prove accurate, but for software verification,
automated deduction is already a critical technology.
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CARREÑO, V. AND MUÑOZ, C. 2000. Formal analysis of parallel landing scenarios. In 19th AIAA/IEEE Digital
Avionics Systems Conference. Philadelphia, PA.

CHURCH, A. 1936. An unsolvable problem of elementary number theory. American Journal of Mathematics 58,
345–363. Reprinted in [Davis 1965].

CHURCH, A. 1940. A formulation of the simple theory of types. Journal of Symbolic Logic 5, 56–68.
CLARKE, E. M., GRUMBERG, O., JHA, S., LU, Y., AND VEITH, H. 2000. Counterexample-guided abstraction

refinement. In Computer Aided Verification. 154–169.
CLARKE, E. M., GRUMBERG, O., AND PELED, D. 1999. Model Checking. MIT Press.

ACM Journal Name, Vol. V, No. N, Month 20YY.



44 · Natarajan Shankar

CLARKE, L. A. 1976. A system to generate test data and symbolically execute programs. IEEE Transactions
on Software Engineering 2, 3 (Sept.), 215–222.
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HÖRMANDER, L. 1983. The analysis of linear partial differential operators II: Differential operators with

constant coefficients. Grundlehren der math. Wissenschaften, vol. 257. Springer.
HOWARD, W. 1980. The formulas-as-types notion of construction. In To H.B. Curry: Essays on Combinatory

Logic, Lambda-Calculus and Formalism. Academic Press, 479–490.
HU, A. J. AND VARDI, M. Y., Eds. 1998. Computer-Aided Verification, CAV ’98. Lecture Notes in Computer

Science, vol. 1427. Springer-Verlag, Vancouver, Canada.
HUTH, M. R. A. AND RYAN, M. D. 2000. Logic in Computer Science: Modelling and Reasoning about Systems.

Cambridge University Press, Cambridge, UK.
JACKSON, D. 2006. Software Abstractions: Logic, Language, and Analysis. MIT Press.
JACKSON, P. AND SHERIDAN, D. 2004. Clause form conversions for boolean circuits. In SAT (Selected Papers),

H. H. Hoos and D. G. Mitchell, Eds. Lecture Notes in Computer Science, vol. 3542. Springer, 183–198.
JONES, C. B. 1990. Systematic Software Development Using VDM, second ed. Prentice Hall International Series

in Computer Science. Prentice Hall, Hemel Hempstead, UK.

ACM Journal Name, Vol. V, No. N, Month 20YY.



48 · Natarajan Shankar

JONES, C. B. 1992. The search for tractable ways of reasoning about programs. Tech. Rep. UMCS-92-4-4,
Department of Computer Science, University of Manchester, Manchester, UK. Mar.

KAUFMANN, M., MANOLIOS, P., AND MOORE, J. S. 2000. Computer-Aided Reasoning: An Approach. Ad-
vances in Formal Methods, vol. 3. Kluwer.

KAUFMANN, M. AND MOORE, J. S. 1996. ACL2: An industrial strength version of Nqthm. In COMPASS
’96 (Proceedings of the Eleventh Annual Conference on Computer Assurance). IEEE Washington Section,
Gaithersburg, MD, 23–34.

KAUTZ, H. AND SELMAN, B. 1996. Planning as satisfiability. In Proceedings of the 10th European Conference
on Artificial Intelligence. Wiley, 359–363.

KING, J. C. 1969. A program verifier. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.
KING, J. C. 1976. Symbolic execution and program testing. CACM 19, 7, 385–394.
KING, J. C. AND FLOYD, R. W. 1970. An interpretation oriented theorem prover over integers. In STOC ’70:

Proceedings of the second annual ACM symposium on Theory of computing. ACM, New York, NY, USA,
169–179.

KLEENE, S. C. 1952. Introduction to Metamathematics. North-Holland, Amsterdam, The Netherlands.
KLEENE, S. C. 1967. Mathematical Logic. John Wiley and Sons, New York, NY.
KNAPP, S. AND PAUL, W. 2007. Pervasive verification of distributed real-time systems. In Software System
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