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Outline

• In what environment will the agent act?

– The RoboCup Soccer Simulator

• How will the advice be communicated?

– Giving Advice in RoboCup
– The Coach Competition
– The UT Austin Villa Coach

• What task will the agent perform?

– Keepaway

• How will the agent learn?

– Reinforcement Learning for Keepaway

• How will the agent incorporate advice?

– Advice for Keepaway
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RoboCup Simulator

• Distributed: each player a separate client
• Server models dynamics and kinematics
• Clients receive sensations, send actions

Client 1

Server

Client 2

Cycle t-1 t t+1 t+2

• Parametric actions: dash, turn, kick, say
• Abstract, noisy sensors, hidden state

– Hear sounds from limited distance
– See relative distance, angle to objects ahead

• > 10923
states

• Limited resources : stamina
• Play occurs in real time (≈ human parameters)
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Motivation for Coaching

• MAMSIG

– Aim: encourage research in opponent modeling
– Challenge: create a simulated coach
∗ autonomous agent that gives advice
∗ improves performance of a team against a fixed opponent

• Power of a coach:

– More a priori knowledge
– Better view of world
– More computational resources

• Prerequisites:

– coachable players (programmed by others)
– standardized coaching language
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RoboCup Coach Competition

• Sub-league of RoboCup Simulator League

• Coaching scenario:

– Access to log files (“game films”) of fixed opponent
– Noise-free, omniscient view of field
– Limited communication (once every 300 cycles, 50 cycle delay)

- can’t micromanage
– Advice sent in standardized coach language
– Players to follow advice most of the time
– Performance measured by goal difference
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RoboCup Coach Competition (contd.)

• 3 International Competitions (plus regional events)

– Previous years - best result worse than no advice
∗ teams already coherent and competent
∗ probably stuck in local maximum

– 2003 - coaching helped
∗ team of players from several institutions (UT, CMU, USTC)
∗ little or no default strategy.

– New for 2004 - rule changes
∗ standardized communication language
∗ new scoring metric
∗ limited time to review logfiles
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CLang

• Standardized Coach Language

– independent of coachable player’s behavior representation

• If-then rules:
{condition}→{action}

• Example:
If our player 7 has the ball, then he should
pass to player 8 or player 9

(definerule pass789 direc
((bowner our {7})
(do our {7} (pass {8 9}))))
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Example: UT Austin Villa Coachable Player

• Candidate actions are assigned values using a heuristic
– Based on probability and value of success

• Before advice:

• Action with highest value is chosen
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Example: UT Austin Villa Coachable Player (contd.)

• Advice bumps values up (or down)
• When rule pass789 becomes active:

• generally takes best advised action
• possible to override advice
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The UT Austin Villa Coach

• Opponent-specific advice

– Learned defensive positioning advice
∗ predict opponent passes
∗ advise player to block pass

– Learned offensive action selection
∗ mimic successful team’s passing and shooting

– Learned formations
∗ mimic successful team’s positioning
∗ average position + ball attraction

• Handcoded rules

– encode general soccer strategy
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The UT Austin Villa Coach (contd.)

• Game analysis

– Given x and y coordinates
– Detect high-level events: play-by-play

• Offline learning

– Learn from logfiles
– Online learning possible but difficult
– All advice sent at start of game
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Predicting Agent Behavior

• Inputs: features of current world state

– Player locations, distances to ball and goal, current score, etc.

• Classification: PassFromk

– Example: PassFrom7 stored in opponent 10’s training set
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Model: Decision Trees

• Compile training instances

• Train decision tree for each modeled player

– J48 algorithm (weka)
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Generating Advice

• Generate advice for each leaf node in tree

– Action to counter predicted opponent action
– Example:
∗ If opponent 10’s y-coordinate is greater than 17.7, then position

our player 4 between opponent 10 and opponent 7

(definerule def4rule1 direc
((ppos opp {10} (rec (pt -52.5 34) (pt 52.5 17.7)))
(do our {4} (pos (((pt opp 10) * (pt .7 .7)) +

(pt opp 7) * (pt .3 .3))))))
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Incorporating Advice

• Thanks to the advice, defender 4 is ready to intercept a pass from
opponent 7 to 10.
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Competition Results

Team 1st Round 2nd Round 3rd Round
UT Austin Villa 0:19 7th 0:2 1st 8:2 1st
FC Portugal 1:21 8th 0:8 4th 7:3 2nd
Iranians 0:14 4th 0:5 3rd 3:2 3rd
Helli-Amistres 1:12 2nd 0:3 2nd 7:7 4th

• 1st place in 2003 RoboCup Coach Competition

• Only one other team used learning

• Statistical tie with second place

15



Experimental Results

Opponent w/ HC None Formation Offensive Defensive Full

BoldHearts N -8.8 -3.3 -2.9 -2.9 -2.7
Y -6.8 -0.5 -1.4 -5.7 -6.5

Sirim N -4.1 2.6 1.2 0.9 1.7
Y -5.4 -1.6 -0.3 0.8 -0.4

EKA-PWr N -0.6 2.8 2.9 3.4 2.7
Y 1.0 3.62 2 2.12 2.43

• Formation learning helps

• Handcoded sometimes hurts

• Offensive and defensive advice mixed

• Why?
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Outline

• In what environment will the agent act?

– The RoboCup Soccer Simulator

• How will the advice be communicated?

– Giving Advice in RoboCup
– The Coach Competition
– The UT Austin Villa Coach

• What task will the agent perform?

– Keepaway

• How will the agent learn?

– Reinforcement Learning for Keepaway

• How will the agent incorporate advice?

– Advice for Keepaway
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Giving Advice to a Reinforcement Learner
Case Study: Keepaway

Boundary

Keepers

Takers

Ball
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3 vs. 2 Keepaway

• Play in a small area (20m × 20m)

• Keepers try to keep the ball

• Takers try to get the ball

• Episode:

– Players and ball reset randomly
– Ball starts near a keeper
– Ends when taker gets the ball or ball goes out of bounds

• Performance measure: average episode duration
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Keeper Policy Space

Teammate with ball
or can get there
faster

notBall
GetOpen()

GoToBall()

Ball 
kickable

kickable

{HoldBall(),PassBall(k)}
(k is another keeper)

• Basic skills from CMUnited-99 team

• Example Policies

– Random
– Hold
– Hand-coded
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Keeper’s State Variables

• 11 distances among players, ball, and center

• 2 angles to takers along passing lanes
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Function Approximation: Tile Coding

• Form of sparse, coarse coding based on CMACs [Albus, 1981]

• Tiled state variables individually (13)

Action
values

Full
soccer
state

Few
state

variables
(continuous)

Sparse, coarse,
tile coding

Linear
map

Huge binary feature vector
(about 400 1’s and 40,000 0’s)
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Previous Results

0 1 0 2 0 2 5
4

6

8

1 0

1 2

1 4

Episode
Duration
(seconds)

Hours of Training Time
(bins of 1000 episodes)

handcoded random
always
hold

• Sarsa(λ) outperforms benchmarks

• Learns in 15 hours of simulator time
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Advice in a Natural Language

• Possible Advice:

– Do handcoded solution
– Hold ball longer
– etc.

• Convert advice to CLang

– Example user input:
If no opponents are within 10m then hold

– Corresponding CLang:
(definerule holdLonger1 direc
((not (ppos opp {0} (arc (pt our {1}) 0 10 0 360)))
(do our {1} (hold))))
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CLang to Behavior Representation

Action
values

Full
soccer
state

Few
state

variables
(continuous)

Sparse, coarse,
tile coding

Linear
map

Huge binary feature vector
(about 400 1’s and 40,000 0’s)

• Bump up weights corresponding to advice

• Or graft on an additional network (e.g. KBANN)
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Quicker Learning
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Conclusion

• Advice-giving is well-established in RoboCup Soccer

– coaching infrastructure in place
– existing advice language

• 3 vs. 2 Keepaway is a good demo domain

– simple enough that we know RL works
– complex enough that advice will probably help
– possibile to scale up to 4 vs. 3, 5 vs. 4, etc.
– infrastructure in place

• Left to do:

– translate NL to CLang
– represent and incorporate advice in learner
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