Good Afternoon, Colleagues

Are there any questions?
Good Afternoon, Colleagues

Are there any questions?

- Australia - how know when to stop defaulting?
- Why does open bidding reduce winner’s curse? (?)
- How do royalties reduce risk?
Good Afternoon, Colleagues

Are there any questions?

- Australia - how do we know when to stop defaulting?
- Why does open bidding reduce winner’s curse? (?)
- How do royalties reduce risk?
- 2 or 8 hotels in TAC? Why bidding?
- Open/close loop?
- Entertainment ticket distribution change?
Logistics

- Next week’s classes
Logistics

- Next week’s classes
- Keep working on your project!
Spectrum licenses

- Worth a lot
- But how much to whom?
- Used to be assigned
 - took too long
- Switched to lotteries
 - too random
 - clear that lots of value given away

So decided to auction
Goals of mechanism

- Efficient allocation (assign to whom it’s worth the most)
- Promote deployment of new technologies
- Prevent monopoly (or close)
- Get some licenses to designated companies
- No political embarrassments
Goals of mechanism

• Efficient allocation (assign to whom it’s worth the most)

• Promote deployment of new technologies

• Prevent monopoly (or close)

• Get some licenses to designated companies

• No political embarrassments

Revenue an afterthought (but important in end)
Choices

• Which basic auction format?
• Sequential or simultaneous auctions?
• Combinatorial bids allowed?
• How to encourage designated companies?
• Up front payments or royalties?
• Reserve prices?
• How much information public?
Problems from New Zealand and Australia

Second price, sealed bid
Problems from New Zealand and Australia

Second price, sealed bid

- High bidder’s willingness to pay is public
- No reserve prices
- No penalties for default, so many meaningless high bids
Problems from New Zealand and Australia

Second price, sealed bid

• High bidder’s willingness to pay is public
• No reserve prices
• No penalties for default, so many meaningless high bids

Any oversight in auction design can have harmful repercussions, as bidders can be counted on to seek ways to outfox the mechanism.
License interactions

- Complementarities: good to be able to offer roaming capabilities
License interactions

- Complementarities: good to be able to offer roaming capabilities
- Substitutability: several licenses in the same region
License interactions

- Complementarities: good to be able to offer roaming capabilities

- Substitutability: several licenses in the same region

- Need to be flexible to allow bidders to create aggregations
License interactions

- Complementarities: good to be able to offer roaming capabilities

- Substitutability: several licenses in the same region

- Need to be flexible to allow bidders to create aggregations

- Secondary market might allow for some corrections
 - Likely to be thin
 - High transaction costs
Limits of Theory
Limits of Theory

- Identify variables, but not relative magnitudes
Limits of Theory

- Identify variables, but not relative magnitudes
 - When there are conflicting effects, can’t tell which will dominate
Limits of Theory

- Identify variables, but not relative magnitudes
 - When there are conflicting effects, can’t tell which will dominate

- Ignores transaction costs of implementing policies
Limits of Theory

- Identify variables, but not relative magnitudes
 - When there are conflicting effects, can’t tell which will dominate
- Ignores transaction costs of implementing policies
- May depend on unknown information
 - e.g. bidder valuations
Limits of Theory

- Identify variables, but not relative magnitudes
 - When there are conflicting effects, can’t tell which will dominate

- Ignores transaction costs of implementing policies

- May depend on unknown information
 - e.g. bidder valuations

- Doesn’t scale to complexity of spectrum auctions
Limits of Theory

- Identify variables, but not relative magnitudes
 - When there are conflicting effects, can’t tell which will dominate
- Ignores transaction costs of implementing policies
- May depend on unknown information
 - e.g. bidder valuations
- Doesn’t scale to complexity of spectrum auctions

Used laboratory experiments too
Open vs. Sealed Bid

- Open increases information, reducing winner’s curse
Open vs. Sealed Bid

- Open increases information, reducing winner’s curse
 - Leads to higher bids
Open vs. Sealed Bid

- Open increases information, reducing winner’s curse
 - Leads to higher bids

- But...
 - Risk aversion leads to higher bids in sealed bid auctions
 - Sealed bid auctions deter collusion
Open vs. Sealed Bid

- Open increases information, reducing winner’s curse
 - Leads to higher bids

- But...
 - Risk aversion leads to higher bids in sealed bid auctions
 - Sealed bid auctions deter collusion

- Decided former outweighed latter

- Went with announcing bids, but not the bidders
Open vs. Sealed Bid

- Open increases information, reducing winner’s curse
 - Leads to higher bids

- But . . .
 - Risk aversion leads to higher bids in sealed bid auctions
 - Sealed bid auctions deter colusion

- Decided former outweighed latter

- Went with announcing bids, but not the bidders
 - Circumvented!
Simultaneous vs. Sequential

- Sequential prevents backup strategies for aggregation
- Sequential also allows for budget stretching
Simultaneous vs. Sequential

- Sequential prevents backup strategies for aggregation
- Sequential also allows for budget stretching
- Simultaneous needs a stopping rule
 - Closing one by one is effectively sequential
 - Keeping all open until all close encourages sniping
Simultaneous vs. Sequential

- Sequential prevents backup strategies for aggregation
- Sequential also allows for budget stretching
- Simultaneous needs a stopping rule
 - Closing one by one is effectively sequential
 - Keeping all open until all close encourages sniping
- Stopping rule should:
 - End auction quickly
 - Close licenses almost simultaneously
 - be simple and understandable
Simultaneous vs. Sequential

- Sequential prevents backup strategies for aggregation
- Sequential also allows for budget stretching
- Simultaneous needs a stopping rule
 - Closing one by one is effectively sequential
 - Keeping all open until all close encourages sniping
- Stopping rule should:
 - End auction quickly
 - Close licenses almost simultaneously
 - be simple and understandable

Went with activity rules
Combinatorial Bids

- Nationwide bidding could decrease efficiency and revenue
Combinatorial Bids

- Nationwide bidding could decrease efficiency and revenue
- Full combinatorial bidding too complex
 - Winner determination problem
 - Active research area
Aiding Designated Bidders

• Give them a discount
Aiding Designated Bidders

- Give them a discount
- Circumvented!
Royalties vs. Up-front Payments

- Royalties decrease risk, increase bids
Royalties vs. Up-front Payments

- Royalties decrease risk, increase bids
- But royalties discourage post-auction innovation
Royalties vs. Up-front Payments

- Royalties decrease risk, increase bids
- But royalties discourage post-auction innovation
- Decided against
Reserve Prices

• Not necessary in such a competitive market

• Did include withdrawal penalties
Results

• Big successes
 – Lots of bidders
 – Lots of revenue
Results

- Big successes
 - Lots of bidders
 - Lots of revenue

- Also some problems
 - Strategic Demand Reduction
Results

• Big successes
 – Lots of bidders
 – Lots of revenue

• Also some problems
 – Strategic Demand Reduction

• Incremental design changes
 – New problems always arise
 – Bidders indeed find ways to circumvent mechanisms
Results

• Big successes
 – Lots of bidders
 – Lots of revenue

• Also some problems
 – Strategic Demand Reduction

• Incremental design changes
 – New problems always arise
 – Bidders indeed find ways to circumvent mechanisms

• Lessons to be learned via agent-based experiments
Class Discussion

David Barksdale on strategic demand reduction
Trading Agent Competition

• Put forth as a **benchmark problem** for e-marketplaces (Wellman, Wurman, et al., 2000)

• Autonomous agents act as **travel agents**
Trading Agent Competition

- Autonomous agents act as travel agents
 - **Game:** 8 agents, 12 min.
 - **Agent:** simulated travel agent with 8 clients
 - **Client:** TACtown ↔ Tampa within 5-day period
Trading Agent Competition

- Put forth as a **benchmark problem** for e-marketplaces (Wellman, Wurman, et al., 2000)

- Autonomous agents act as **travel agents**
 - **Game**: 8 *agents*, 12 min.
 - **Agent**: simulated travel agent with 8 *clients*
 - **Client**: TACtown ↔ Tampa within 5-day period

- **Auctions** for flights, hotels, entertainment tickets
 - **Server** maintains markets, sends prices to agents
 - Agent sends bids to server **over network**
28 Simultaneous Auctions

Flights: Inflight days 1-4, Outflight days 2-5 (8)

- Unlimited supply; prices tend to increase; immediate clear; no resale
28 Simultaneous Auctions

Flights: Inflight days 1-4, Outflight days 2-5 (8)
- Unlimited supply; prices tend to increase; immediate clear; no resale

Hotels: Tampa Towers/Shoreline Shanties days 1-4 (8)
- 16 rooms per auction; 16th-price ascending auction; quote is ask price; no resale
- Random auction closes minutes 4 – 11
28 Simultaneous Auctions

Flights: Inflight days 1-4, Outflight days 2-5 (8)
- Unlimited supply; prices tend to increase; immediate clear; no resale

Hotels: Tampa Towers/Shoreline Shanties days 1-4 (8)
- 16 rooms per auction; 16th-price ascending auction; quote is ask price; no resale
- Random auction closes minutes 4 – 11

Entertainment: Wrestling/Museum/Park days 1-4 (12)
- Continuous double auction; initial endowments; quote is bid-ask spread; resale allowed
Client Preferences and Utility

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values
Client Preferences and Utility

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values

Utility: 1000 (if valid) – travel penalty + hotel bonus + entertainment bonus
Client Preferences and Utility

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values

Utility: 1000 (if valid) – travel penalty + hotel bonus + entertainment bonus

Score: Sum of client utilities – expenditures
Allocation

\[G \equiv \text{complete allocation of goods to clients} \]

\[v(G) \equiv \text{utility of } G \text{ – cost of needed goods} \]

\[G^* \equiv \text{argmax } v(G') \]
Allocation

\[G \equiv \text{complete allocation of goods to clients} \]

\[v(G) \equiv \text{utility of } G \text{ – cost of needed goods} \]

\[G^* \equiv \text{argmax } v(G) \]

Given holdings and prices, find \(G^* \)
Allocation

\[G \equiv \text{complete allocation of goods to clients} \]
\[v(G) \equiv \text{utility of } G \text{ – cost of needed goods} \]
\[G^* \equiv \text{argmax } v(G) \]

Given holdings and prices, find \(G^* \)

- General allocation NP-complete
 - Tractable in TAC: mixed-integer LP (ATTac-2000)
 - Estimate \(v(G^*) \) quickly with LP relaxation
Allocation

\[G \equiv \text{complete allocation of goods to clients} \]

\[v(G) \equiv \text{utility of } G - \text{cost of needed goods} \]

\[G^* \equiv \text{argmax } v(G) \]

Given holdings and prices, find \(G^* \)

- General allocation NP-complete
 - Tractable in TAC: mixed-integer LP (ATTac-2000)
 - Estimate \(v(G^*) \) quickly with LP relaxation

Prices known \(\Rightarrow G^* \) known \(\Rightarrow \) optimal bids known
High-Level Strategy

- Learn model of expected hotel price
High-Level Strategy

- Learn model of expected hotel price distributions
- For each auction:
 - Repeatedly sample price vector from distributions
High-Level Strategy

- Learn model of expected hotel price distributions

- For each auction:
 - Repeatedly sample price vector from distributions
 - Bid avg marginal expected utility: $v(G_w^*) - v(G_l^*)$
High-Level Strategy

• Learn model of expected hotel pricedistributions

• For each auction:
 – Repeatedly sample price vector from distributions
 – Bid avg marginal expected utility: $v(G^*_w) - v(G^*_l)$

• Bid for all goods — not just those in G^*
High-Level Strategy

- Learn model of expected hotel price distributions

- For each auction:
 - Repeatedly sample price vector from distributions
 - Bid avg marginal expected utility: $v(G_w^*) - v(G_l^*)$

- Bid for all goods — not just those in G^*

Goal: analytically calculate optimal bids
Hotel Price Prediction

- Features:
 - Current hotel and flight prices
 - Current time in game
 - Hotel closing times
 - Agents in the game (when known)
 - Variations of the above
Hotel Price Prediction

● Features:
 – Current hotel and flight prices
 – Current time in game
 – Hotel closing times
 – Agents in the game (when known)
 – Variations of the above

● Data:
 – Hundreds of seeding round games
Hotel Price Prediction

• **Features:**
 - Current hotel and flight prices
 - Current time in game
 - Hotel closing times
 - Agents in the game (when known)
 - Variations of the above

• **Data:**
 - Hundreds of seeding round games
 - Assumption: similar economy
Hotel Price Prediction

- **Features:**
 - Current hotel and flight prices
 - Current time in game
 - Hotel closing times
 - Agents in the game (when known)
 - Variations of the above

- **Data:**
 - Hundreds of seeding round games
 - Assumption: similar economy
 - Features \mapsto actual prices
The Learning Algorithm

- $X \equiv \text{feature vector } \in \mathbb{R}^n$
- $Y \equiv \text{closing price} - \text{current price} \in \mathbb{R}$
The Learning Algorithm

• $X \equiv \text{feature vector} \in \mathbb{R}^n$

• $Y \equiv \text{closing price} - \text{current price} \in \mathbb{R}$

• Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$
The Learning Algorithm

- $X \equiv \text{feature vector} \in \mathbb{R}^n$
- $Y \equiv \text{closing price} - \text{current price} \in \mathbb{R}$
- Break Y into $k \approx 50$ cut points $b_1 \leq \ldots \leq b_k$
- For each b_i, estimate probability $Y \geq b_i$, given X
The Learning Algorithm

• \(X \equiv \text{feature vector} \in \mathbb{R}^n \)

• \(Y \equiv \text{closing price} - \text{current price} \in \mathbb{R} \)

• Break \(Y \) into \(k \approx 50 \) cut points \(b_1 \leq \cdots \leq b_k \)

• For each \(b_i \), estimate probability \(Y \geq b_i \), given \(X \)
 – Say \(X \) belongs to class \(C_i \) if \(Y \geq b_i \)
The Learning Algorithm

- $X \equiv$ feature vector $\in \mathbb{R}^n$
- $Y \equiv$ closing price – current price $\in \mathbb{R}$
- Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$
- For each b_i, estimate probability $Y \geq b_i$, given X
 - Say X belongs to class C_i if $Y \geq b_i$
 - k-class problem: each example in many classes
The Learning Algorithm

- $X \equiv \text{feature vector } \in \mathbb{R}^n$
- $Y \equiv \text{closing price} - \text{current price } \in \mathbb{R}$
- Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$
- For each b_i, estimate probability $Y \geq b_i$, given X
 - Say X belongs to class C_i if $Y \geq b_i$
 - k-class problem: each example in many classes
 - Use BoostTexter (boosting (Schapire, 1990))
The Learning Algorithm

- $X \equiv \text{feature vector } \in \mathbb{R}^n$
- $Y \equiv \text{closing price} - \text{current price } \in \mathbb{R}$
- Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$
- For each b_i, estimate probability $Y \geq b_i$, given X
 - Say X belongs to class C_i if $Y \geq b_i$
 - k-class problem: each example in many classes
 - Use BoostTexter (boosting (Schapire, 1990))
- Can convert to estimated distribution of $Y|X$
The Learning Algorithm

- $X \equiv \text{feature vector } \in \mathbb{R}^n$
- $Y \equiv \text{closing price – current price } \in \mathbb{R}$
- Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$
- For each b_i, estimate probability $Y \geq b_i$, given X
 - Say X belongs to class C_i if $Y \geq b_i$
 - k-class problem: each example in many classes
 - Use Boostexter (boosting (Schapire, 1990))
- Can convert to estimated distribution of $Y|X$

New algorithm for conditional density estimation
Hotel Expected Values

• Repeat until time bound, for each hotel:
 1. Assume this hotel closes next
Hotel Expected Values

- Repeat until time bound, for each hotel:
 1. Assume this hotel closes next
 2. Sample prices from predicted price distributions
Hotel Expected Values

- Repeat until time bound, for each hotel:
 1. Assume this hotel closes next
 2. Sample prices from predicted price distributions
 3. Given these prices compute V_0, V_1, \ldots, V_8
 - $V_i = v(G^*)$ if own exactly i of the hotel
 - $V_0 \leq V_1 \leq \ldots \leq V_8$
Hotel Expected Values

- Repeat until time bound, for each hotel:
 1. Assume this hotel closes next
 2. Sample prices from predicted price distributions
 3. Given these prices compute $V_0, V_1, \ldots V_8$
 - $V_i = v(G^*)$ if own exactly i of the hotel
 - $V_0 \leq V_1 \leq \ldots \leq V_8$

- Value of ith copy is $\text{avg}(V_i - V_{i-1})$
Other Uses of Sampling

Flights: Cost/benefit analysis for postponing commitment
Other Uses of Sampling

Flights: Cost/benefit analysis for postponing commitment

Cost: Price expected to rise over next n minutes

Benefit: More price info becomes known

- Compute expected marginal value of buying some different flight
Other Uses of Sampling

Flights: Cost/benefit analysis for postponing commitment

Cost: Price expected to rise over next n minutes

Benefit: More price info becomes known
- Compute expected marginal value of buying some different flight

Entertainment: Bid more (ask less) than expected value of having one more (fewer) ticket
Finals

<table>
<thead>
<tr>
<th>Team</th>
<th>Avg.</th>
<th>Adj.</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTac</td>
<td>3622</td>
<td>4154</td>
<td>AT&T</td>
</tr>
<tr>
<td>livingagents</td>
<td>3670</td>
<td>4094</td>
<td>Living Systems (Germ.)</td>
</tr>
<tr>
<td>whitebear</td>
<td>3513</td>
<td>3931</td>
<td>Cornell</td>
</tr>
<tr>
<td>Urlaub01</td>
<td>3421</td>
<td>3909</td>
<td>Penn State</td>
</tr>
<tr>
<td>Retsina</td>
<td>3352</td>
<td>3812</td>
<td>CMU</td>
</tr>
<tr>
<td>CaiserSose</td>
<td>3074</td>
<td>3766</td>
<td>Essex (UK)</td>
</tr>
<tr>
<td>Southampton</td>
<td>3253*</td>
<td>3679</td>
<td>Southampton (UK)</td>
</tr>
<tr>
<td>TacsMan</td>
<td>2859</td>
<td>3338</td>
<td>Stanford</td>
</tr>
</tbody>
</table>

- **ATTac** improves over time
- **livingagents** is an **open-loop strategy**
Controlled Experiments

- \textit{ATTac}_s: "full-strength" agent based on boosting
Controlled Experiments

- **ATTac**s: “full-strength” agent based on boosting

- **SimpleMean**s: sample from empirical distribution (previously played games)
Controlled Experiments

- ATTac_s: “full-strength” agent based on boosting
- SimpleMean_s: sample from empirical distribution (previously played games)
- ConditionalMean_s: condition on closing time
Controlled Experiments

- $ATTacs$: “full-strength” agent based on boosting

- $SimpleMean_s$: sample from empirical distribution (previously played games)

- $ConditionalMean_s$: condition on closing time

- $ATTacs_n, ConditionalMean_n, SimpleMean_n$: predict expected value of the distribution
Controlled Experiments

- $ATTac_s$: "full-strength" agent based on boosting
- $SimpleMean_s$: sample from empirical distribution (previously played games)
- $ConditionalMean_s$: condition on closing time
- $ATTac_{ns}, ConditionalMean_{ns}, SimpleMean_{ns}$: predict expected value of the distribution
- $CurrentPrice$: predict no change
Controlled Experiments

- \(\text{ATTac}_s\): “full-strength” agent based on boosting

- \(\text{SimpleMean}_s\): sample from empirical distribution (previously played games)

- \(\text{ConditionalMean}_s\): condition on closing time

- \(\text{ATTac}_{ns}, \text{ConditionalMean}_{ns}, \text{SimpleMean}_{ns}\): predict expected value of the distribution

- \(\text{CurrentPrice}\): predict no change

- \(\text{EarlyBidder}\): motivated by TAC-01 entry livingagents
Controlled Experiments

- $ATTac_s$: “`full-strength” agent based on boosting
- $SimpleMean_s$: sample from empirical distribution (previously played games)
- $ConditionalMean_s$: condition on closing time
- $ATTac_{ns}$, $ConditionalMean_{ns}$, $SimpleMean_{ns}$: predict expected value of the distribution
- $CurrentPrice$: predict no change
- $EarlyBidder$: motivated by TAC-01 entry livingagents
 - Immediately bids high for G^* (with $SimpleMean_{ns}$)
 - Goes to sleep
Stability

• 7 EarlyBidder’s with 1 ATTac

<table>
<thead>
<tr>
<th>Agent</th>
<th>Score</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTac</td>
<td>2431 ± 464</td>
<td>8909 ± 264</td>
</tr>
<tr>
<td>EarlyBidder</td>
<td>−4880 ± 337</td>
<td>9870 ± 34</td>
</tr>
</tbody>
</table>
Stability

7 EarlyBidder’s with 1 ATTac

<table>
<thead>
<tr>
<th>Agent</th>
<th>Score</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTac</td>
<td>2431 ± 464</td>
<td>8909 ± 264</td>
</tr>
<tr>
<td>EarlyBidder</td>
<td>−4880 ± 337</td>
<td>9870 ± 34</td>
</tr>
</tbody>
</table>

7 ATTac’s with 1 EarlyBidder

<table>
<thead>
<tr>
<th>Agent</th>
<th>Score</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTac</td>
<td>2578 ± 25</td>
<td>9650 ± 21</td>
</tr>
<tr>
<td>EarlyBidder</td>
<td>2869 ± 69</td>
<td>10079 ± 55</td>
</tr>
</tbody>
</table>
Stability

7 EarlyBidder’s with 1 ATTac

<table>
<thead>
<tr>
<th>Agent</th>
<th>Score</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTac</td>
<td>2431 ± 464</td>
<td>8909 ± 264</td>
</tr>
<tr>
<td>EarlyBidder</td>
<td>-4880 ± 337</td>
<td>9870 ± 34</td>
</tr>
</tbody>
</table>

7 ATTac’s with 1 EarlyBidder

<table>
<thead>
<tr>
<th>Agent</th>
<th>Score</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTac</td>
<td>2578 ± 25</td>
<td>9650 ± 21</td>
</tr>
<tr>
<td>EarlyBidder</td>
<td>2869 ± 69</td>
<td>10079 ± 55</td>
</tr>
</tbody>
</table>

EarlyBidder gets more utility; ATTac pays less
Results

- *Phase I*: Training from TAC-01 (seeding round, finals)
Results

- **Phase I**: Training from TAC-01 (seeding round, finals)
- **Phase II**: Training from TAC-01, phases I, II
Results

- **Phase I**: Training from TAC-01 (seeding round, finals)
- **Phase II**: Training from TAC-01, phases I, II
- **Phase III**: Training from phases I – III
Results

- **Phase I**: Training from TAC-01 (seeding round, finals)
- **Phase II**: Training from TAC-01, phases I, II
- **Phase III**: Training from phases I – III

<table>
<thead>
<tr>
<th>Agent</th>
<th>Relative Score</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phase I</td>
<td>Phase III</td>
<td></td>
</tr>
<tr>
<td>ATTac</td>
<td>105.2 ± 49.5 (2)</td>
<td>166.2 ± 20.8 (1)</td>
<td></td>
</tr>
<tr>
<td>ATTac</td>
<td>27.8 ± 42.1 (3)</td>
<td>122.3 ± 19.4 (2)</td>
<td></td>
</tr>
<tr>
<td>EarlyBidder</td>
<td>140.3 ± 38.6 (1)</td>
<td>117.0 ± 18.0 (3)</td>
<td></td>
</tr>
<tr>
<td>SimpleMean</td>
<td>−28.8 ± 45.1 (5)</td>
<td>−11.5 ± 21.7 (4)</td>
<td></td>
</tr>
<tr>
<td>SimpleMean</td>
<td>−72.0 ± 47.5 (7)</td>
<td>−44.1 ± 18.2 (5)</td>
<td></td>
</tr>
<tr>
<td>ConditionalMean</td>
<td>8.6 ± 41.2 (4)</td>
<td>−60.1 ± 19.7 (6)</td>
<td></td>
</tr>
<tr>
<td>ConditionalMean</td>
<td>−147.5 ± 35.6 (8)</td>
<td>−91.1 ± 17.6 (7)</td>
<td></td>
</tr>
<tr>
<td>CurrentPrice</td>
<td>−33.7 ± 52.4 (6)</td>
<td>−198.8 ± 26.0 (8)</td>
<td></td>
</tr>
</tbody>
</table>
FCC Spectrum Auction #35

- 422 licences in 195 markets (cities)
 - 80 bidders spent $8 billion
 - ran Dec 12 - Jan 26 2001
 - licence is a 10 or 15 mhz spectrum chunk
FCC Spectrum Auction #35

- 422 licences in 195 markets (cities)
 - 80 bidders spent $8 billion
 - ran Dec 12 - Jan 26 2001
 - licence is a 10 or 15 mhz spectrum chunk

- Run in rounds
 - bid on each licence you want each round
 - simultaneous; break ties by arrival time
 - current winner and all bids are known
FCC Spectrum Auction #35

- 422 licences in 195 markets (cities)
 - 80 bidders spent $8 billion
 - ran Dec 12 - Jan 26 2001
 - licence is a 10 or 15 mhz spectrum chunk

- Run in rounds
 - bid on each licence you want each round
 - simultaneous; break ties by arrival time
 - current winner and all bids are known

- Allowable bids: 1 to 9 bid increments
 - 1 bid incr is 10% – 20% of current price
FCC Spectrum Auction #35

• 422 licences in 195 markets (cities)
 – 80 bidders spent $8 billion
 – ran Dec 12 - Jan 26 2001
 – licence is a 10 or 15 mhz spectrum chunk

• Run in rounds
 – bid on each licence you want each round
 – simultaneous; break ties by arrival time
 – current winner and all bids are known

• Allowable bids: 1 to 9 bid increments
 – 1 bid incr is 10% – 20% of current price

• Other complex rules
Strategies People Use

- The bidders know each other
Strategies People Use

• The bidders know each other

• They engage in strategic bidding
Strategies People Use

- The bidders know each other
- They engage in strategic bidding
 - sniping
Strategies People Use

• The bidders know each other

• They engage in strategic bidding
 – sniping
 – budget stretching
Strategies People Use

- The bidders know each other
- They engage in strategic bidding
 - sniping
 - budget stretching
 - strategic demand reduction
Strategies People Use

- The bidders know each other
- They engage in strategic bidding
 - sniping
 - budget stretching
 - strategic demand reduction
 - threats (example)
Strategies People Use

- The bidders know each other
- They engage in strategic bidding
 - sniping
 - budget stretching
 - strategic demand reduction
 - threats (example)

It’s a poker game!
Experimental Setup

- Realistic FCC auction simulator (FAucS)
Experimental Setup

- Realistic FCC auction simulator (FAucS)
 - follows published auction rules
 - hundreds of goods
 - scores of categories
 - simultaneous, over 100 rounds
Experimental Setup

- Realistic FCC auction simulator (FAucS)
 - follows published auction rules
 - hundreds of goods
 - scores of categories
 - simultaneous, over 100 rounds

- Realistic agents
 - crafted with input from AT&T’s bidding team from the real FCC auction
Experimental Setup

- Realistic FCC auction simulator (FAucS)
 - follows published auction rules
 - hundreds of goods
 - scores of categories
 - simultaneous, over 100 rounds

- Realistic agents
 - crafted with input from AT&T’s bidding team from the real FCC auction
 - goals based on published data
Model

- Agent goals
 - desire 0, 1, or 2 licences per market
 - desired markets have unique values
 - subject to budget constraint
 - Goals of other agents not known perfectly
Model

• Agent goals
 – desire 0, 1, or 2 licences per market
 – desired markets have unique values
 – subject to budget constraint
 – Goals of other agents not known perfectly

Assumption: no inter-market value dependencies
Model

- Agent goals
 - desire 0, 1, or 2 licences per market
 - desired markets have unique values
 - subject to budget constraint
 - Goals of other agents not known perfectly

Assumption: no inter-market value dependencies

- Utility is profit $\Rightarrow \sum_l (value - cost)$
Model

• Agent goals
 – desire 0, 1, or 2 licences per market
 – desired markets have unique values
 – subject to budget constraint
 – Goals of other agents not known perfectly

Assumption: no inter-market value dependencies

• Utility is profit ⇒ \(\sum_l (\text{value} - \text{cost}) \)

• modeled 5 most important bidders
Model

- Agent goals
 - desire 0, 1, or 2 licences per market
 - desired markets have unique values
 - subject to budget constraint
 - Goals of other agents not known perfectly

Assumption: no inter-market value dependencies

- Utility is profit \(\Rightarrow \Sigma_l (value - cost) \)

- modeled 5 most important bidders
 - others served mainly to raise prices (small bidders)
 - lower valuations (75% \(\rightarrow\) pessimistic)
Bidding Strategies

• Considering self only: Knapsack
 – best self-only approach
Bidding Strategies

- Considering self only: Knapsack
 - best self-only approach

- Strategic bidding (consider others)
 - Strategic Demand Reduction (SDR)
 - threats
Bidding Strategies

• Considering self only: Knapsack
 – best self-only approach

• Strategic bidding (consider others)
 – Strategic Demand Reduction (SDR)
 – threats
 – explicit communication not allowed...
Randomized SDR (RSDR)

- Figure out allocations dynamically
Randomized SDR (RSDR)

- Figure out allocations dynamically
 - round 1: bid for everything you want
 - convention: first winning bid owns licence
 - satisfaction = owned value / desired value
Randomized SDR (RSDR)

- Figure out allocations dynamically
 - round 1: bid for everything you want
 - convention: first winning bid owns licence
 - satisfaction = owned value / desired value

- Random ⇒ uneven allocation
Randomized SDR (RSDR)

- Figure out allocations dynamically
 - round 1: bid for everything you want
 - convention: first winning bid owns licence
 - satisfaction = owned value / desired value

- Random ⇒ uneven allocation
 - get small share ⇒ incentive to cheat
 - fair: own satisfaction close to average
Randomized SDR (RSDR)

- Figure out allocations dynamically
 - round 1: bid for everything you want
 - convention: first winning bid owns licence
 - satisfaction = owned value / desired value

- Random \Rightarrow uneven allocation
 - get small share \Rightarrow incentive to cheat
 - fair: own satisfaction close to average
 - convention: unlucky bidders may take licences until fair
Randomized SDR (RSDR)

- Figure out allocations dynamically
 - round 1: bid for everything you want
 - convention: first winning bid owns licence
 - satisfaction = owned value / desired value

- Random ⇒ uneven allocation
 - get small share ⇒ incentive to cheat
 - fair: own satisfaction close to average
 - convention: unlucky bidders may take licences until fair

- Small bidders take licences from owners
 - big bidders remember licence’s owner
 - allocate while small bidders active
RSDR vs. Knapsack

<table>
<thead>
<tr>
<th>Method</th>
<th>Agent</th>
<th>Profit ($M)</th>
<th>Ratio</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knapsack</td>
<td>1</td>
<td>980 (±170)</td>
<td>1.00</td>
<td>.82</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>650 (±85)</td>
<td>1.00</td>
<td>.82</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>830 (±91)</td>
<td>1.00</td>
<td>.84</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>170 (±20)</td>
<td>1.00</td>
<td>.84</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>550 (±96)</td>
<td>1.00</td>
<td>.86</td>
</tr>
<tr>
<td>PRSDR</td>
<td>1</td>
<td>1240 (±210)</td>
<td>1.26</td>
<td>.76</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>820 (±83)</td>
<td>1.25</td>
<td>.77</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1300 (±290)</td>
<td>1.58</td>
<td>.74</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>300 (±44)</td>
<td>1.78</td>
<td>.79</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>930 (±240)</td>
<td>1.68</td>
<td>.76</td>
</tr>
</tbody>
</table>

44% more profit; avg. ratio 1.51
Robustness

- What if someone cheats?
 - cheat: defect back to knapsack
 - others stay out of its way \Rightarrow big win

- Solution: Punishing RSDR (PRSDR)
 - cheaters may not own licences
 - recall: non-cheaters take licence from owner = fairing
 - convention: cheater takes your licence \Rightarrow take it back
 - take it back first while still have money
 - aggressively punitive: skips optimizers

Simplification: pointing out cheaters by hand
PRSDR Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Ratio</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knapsack</td>
<td>1.00</td>
<td>.84</td>
</tr>
<tr>
<td>(P)RSDR</td>
<td>1.51</td>
<td>.76</td>
</tr>
<tr>
<td>RSDR Cheater</td>
<td>1.63</td>
<td>.76</td>
</tr>
<tr>
<td>RSDR Victims</td>
<td>1.22</td>
<td>.79</td>
</tr>
<tr>
<td>PRSDR Cheater</td>
<td>1.02</td>
<td>.83</td>
</tr>
<tr>
<td>PRSDR Enforcers</td>
<td>1.17</td>
<td>.81</td>
</tr>
</tbody>
</table>
PRSDR Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Ratio</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knapsack</td>
<td>1.00</td>
<td>.84</td>
</tr>
<tr>
<td>(P)RSDR</td>
<td>1.51</td>
<td>.76</td>
</tr>
<tr>
<td>RSDR Cheater</td>
<td>1.63</td>
<td>.76</td>
</tr>
<tr>
<td>RSDR Victims</td>
<td>1.22</td>
<td>.79</td>
</tr>
<tr>
<td>PRSDR Cheater</td>
<td>1.02</td>
<td>.83</td>
</tr>
<tr>
<td>PRSDR Enforcers</td>
<td>1.17</td>
<td>.81</td>
</tr>
</tbody>
</table>

- **Threats work!**
Extensions

- Change small bidder valuations
 - test robustness
 - RSDR is optimal for preserving profit

- Multiple cheaters
 - current punishment too aggressive
 - collapse back to knapsack instead
Extentions

<table>
<thead>
<tr>
<th>Method</th>
<th>Ratio</th>
<th>Local Ratio</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Cheater</td>
<td>1.03</td>
<td></td>
<td>.84</td>
</tr>
<tr>
<td>Multiple Enforcer</td>
<td>1.01</td>
<td></td>
<td>.83</td>
</tr>
<tr>
<td>Method</td>
<td>Ratio</td>
<td>Local Ratio</td>
<td>Cost</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>Multiple Cheater</td>
<td>1.03</td>
<td></td>
<td>.84</td>
</tr>
<tr>
<td>Multiple Enforcer</td>
<td>1.01</td>
<td></td>
<td>.83</td>
</tr>
<tr>
<td>50%, Knapsack</td>
<td>1.70</td>
<td>1.00</td>
<td>.74</td>
</tr>
<tr>
<td>50%, PRSDR</td>
<td>3.42</td>
<td>2.02</td>
<td>.51</td>
</tr>
<tr>
<td>75%, Knapsack</td>
<td>1.00</td>
<td>1.00</td>
<td>.84</td>
</tr>
<tr>
<td>75%, PRSDR</td>
<td>1.51</td>
<td>1.51</td>
<td>.76</td>
</tr>
<tr>
<td>85%, Knapsack</td>
<td>0.68</td>
<td>1.00</td>
<td>.89</td>
</tr>
<tr>
<td>85%, PRSDR</td>
<td>0.81</td>
<td>1.19</td>
<td>.87</td>
</tr>
</tbody>
</table>
Future Work

- Robustness enhancements
 - better punishment method

- More complex value functions
 - inter-market dependencies

- Automatic cheater detection
 - partial cheating vs. detection arms race
 - smack back into compliance

- Generalization to other auctions
 - more robust to tie-breaking procedure variations
Summary

• Communication-free coordination
• Enables much higher profits
• Works even uncertain knowledge
• Real-world functionality relies on simple assumptions:
Summary

• Communication-free coordination

• Enables much higher profits

• Works even uncertain knowledge

• Real-world functionality relies on simple assumptions:
 – bidders want more profit
 – bidders familiar with PRSDR and its benefits
 – bidders willing to try it risk-free
Last-minute bidding (R,O, 2001)

- eBay: first-price, ascending auction
- Amazon: auction extended if bid in last 10 minutes
- eBay: bots exist to incrementally raise your bid to a maximum

- Still people *snipe*. Why?
 - There’s a risk that the bid might not make it
 - However, common-value \implies bid conveys info
 - Late-bidding can be seen as implicit collusion
 - Or . . . , lazy, unaware, etc. (Amazon and eBay)

- Finding: more late-bidding on eBay,
 - even more on antiques rather than computers
Small design-difference matters
Late Bidding as Best Response

- Good vs. incremental bidders
 - They start bidding low, plan to respond
 - Doesn’t give them time to respond

- Good vs. other snipers
 - Implicit collusion
 - Both bid low, chance that one bid doesn’t get in

- Good in common-value case
 - protects information

Overall, the analysis of multiple bids supports the hypothesis that last-minute bidding arises at least in part as a response by sophisticated bidders to unsophisticated incremental bidding.