CS395T Agent-Based Electronic Commerce Fall 2003

Peter Stone

Department or Computer Sciences
The University of Texas at Austin

• Bid for my pen

- Bid for my pen
- The highest bid wins

- Bid for my pen
- The highest bid wins
- Only the winning bid pays the amount of the bid

- Bid for my pen
- The highest bid wins
- Only the winning bid pays the amount of the bid
- I'll hand you a price that I will "pay" if you win the auction.

- Bid for my pen
- The highest bid wins
- Only the winning bid pays the amount of the bid
- I'll hand you a price that I will "pay" if you win the auction.
- Example:
 - You have a value of \$3.
 - You bid \$2.

- Bid for my pen
- The highest bid wins
- Only the winning bid pays the amount of the bid
- I'll hand you a price that I will "pay" if you win the auction.
- Example:
 - You have a value of \$3.
 - You bid \$2.
 - If everyone bids lower than you, you earn \$1.

- Bid for my pen
- The highest bid wins
- Only the winning bid pays the amount of the bid
- I'll hand you a price that I will "pay" if you win the auction.
- Example:
 - You have a value of \$3.
 - You bid \$2.
 - If everyone bids lower than you, you earn \$1.
 - Otherwise, you earn \$0.

- Bid for my pen
- The highest bid wins
- Only the winning bid pays the amount of the bid
- I'll hand you a price that I will "pay" if you win the auction.
- Example:
 - You have a value of \$3.
 - You bid \$2.
 - If everyone bids lower than you, you earn \$1.
 - Otherwise, you earn \$0.

First-price sealed bid auction

Let's Try Again

- Same thing
- New values

Now Change the Rules

The highest bidder still wins

Now Change the Rules

- The highest bidder still wins
- But only pay as much as the 2nd highest bidder

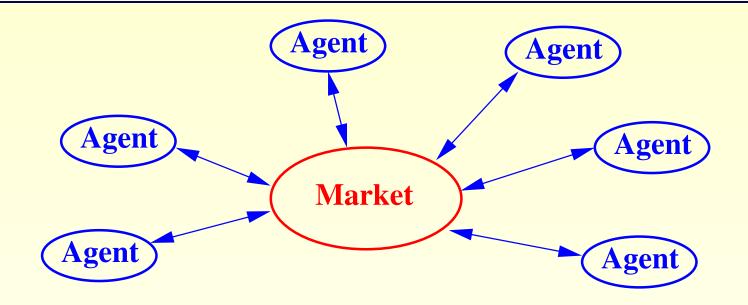
Now Change the Rules

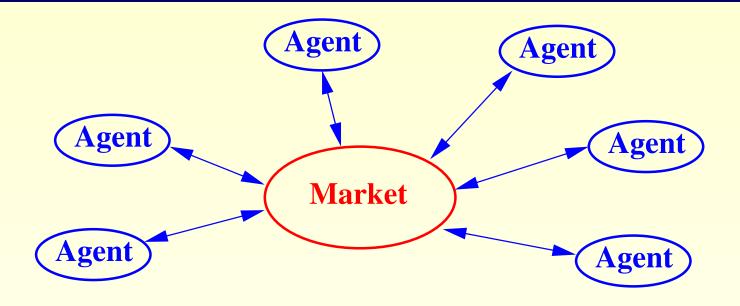
- The highest bidder still wins
- But only pay as much as the 2nd highest bidder

Second-price sealed bid auction

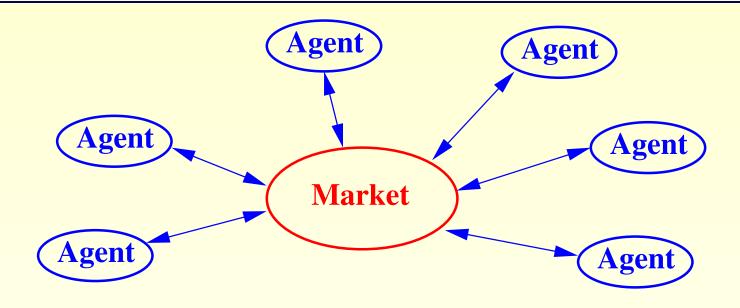
This Course

- Auctions, including some auction theory
- Game theory and mechanism design
- Autonomous bidding agents

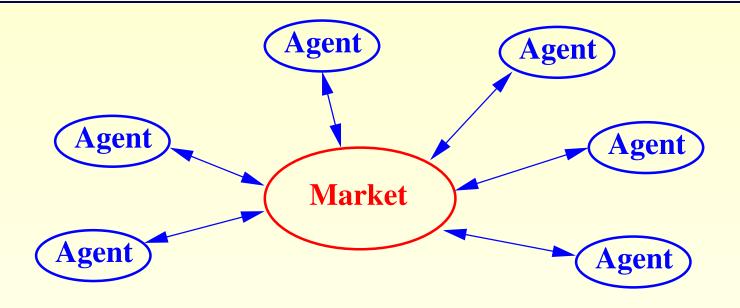

This Course

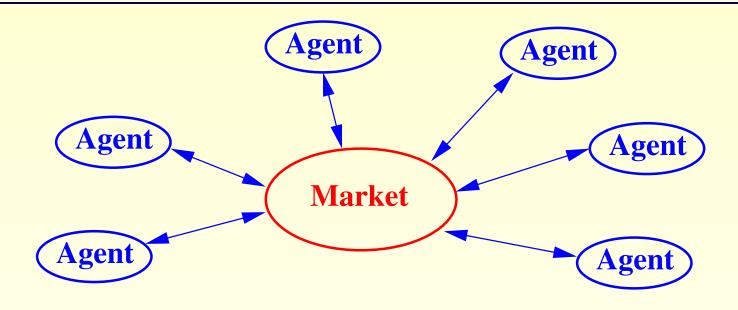

- Auctions, including some auction theory
- Game theory and mechanism design
- Autonomous bidding agents
- Other topics according to your interests
 - What do you want to learn?

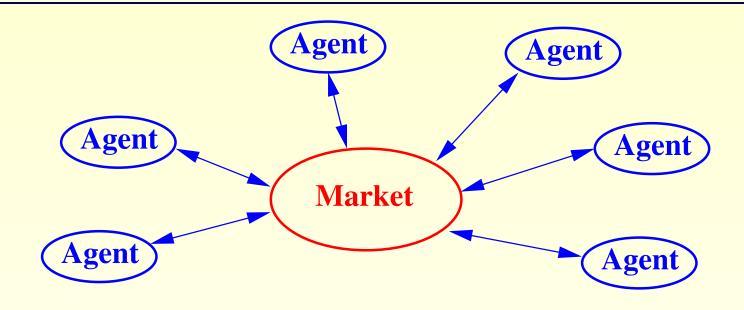
This Course


- Auctions, including some auction theory
- Game theory and mechanism design
- Autonomous bidding agents
- Other topics according to your interests
 - What do you want to learn?

Syllabus on-line




eBay


- eBay
- Telecommunications spectrum

- eBay
- Telecommunications spectrum
- Electricity

- eBay
- Telecommunications spectrum
- Electricity
- Takeoff/landing slots at airports

- eBay
- Telecommunications spectrum
- Electricity
- Takeoff/landing slots at airports
- Building temperature

Some Bidding Agent Domains

- Simulated travel agent
- FCC spectrum auctions
- Stock market trading
- Supply chain management

Trading Agent Competition

• Bid for flights, hotel rooms, entertainment tix

- Bid for flights, hotel rooms, entertainment tix
- Simultaneous auctions of different types

- Bid for flights, hotel rooms, entertainment tix
- Simultaneous auctions of different types
- Values of goods interact

- Bid for flights, hotel rooms, entertainment tix
- Simultaneous auctions of different types
- Values of goods interact
- Represent customers with different preferences

- Bid for flights, hotel rooms, entertainment tix
- Simultaneous auctions of different types
- Values of goods interact
- Represent customers with different preferences
- Bid against other travel agents, created by others

FCC Spectrum Auctions

• Model of auction #35

FCC Spectrum Auctions

- Model of auction #35
- 422 licenses; 80+ bidders; ≈\$8 billion spent
- Ran Dec 12 Jan 26, 2001

FCC Spectrum Auctions

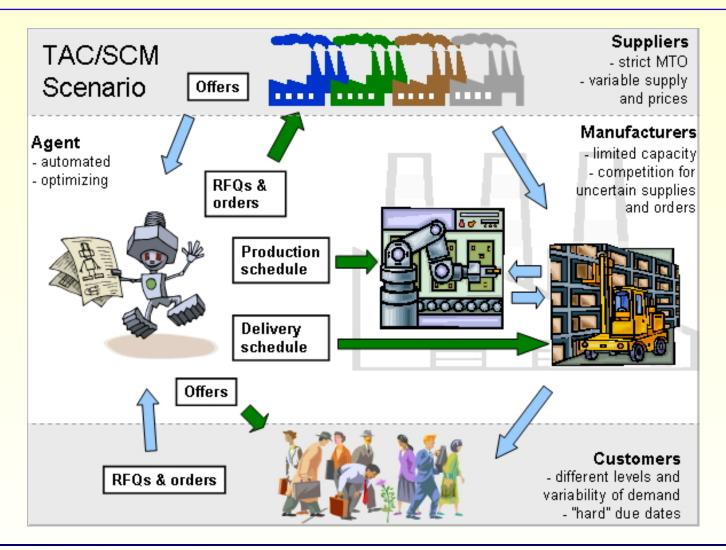
- Model of auction #35
- 422 licenses; 80+ bidders; ≈\$8 billion spent
- Ran Dec 12 Jan 26, 2001
- FauCS a realistic simulator based on information from AT&T's real bidders

Penn-Lehman Automated Trading Project

Penn-Lehman Automated Trading Project

Real market data

Penn-Lehman Automated Trading Project


- Real market data
- Based on Electronic Crossing Network (ECN) data
- Not just stock price, but complete order books

Penn-Lehman Automated Trading Project

- Real market data
- Based on Electronic Crossing Network (ECN) data
- Not just stock price, but complete order books
- Agent bids can be matched with real-world orders

Supply Chain Management

Trading Agent Competition (TAC) — summer, 2003

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

What's the value of the flash?

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

- What's the value of the flash?
 - Auctions are simultaneous
 - Auctions are independent (no combinatorial bids)

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

- What's the value of the flash?
 - Auctions are simultaneous
 - Auctions are independent (no combinatorial bids)

 $\bullet \in [10, 50]$ — Depends on the price of the camera

Autonomous bidding — no human input

(agents)

- Autonomous bidding no human input (agents)
- Predict future market characteristics (machine learning)

- Autonomous bidding no human input (agents)
- Predict future market characteristics (machine learning)
- Interact with other, unknown agents (multiagent systems)

- Autonomous bidding no human input (agents)
- Predict future market characteristics (machine learning)
- Interact with other, unknown agents (multiagent systems)

Indifferent to other agents' goals

• Everyone submit a number $\in [0, 100]$

- Everyone submit a number $\in [0, 100]$
- I'll compute the mean

- Everyone submit a number $\in [0, 100]$
- I'll compute the mean
- Whoever's number is closest to 2/3 of the mean wins \$?

- Everyone submit a number $\in [0, 100]$
- I'll compute the mean
- Whoever's number is closest to 2/3 of the mean wins \$?

- http://www.cs.rutgers.edu/~mlittman/topics/nips.html
 - Camerer
- http://www.geocities.com/SiliconValley/Byte/5215/Economics/BeautyContest.html

Assignments for Tuesday

Join the mailing list!

Assignments for Tuesday

- Join the mailing list!
- Read Klemperer

Assignments for Tuesday

- Join the mailing list!
- Read Klemperer
- Send a question or comment by midnight Monday