Market Design of Evaluation

Long Wang

Outline

- Summary of the paper
- Clarification questions
- Questions about the model and its assumptions
- new ideas

Properties of Evaluation

- public good
 - free rider
- opportunity cost
 - free rider
 - under provision
- production plans are contingent
 - inefficiency

Summary of Contributions

- Base Model
 - given r_i and s_i, broker calculates the efficient allocation, offers payments for evaluation
 - batch-mode game; one-at-a-time game
- Efficient Payment Schemas
 - SASP
 - Budget Balance
 - Voluntary Participation
- Expanded Model
 - different expertise, different informativeness and correlated tastes.
 - using Type-SASP

Clarification Questions

- opportunity cost
- statistical herding
- g > 1-b?
- $\rho = pg + (1-p)^*(1-b)$
- Coase theorem
- shoot-them-all
- asymmetric inefficiency in evaluation acquisition

model & its assumptions

- players report evaluations honestly?
- how to deal with g, b, s, and r which are highly subjective and difficult to estimate
- Metrics of evaluation, which is best
 - Binary (eBay)
 - multi-level (Amazon)
 - domain-specific (PC Magazine)
- computational burden on central broker

Evaluation Quality

- How to differentiate the liar and the misjudged evaluator? Can we punish those liar? If yes, how?
- Would you prefer 100,000 evaluations of unknown quality to 10 evaluations of high-quality?
- How many evaluations will lead to the consensus?
- One-time consuming and continued consuming
- voluntary vs. coerce

Conclusion

- some work has been done, much to do
- subjective arguments make it difficult
- voluntary vs. coerce
- any other mechanism to achieve global optimum?

Bayes' Rule

The essence of the Bayesian approach is to provide a mathematical **rule** explaining how you should change your existing beliefs in the light of new evidence.

P(R=r|e): probability that random variable R has value r given evidence e

P(e | R=r): probability that e is true when R has value r

P(R=r): prior probability that R has value r

$$P(e) = P(R=0, e) + P(R=1, e) + ...$$

<u>A</u>		<u>B</u>		<u>C</u>	
Good Bad		Good Bad		Good Bad	
12	-24	12	-24	1000	-1000

Computation of binary tree

$$p = 2/3$$

$$\rho = pg+(1-b)(1-p)$$

= 2/3 * 3/4 +1/4 * 1/3 = 7/12

$$p_1 = pr(is Good \& evaluates Good)$$

/ pr (evaluates Good)
= $(2/3 * 3/4) / 7/12$

$$= (2/3 * 3/4) / 7/12$$
$$= 6/7$$

. . .

Statistical Herding

