
CS395T
Reinforcement Learning:

Theory and Practice
Fall 2004

Peter Stone

Department or Computer Sciences
The University of Texas at Austin

Week11b: Thursday, November 18th



Good Afternoon Colleagues

• Are there any questions?

Peter Stone



Good Afternoon Colleagues

• Are there any questions?

• Pending questions:
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Logistics

• Tom Dietterich visiting tomorrow:
”Three Challenges for Machine Learning Reserch”
3pm, ACES 2.302
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Student-led Discussion

• Michael on biological primitives
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