
A Simple Agent for Supply Chain Management

Brian Farrell and Danny Loffredo

December 7th, 2006

1 Introduction

The Trading Agent Competition Supply Chain Management (TAC SCM) game
is a competitive testbed for software agents designed to perform supply chain
management. While not a perfect simulation of reality, the game is sufficiently
complex to encourage the development of complex supply chain management
strategies.

A TAC SCM game consists of 220 simulated days. On each day, customers
send requests for quotes (RFQs) for new computers to the agents. The agents
respond to these RFQs with offers that can be accepted or rejected by the
customers. The agents build computers using parts bought from suppliers. The
agents send RFQs to the suppliers, specifying a desired price and due date. The
suppliers can then make an offer on the RFQs, which the agents can accept or
reject. More detailed information about the game can be found in the official
specification document [1]. Stated simply, there are two main objectives in the
game: to minimize component procurement costs, and to maximize computer
sales prices.

In this paper, we describe Simplicity, an agent designed to compete in TAC
SCM. The agent was designed using a simple approach in order to see how
it would fare against more complex implementations from previous TAC SCM
tournaments. The paper is organized as follows. First, we explain the design
and implementation of the agent. Next, we analyze the success of our strategies.
Finally, we suggest improvements that could be made in future work.

2 Implementation

Our chief goal in designing Simplicity was to create a simple agent. While the
limited timeframe of the project necessitated a simple design, there are also
other benefits to designing a simple agent. However, there are many benefits
of a simple agent design. All other things being equal, a simple agent would
be preferred over one that is more complex. It is easier to understand, im-
plement, and debug. We hoped to show whether a simple agent could still do
reasonably well when compared to more complex approaches. Even if the agent
did not perform as well as some of the other agents entered in the TAC SCM

1



tournament, it could still be possible to describe it as successful if it performed
nearly as well as the other agents. There are very likely to be tradeoffs between
agent performance and complexity. The goal of Simplicity was to see if much of
the complexity could be reduced while still maintaining a reasonable amount of
performance.

Another advantage Simplicity has over other agents is that it does not use
any data from previous games. Several of the top performing agents in the 2005
TAC SCM tournament used data from previous games in some fashion [3][4].
While this data will always be easily obtained in this competition, it may be
harder or impossible to obtain in other domains, so there is some benefit to an
agent that does not need past data. However, an agent that does not require
past data is not necessarily more robust to drastic changes in the market. Even
though the agent does not use data from the past, it was still tested in market
conditions similar to the ones it would face in the competition. It is hard to say
whether it would perform well if some facets of the competition were drastically
changed.

An important idea that informed the design was the possibility of selling
computers at a loss. There is a bias towards low-demand games [5]. During pe-
riods of low demand, prices can drop below the level at which sales are profitable.
An intelligent agent must know when it is better off accumulating inventory and
when it is better off selling computers. In order to make this decision reliably,
the agent needs an accurate measure of its costs.

The tasks of the agent are split into two modules: the Demand Manager
and the Supply Manager. The Demand Manager handles customer RFQs and
factory production. It decides which RFQs to bid on, and what prices to pay.
It then schedules factory production and deliveries, and projects how many
components it will need in the future to maintain production. The Supply
Manager deals with suppliers. It uses the usage projections from the Demand
Manager to buy inventory.

2.1 Supply Manager

The Supply Manager’s main goal when placing normal orders is to be very
flexible. The price offered by a supplier is a function of its committed capacity,
so prices are very much affected by the actions of other agents. An agent that
always buys components with a lead time of 5 days will do well when playing
against agents that all use long-term buying strategies, but will perform poorly
when playing against agents with short-term buying strategies. Therefore, it is
important to be as flexible as possible when considering component lead times.

The Supply Manager sends five RFQs to suppliers each day. First, it sends
an RFQ to procure any components necessary to prevent shortages in the next
twenty days. Next, it sends an RFQ for components with either an extremely
short or long lead time. Finally, it uses whatever remaining RFQs it has to send
zero-quantity RFQs to suppliers which it uses to model the suppliers’ production
to estimate component costs in the future.

2



2.1.1 Normal RFQs

Each day, the Supply Manager uses the list of projected component use supplied
by the Demand Manager to determine when its inventory will drop below a
specified level. This level was set at 800 for non-CPU components and 400
for CPU components. If the projected inventory level after twenty days is still
above the threshold, no normal orders are placed. If not, the Supply Manager
looks at all of the days that it has price predictions for that are before the day
that inventory becomes too low. It plans to buy slightly more than it would
need to get inventory levels back to the threshold. This has the effect of keeping
component lead times closer to the twenty-day cutoff. Once the Supply Manager
finds the day with the lowest predicted price, it sends an RFQ with a reserve
price slightly greater than the predicted price. Since large procurements by
other agents could drastically change the supplier’s offer price, and the agent
uses RFQs that are up to three days old in price prediction, a reserve price is
necessary. It keeps the agent from paying a price much greater than it expected.
Because of this reserve price, the agent can simply accept every offer that it gets
as a result of the RFQ.

2.1.2 Short- and Long-Term RFQs

While the strategy for procuring components via normal orders is fairly flexible,
it ignores dates less than four days into the future and greater than twenty days
into the future. In order to make the agent’s procurement strategy as flexible as
possible, these dates must be considered as well. Thus, the agent should be able
to procure components at a low cost no matter what strategy its competitors
are using. Each day, the agent sends either a short term order with a lead time
of two days (the minimum), or a long term order with a lead time of 37 days.1

The order was always for 25 CPU components or 50 non-CPU components.
Rather than trying to predict the selling price as in the normal orders, the
Supply Manager simply sets the reserve price to be slightly below the agent’s
average procurement cost for that component. This way, if the supplier makes
an offer, the agent can accept it unconditionally because it will bring average
costs down. Since the efficacy of a procurement strategy depends on the other
agents playing in the game, it is possible that the short-term RFQs may get
offers more often than the long-term RFQs, or vice versa. In order to take
advantage of situations where this occurs, the Supply Manager chooses which
type of RFQ to send based on its success at getting offers thus far in the game.
If the other agents are all doing long-term purchasing, the Supply Manager will
send mostly short-term RFQs because they will be more successful.

1The lead time of 37 days was chosen arbitrarily; the motivation for choosing an unusual

number was to lessen the possibility that other agents would try to procure with the same

lead time.

3



2.1.3 Zero-Quantity RFQs

Since the Supply Manager looks twenty days into the future for each component
purchase, probe RFQs are sent 20 days into the future, and every four days
before that until the Supply Manager has used all five of its RFQs. The Supply
Manager uses these probes to build a model of the supplier. Since the RFQs
sent on each day are spaced four days apart, the supplier model can look at a
window of 12-16 days (depending on whether it was able to send three or four
probes over the last several days) when it does price prediction. Using RFQs
that are a few days old allows the Supply Manager to choose from a larger
number of days when procuring components. If it only used RFQs from the
previous day, it would only be able to choose from five days.

2.1.4 Price-Increasing Orders

Since the Supply Manager looks twenty days into the future when planning
procurement, it should not need to buy any parts after day 200. Rather than
just sit idle, the Supply Manager sends RFQs to suppliers for parts that it does
not intend to buy. This will drive up prices for the agents that still need to
procure components. Either the agents will be forced to buy components for a
very high price, or they will not purchase any components because the price is
too high. It is important to choose the right order size when sending orders to
drive up prices. Since the prices offered by suppliers are an increasing function
of their committed capacity, a larger order will drive up prices more. However,
suppliers consider agents’ RFQs in order of reputation. If the agent’s reputation
dips below 1.0, its large orders will not affect prices for the other agents. The
agent determines how many orders it can make without lowering its reputation
below 1.0, and plans to use up all of these orders before the end of the game.

2.2 Demand Manager

The Demand Manager has three main tasks: produce or deliver computers for
existing orders, make offers on new RFQs, and send the next day’s production
schedule to the factory. To reduce late delivery penalties, our delivery scheduler
first tries to fulfill late orders, then current orders, and eventually early orders.
Each order type is sorted by profit, so that the highest profit orders are fulfilled
first. New RFQs are also sorted by estimated profit. An offer is submitted for
any profitable RFQ in which the completed computers are already in inventory,
or can be produced in time to deliver by the desired due date. Currently the
agent assumes that all offers sent out will be accepted. Finally, the factory
scheduler uses a greedy algorithm to produce computers required for the next
day’s deliveries. If there is left over factory capacity, then future production is
moved ahead of schedule.

4



2.2.1 Determining Offer Price

One of the key decisions that the Demand Manager makes is setting the offer
price for completed computers. We decided to perform linear regression on
the last n sale prices, where n = 10 was selected as a good balance between
responsiveness and stability. The history of lowest selling prices and highest
selling prices were both valuable, depending on the quality of our competitors.
Against good agents, the highest sale price will be reasonable, and provides
a good price target to slip under. Against poor agents or in extreme market
conditions, the lowest sale price provides a lower bound to come in above. In
cases where we need to sell computers as quickly as possible, like when inventory
levels are too high at the end of the game, we use regression on the history of
low prices to set our base sale price. Otherwise, we use regression on the history
of highest selling prices.

Two simple modifications were made to this basic regression strategy. First,
if there is no difference between past high sell price and low price, this indicates
that there may be room to slightly increase our sale price. Second, furthering
our philosophy of only selling for profit, we set minimum offer prices. The
minimum offer price was usually equal to our cost, as calculated by the moving
average. However, if costs were unusually high (above 0.7*basePrice), we set
the minimum offer price to be 0.7*basePrice. This would result in selling
computers at a loss, but costs at that level were rarely observed. It was put
in place to keep the agent from possibly stopping all production due to several
days of very high costs. The only time we do not set minimum prices is during a
ramp down phase for the last 20 days of game time. During this time, the agent
is essentially dumping as much inventory as possible before the game ends.

In highly competitive games, it is possible that our agent will sell a relatively
small number of computers over the course of several days. Two mechanisms
were implemented to prevent overstocking inventory in these cases. First, once
a threshold of one computer type is reached, the agent won’t order replacement
components for new purchase orders. Replacement components are only ordered
when inventory levels drop below the threshold of 250 computers. Secondly, the
Demand Manager estimates future component usage as described in the next
section. This keeps component inventory levels reasonable without having to
explicitly calculate the chance each computer offer will be accepted.

2.2.2 Projecting Future Component Use

The only way in which the Demand Manager communicates with the Supply
Manager is through its projections of future component use. The Supply Man-
ager uses these productions to determine when it needs to buy more components.
For each component, the usage projector regresses usage as a function of de-
mand over the last ten days. More specifically, usage on a day d is defined as
the amount of a component used in production on day d. Demand is defined
as the number of RFQs sent from customers on day d for computers containing
that component.

5



Once the projector has performed this regression, it extrapolates for each
day, twenty days into the future. Since the number of RFQs on some day
in the future is not known, the agent uses a prediction from the DeepMaize
demand predictor. The demand predictor attempts to model the customer
demand function as given in the TAC SCM specification. It is described in
more detail in [2].

3 Results

3.1 Empirical evaluations

3.1.1 Supply Manager

The Supply Manager was able to get competitive prices for its component or-
ders. In trial games against agents from the TAC SCM 2005 tournament, the
agent’s component costs were similar to those of other agents. It is not always
instructive to simply rank procurement strategies by lowest cost; an agent with
a long-term procurement strategy will get lower costs, but will lose some flexi-
bility in responding to demand. We feel that Simplicity’s strategy allowed for
low costs while still being very responsive to changes in demand.

We ran forty-eight games with Simplicity and a copy of Simplicity that did
not make short- and long-term orders. The short- and long-term ordering strat-
egy resulted in lower costs for CPU components. This result was significant with
95% confidence according to a paired t-test. There was a negligible difference
in costs for the other components. While we are not sure why the strategy was
effective for CPUs and not for other components, there are definite differences
between CPUs and other components because each CPU can only be purchased
from one supplier, while other components can be purchased from two suppliers.
More investigation would be required to determine why the strategy was not
effective for non-CPU components.

The endgame strategy of sending large RFQs that the agent would not accept
did not affect any of the TAC SCM agents we tested against, because they
generally had enough components to last until the end of the game. However, we
know that the strategy can be effective, given the right agent: when Simplicity
competes in a game with “dummy” agents that only buy components when they
receive an order, the “dummy” agents were observed spending as much as 40
times the base price for their components. Since the agent wouldn’t be sending
any RFQs during the last days of the game, it makes sense to leave this strategy
in because in the worst case, it has no effect on the game, and in the best case,
it causes competitors’ costs to skyrocket.

3.1.2 Demand Manager

Table 1 shows an experimental comparison of TACStarterAgent and our agent.
TACStarterAgent is a skeleton agent that has all the required functionality
to play in a game of TAC SCM, but utilizes bare strategies. The techniques

6



Agent Average Selling Price Number Sold

TACStarterAgent 1696.58 3222
Simplicity 1926.77 4816

Table 1: Comparison of Average Selling Price

Figure 1: Comparison of different techniques for estimating component costs

implemented in our Demand Manager give Simplicity a 13% higher average
selling price over the starter agent, in addition to a 49% increase in total number
of computers sold.

Since we strive to only sell computers at a profit, it is important to accurately
calculate the cost to build each computer. We considered four techniques to
estimate each component’s cost:

1. previous price - the price the component was last purchased at

2. average price - average price paid for the component

3. moving average - average price over the last n days

4. replacement cost - estimated cost to replace the component in the next 20
days

Figure 1 shows how the four techniques differ in practice. Average price
remains steady and does not follow short-term trends, while previous price is
the most volatile of the four. Replacement cost tends to underestimate the

7



Agent Average Cost

Simplicity 655
StormFront 666
JAgent 679
redbull 697
garfield 744

Table 2: Comparison of Average Costs for Pintel 2.0 GHz during the tournament

component cost, since it is based on a model of future demand rather than the
current prices. Ultimately we decided to use a moving average as our metric,
because it accurately reflected current market conditions yet provided more
stability than the previous price.

3.2 Class Tournament

Simplicity finished in second place among five agents in the class competition.
We looked at component costs for Pintel 2.0 GHz CPUs to determine how
successful the Supply Manager was. Table 2 shows the average cost over the
sixteen games of the tournament for Pintel 2.0 GHz CPUs. Simplicity had the
lowest average cost over the entire tournament, and was the agent with the
lowest cost in nine of sixteen games.

One of the successes of our agent in the tournament was the ramping down
strategy in the last 20 days of game time. During this time, the agent attempts
to drive up component prices by placing large component orders at high prices,
and will begin dumping its own inventory of completed computers. Due to com-
petitive pricing on the part of several of the tournament participants, Simplicity
often had high inventory levels when the ramp down began. One measure of the
success of this strategy is market share before and during the ramp down. For
days 0 through 199, Simplicity achieved an average market share of 20% of the
total demand met. During the endgame, for days 200-219 the agent increased
its average market share to 29% of the total demand met. In some of the tour-
nament games our agent’s score didn’t even go positive until all its inventory
was dumped at the end of the game.

4 Conclusions

4.1 Limitations and Future Work

Even though we achieved our goal of creating a simple agent that performs close
to more complex agents, there are several areas that could use improvement. In
the Supply Manager, component orders can be split between the two suppliers
rather than getting the entire order from one. This change would lead to overall
lower costs, but would require figuring out the optimal amount to request from

8



each supplier. In addition, short and long term orders are set for a fixed amount;
instead, this could be a function of the acceptance rate. In the Demand Man-
ager, the projected component use relies on the indirect relationship between the
number of components used in a day’s production and the estimated demand.
This technique could be more robust and quicker to react to changing market
conditions if some other, more direct, relationship were found to estimate com-
ponent usage. Also, the Demand Manager could utilize the demand predictor
to attempt to find peaks in demand, and try to unload inventory at those times.
One important change we did not have time to implement was to calculate the
probability that each order would be accepted. This change would effect several
components of the agent, including the offer price, estimated component usage,
and factory scheduler. Finally, the agent has several hand-tuned values, like the
inventory caps, that could be adaptively adjusted or learned over the course of
several games.

4.2 Summary

Despite its shortcomings, our agent does manage to perform reasonably well
against more complicated agents. We achieved second place in the class compe-
tition by maintaining high sale prices, buying components cheaply, and dumping
inventory in the endgame. Our core strategies were to not sell computers at a
loss, and to stay as flexible as possible with our procurement. By creating an
agent which is simple yet powerful, we have a robust, easy to debug agent, as
well as an good starting point for more sophisticated strategies.

References

[1] J. Collins, R. Arunachalam, N. Sadeh, J. Eriksson, N. Finne, and S. Janson. The
supply chain management game for the 2006 trading agent competition.

[2] C. Kiekintveld, M. P. Wellman, S. Singh, J. Estelle, Y. Vorobeychik, V. Soni, and
M. Rudary. Distributed feedback control for decision making on supply chains.

[3] D. Pardoe and P. Stone. TacTex-2005: A champion supply chain management
agent. In Proceedings of the Twenty-First National Conference on Artificial Intel-

ligence, pages 1489–94, July 2006.
[4] P. Toulis, D. Kehagias, and P. A. Mitkas. Mertacor: a successful autonomous trad-

ing agent. In AAMAS ’06: Proceedings of the fifth international joint conference

on Autonomous agents and multiagent systems, pages 1191–1198, New York, NY,
USA, 2006. ACM Press.

[5] M. P. Wellman, J. Estelle, S. Singh, Y. Vorobeychik, C. Kiekintveld, and V. Soni.
Strategic interactions in a supply chain game. Computational Intelligence, 21(1):1–
26, February 2005.

9


