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Abstract

Temporal-difference reinforcement learning (RL) has been
successfully applied in several domains with lastegtesets.
Large action sets, however, have received considerably less
attention. This paper demonstrates the use of knowledge
transfer between related tasks to accelerate learning with
large action sets. We introdueetion transfer a technique
that extracts the actions from the (near-)optimal solution to
the first task and uses them in place of the full action set
when learning any subsequent tasks. When optimal actions
make up a small fraction of the domain’s action set, action
transfer can substantially reduce the number of actions and
thus the complexity of the problem. However, action transfer
betweendissimilartasks can be detrimental. To address this
difficulty, we contributeeandomized task perturbatiqiRTP),

an enhancement to action transfer that makes it robust to un-
representative source tasks. We motivate RTP action transfer
with a detailed theoretical analysis featuring a formalism of
related tasks and a bound on the suboptimality of action trans-
fer. The empirical results in this paper show the potential of
RTP action transfer to substantially expand the applicability
of RL to problems with large action sets.

Introduction

Temporal-difference reinforcement learning (RL) (Sutton &
Barto 1998) has proven to be an effective approach to se-
guential decision making. However, large state and action
sets remain a stumbling block for RL. While largeate

domains with large action sets, significant portions of the
action set are irrelevant from the standpoint of optimal be-
havior. Consider, for example, a pastry chef experimenting
with a new recipe. Several parameters, such as oven temper-
ature and time to rise, need to be determined. But based on
past experience, only a small range of values is likely to be
worth testing. Similarly, when driving a car, the same safe-
driving practices (gradual acceleration, minor adjustments
to the wheel) apply regardless of the terrain or destination.
Finally, a bidding agent in an auction can raise a winning bid
by any amount. But past experience may suggest that only
a small number of raises are worth considering. In all these
settings, action transfer reduces the action set and thereby
accelerates learning.

Action transfer relies on the similarity of the tasks in-
volved; if the first task is not representative of the others,
action transfer can handicap the learnermHlnytasks are
to be learned, a straightforward remedy would be to transfer
actions frommultipletasks, learning each from scratch with
the full action set. However, in some cases the learner may
not have access to a representative sample of tasks in the do-
main. Furthermore, the cost of learning multiple tasks with
the full action set could be prohibitive.

We therefore focus on the harder problem of identifying
the domain’s useful actions by learning as fewoag task
with the full action set, and tackling all subsequent tasks
with the resulting reduced action set. We propose a novel
algorithm, action transfer with randomized task perturba-

sets have seen much work in recent research (Tesauro 1994tjon (RTP), that performs well even when the first task is

Crites & Barto 1996; Stone & Sutton 2001), lamgtionsets

misleading. In addition to action transfer and RTP, this pa-

have been explored to but a limited extent (Santamaria, Sut- per contributes: (|) a formalism of related tasks that aug-

ton, & Ram 1997; Gaskett, Wettergreen, & Zelinsky 1999).
Our work aims to leverage similarities between tasks to

accelerate learning with large action sets. We consider

cases in which a learner is presented with two or mere

ments the MDP definition and decomposes it imdsk-

specificanddomain-widecomponents; and (ii) a bound on
the suboptimality ofegular action transfer between related
tasks, which motivateRTPaction transfer theoretically. We

lated tasks with identical action sets, all of which must be present empirical results in several learning settings, show-
learned; since real-world problems are rarely handled in iso- ing the superiority of RTP action transfer to regular action
lation, this setting is quite common. This paper explores the transfer and to learning with the full action set.

idea of extracting the subset of actions that are used by the
(near-)optimal solution to the first task and using them in-
stead of the full action set to learn more efficiently in any
subsequent tasks, a method we ealion transfer In many

Preliminaries

A Markov decision proces@vIDP), illustrated in Figure 1,

is a quadrupléS, A, t, ), whereS is a set ofstates A is a

set ofactions t : § x A — Pr(S) is atransition function
indicating a probability distribution over the next states upon
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taking a given action in a given state; and S x A — R , A - empty

is areward functionindicating the immediate payoff upon R<—i W wal
taking a given action in a given state. Given a sequence of S [ quicksand
rewardsro, r1,...,r,, the associateceturnis > 1", v'r;, t ® god
where0 < v < 1 is thediscount factor Given apolicy

m : S — A for acting, its associatedalue functionV’” : Figure 1: MDP formalism. Figure 2: Grid world domain.
S — Ryields, for every state € S, the expected return

from starting in state and followingz. The objective is to .

find anoptimal policyr* : S — A whose value function A Formalism for Related Tasks
dominates that of any other policy at every state. The traditional MDP definition as a quadrupi§, A, t,r)

The learner experiences the world as a sequence of statesjs adequate for solving problenis isolation However,
actions, and rewards, with no prior knowledge of the func- it is not expressive enough to capture similaritegoss
tionst andr. A practical vehicle for learning in this set-  problemsand is thus poorly suited for analyzing knowledge
ting is the@-value function@ : S x A — R, defined as transfer. As an example, consider two grid world maps. The

Q7 (s,a) =7(s,a)+7) ,cst(s'|s,a)V7(s). The widely abstract reward and transition dynamics are the same in both
used Q-learning algorithm (Watkins 1989) incrementally cases. However, the MDP definition postulatesndr as
approximates thé&-value function of the optimal policy. functions ovelS x A. Since different maps give rise to dif-

As a running example and experimental testbed, we intro- ferent state sets, their functionsindr are formally distinct
duce a novel grid world domain (Figure 2) featuring discrete and largely incomparable, failing to capture the similarity
states but continuous actions. Some cells are empty; oth- of the reward and transition dynamics in both cases. Our
ers are occupied by a wall or a bed of quicksand. One cell new MDP formalism overcomes this difficulty by usiogt-
is designated as goal. The actions are of the forrfi, p), comesandclassego remove the undesirable dependence of
whered € {NORTH, SOUTH, EAST, WEST} is an intended the model descriptiort(andr) on the state set.
direction of travel ang € [0.5,0.9] is a continuous param-
eter. The intuitive meaning gf is as follows. Small values
of p aresafein that they minimize the probability of a move
in an undesired direction, but resultstowprogress (i.e., no
change of cell is a likely outcome). By contrast, large values
of p increase the likelihood of movement, albeit sometimes
in the wrong direction. Formally, the move succeeds in the
requested directiod with probability p; lateral movement
(in one of the two randomly chosen directions) takes place
with probability (2p — 1)/8; and no change of cell results
with probability (9 — 10p)/8. Note thatp = 0.5 andp = 0.9
are the extreme cases: the former prevents lateral movement
the latter forces a change of cell. Moves into walls or off the
grid-world edge cause no change of cell.

The reward dynamics are as follows. The discount rate
isvy = 0.95. The goal and quicksand cells are absorbing fr
states with reward.5 and—0.5, respectively. All other ac-
tions generate a reward efp?, making fast actions more
expensive than the slow ones. The optimal policy is always
to move toward the goal, taking slow inexpensive actions
(0.5 < p < 0.60) far from the goal or near quicksand, and
faster expensive action8.6 < p < 0.65) when close to the
goal. The fastesi2% of the actions({.65 < p < 0.9) do not
prove useful in this model. Thus, ignoring them cannot hurt Classes ClassesC, common to all tasks, generalize the
the quality of the best attainable policy. In fact, eliminating remaining occurrences & in t andr. Each state in a task
them decreases the complexity of the problem and can speedis labeled with a class from amorny An action’s reward
up learning considerably, a key premise in our work. and transition dynamics are identical in all states of the

The research pertains to large action sets but does not re-same class. Formally, for all€ A andsy, sy € S,
quire that they be continuous. In all experiments, we dis- k(s1) = k(s2) = r(s1,a) = r(s2,a),t(s1,a) = t(s2,a),
cretize thep range ab).01 increments, resulting in a full ac-  wherex(-) denotes the class of a state. Classes allow the
tion set of sizel64. Since nearby actions have similar ef- definition of t and » as functions overC x A, a set
fects, generalization in the action space remains useful. The common to all tasks, rather than the task-specific set
above intuitive grid world domain serves to simplifythe ex- S x .A. Combining classes with outcomes enables a
position and to enable a precise, focused empirical study of task-independent description of the transition and reward
our methods. However, our work applies broadly to any do- dynamicsit : C x A — Pr(O) andr : C x A — R.
main in which the actions are not equally relevant. To illustrate the finalized descriptions ofand r, con-

Outcomes Rather than specifying the effects of an ac-
tion as a probability distributio®r(S) over nextstates
we specify it as a probability distributioRr(O) over out-
comesO (Boutilier, Reiter, & Price 2001) 0O is the set of
“nature’s choices,” or deterministic actions undeture’s
control. In our domain, these ar&lORTH, SOUTH, EAST,
WEST, STAY. Corresponding to every actian € A avail-
able to thdearneris a probability distribution (possibly dif-
ferent in different states) oved. Whena is taken, nature
“chooses” an outcome for execution according to that proba-
bility distribution. In the new definition : S x. A — Pr(0),

'the rangePr(©) is common to all tasks, unlike the original
rangePr(S). The semantics of the outcome set is made rig-
orous in the definitions below.

Note that the qualitative effect of a given outcome differs
om state to state. From many states, the outcemeT
corresponds to a transition to a cell just right of the cur-
rent location. However, when standing to the left of a wall,
the outcomeAST leads to a “transition” back to the current
state. How an outcome in a state is mapped to the actual next
state is map-specific and will be a part of a task description,
rather than the domain definition.



sider the grid world domain. It features three classes, cor- the ith outcome occurs. Suppose an oracle were to reveal
responding to the empty, goal, and quicksand cells. The re- the optimal values of these successor states; given a task,
ward and transition dynamics are the same in each class. these values are well-defined. We refer to the resulting vec-
Namely, the reward for actioiid, p) is —p? in cells of torv = [V*(s1) V*(s2) ... V*(sj0))]" as theout-

the “empty” class,0.5 in cells of the “goal” class, and come value vectofOVV) of states. OVV’s are intimately
—0.5 in cells of the “quicksand” class. Likewise, an action linked to optimal actionsy immediately identifies the opti-
(NORTH, p) has the same distribution over the outcome set mal action ak, 7*(s) = argmax,c 4{r(c, a)+vt(c,a)-v},
{NORTH, SOUTH, EAST, WEST, STAY } within each class: it wherec = k(s) is the class of. Consider now the set @il

is[0 0 0 0 1]T for all sin the “goal” and “quicksand” OVV's of a task, grouped by the classes of their correspond-
classes,anfh 0 (p—0.5)/8 (p—0.5)/8 (9 —10p)/8]* ing states:U = (U,,,Us,,...,Uc, ). HereU. denotes
for states in class “empty”; similarly fqiSOUTH, p), etc. the set of OVV’s of states of clags. Together, the OVV’s

Complete Formalism The above discussion casts the determine the task’s optimal action set in its entirety.

transition and reward dynamics ofdmmainabstractly in Definiton 3 Let U = (U,,,Us,,...,Uc,,) and U =

terms of outcomes and classes.task within a domain is (U.,,U., U <) be the OVV sets of the primary and
e . . C1) C2 Cic

fully specified by its state set, a mappings : § — C from auxiliary tasks, respectively. Thaissimilarity of the pri-

its states to the classes, and a specificajios x O — S of
the next state given the current state and an outcome. Thus, e ) B
the defining feature of a task is its state Setwhich the A(U,U) = maxeec maxuey, {mingg [u—allz}.
functionsx andy interface to the abstract domain model.

Figure 3 illustrates the complete formalism, emphasizing t

. . . 2 ta

the separation of what is common to all tasks in the domain
from the specifics of individual tasks. Note the contrast with
the original MDP formalism in Figure 1. Formally, domains
and tasks are defined as follows:

mary and auxiliary tasks, denoteM(U, U), is:

Intuitively, dissimilarity A(U,U) is the worst-case dis-
nce between an OVV in the primary task and the nearest
OVV of the same class in the auxiliary task. The notion of
dissimilarity allows us to establish the desired suboptimality
bound (see Appendix for a proof):

Definition 1 A domainis a quintuple( A, C, O, t, ), where Theorem 1 Let.A* be the optimal action set of the auxiliary

A is a set of actions¢ is a set of state classe§] is a set task. Replacing the full action set with A* reduces the

of action outcomest : C x A — Pr(O) is a transition highest attainable value of a state in the primary task by at

function; andr : C x A — R is a reward function. mostA(U, U) - v2v/(1 — v), whereU andU are the OVV
_ . . ) sets of the primary and auxiliary tasks, respectively.

Definition 2 A taskwithin the domain{A4,C, O, t,r) is a

triple (S, x,n), whereS is a set of statesx : S — C is Randomized Task Perturbation

a state classification function; angl: S x O — Sis a

next-state function. Theorem 1 implies that learning with the transferred actions

is safe if every OVV in the primary task has in its vicinity an
OVV of the same class in the auxiliary task. We confirm this

R-T A] ¢ expectation below with action transfer acreawmilar tasks.
Domain q 0 However, twodissimilartasks can have very different OVV
TR S ; makgups and 'Fhus pos_sibly different a.ction sets. T_his_section
' Task o studies a detrimental instance of action transfer in light of
‘ ‘ Theorem 1 and proposes a more sophisticated approach that
Figure 3: The formalism of related tasks in a domain. is robust to misleading auxiliary tasks.
Detrimental Action Transfer Consider the auxiliary and
. . . primary tasks in Figure 4. In one case, the goal is in the
Action Transfer: A Suboptimality Bound southeast corner; in the other, it is moved to a northwesterly
Let A* = {a € A : 7*(s) = a for somes € S} be the location. The optimal policy for the auxiliary task, shown in
optimal action seof anauxiliary task, and let4d* be the true Figure 4, includes onlgouTH andEAST actions. The pri-
optimal action set of thprimarytask. In action transfer, the ~ mary task features all four directions of travel in its optimal
primary task is learned using the transferred action/et policy. Learning the primary task with actions transferred
in the hope thatd* is “similar” to A*. If A* ¢ A*, the from the auxiliary task is thus a largely doomed endeavor:

best policy7* achievable with the transferred action set in the goal will be practically unreachable from most cells.

the primary task may be suboptimal. This section bounds RTP action transfer To do well with unrepresentative
the decrease in the highest attainable value of a state of theauxiliary experience, the learner must sample the domain’s
primary task due to the replacement of the full action4et  OVV space not reflected in the auxiliary tasRandomized
with A*. The bound will suggest a principled way to cope task perturbation(RTP) allows for a more thorough expo-

with unrepresentative auxiliary experience. sure to the domain’s OVV space while learning in the same
In the related-task formalism above, a given statsan auxiliary task. The method works by internally distorting
be succeeded by at mg€?| statessy, s, . . . , 50| (NOt nec- the optimal value function of the auxiliary task, thereby in-

essarily distinct), where; denotes the state that results if ducing an artificiahewtask while operating in theameen-
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Figure 4: A pair of auxiliary and primary tasks, along with their
optimal policies and value functions (rounded to integers).

vironment. RTP action transfer learns the optimal policy and
optimal actions in the artificial and original tasks.

Figure 5 illustrates the workings of RTP action trans-
fer. RTP distorts the optimal value function of the orig-
inal task (Figure &) by randomly selecting a small frac-
tion ¢ of the states and labeling them with randomly chosen
values, drawn uniformly fromvpin, Vmax]. Here vy, =
Tmin/ (1 —7) @NdUpmax = Tmax/(1 — ) are the smallest and
largest state values in the domain. The smallest and largest
one-step rewards,,;, andry,., are estimated or learned.

The selected states form a sgtof fixed-valued states

Figure % shows these states and their assigned values on a

sample run withp = 0.2. RTP action transfer learns the
value function of the artificial tasky treating the values of
the states inF as constantand by iteratively refining the
other states’ values vi@-learning. Figure &illustrates the
resulting optimal values. Note that the fixed-valued states

have retained their assigned values, and the other states’ val-

ues have been computed with regard to these fixed values.

RTP created an artificial task quite different from the orig-
inal. The optimal policy in Figure & featuresall four di-
rections of travel despite the goal's southeast location. We
ignore the action choices if since those states are semanti-
cally absorbing. The components (not shown in the figure)
of the resulting actions are in the useful ran@é, 0.65]—a
marked improvement over the full action set, in wh2¥,
of the actions are in the useless rari@&5, 0.9].

In terms of the formal analysis above, the combined (orig-
inal + artificial) OVV set in RTP action transfer is closer to,
or at least no farther from, the primary task’s OVV set than
is the OVV set of the original auxiliary task alone. The al-
gorithm thereby reduces the dissimilarity of the two tasks
and improves the suboptimality guarantees of Theorem 1.
Figure 6 specifies RTP transfer embedde@#earning.

Notes on RTP action transfer RTP action transfer is easy

to use. The algorithm’s only parameter, offers a trade-

off. ¢ ~ 0 results in an artificial task almost identical to
the original;¢ ~ 1 induces an OVV space that ignores the
domain’s transition and reward dynamics and is thus not rep-
resentative of tasks in the domain. Importantly, RTP action
transfer requires no environmental interaction of its own—it
reuses thés, a, ', s’) quadruples generated while learning
the unmodified auxiliary task. It may be useful to run RTP
action transfer several times, using the combined action set
over all runs. A data-economical implementation learns all
artificial Q-value functions;", Q7 , etc., within the same
algorithm. The data requirement is thus the same as in tradi-
tional Q-learning. The space and running time requirements
are a modest multiplé of those inQ-learning, wherek is
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Figure 5: RTP action transfer at work: original auxiliary tas®;(
random choice of fixed-valued states and their valtiesnew op-
timal value function ¢, rounded to integers) and policgt)(

Add eachs € S to F with probability ¢
foreachs € F
do random-value < rand(vVmin, Vmax)

Q" (s,a) « random-value foralla € A
repeat s < current stateg < 7(s)

Take actioru, observe reward, new states’

Q(57 (1) & r+ YMmaXg/ e A Q(Sl7 a/)

ifse S\ F

then Q" (s,a) < r +ymaxaca Q* (s, a)
until converged

A" = Uses{argmaxaca Q(s,a)}
At = Uses\F{arg maxaca Q" (s,a)}
return A* U AT

oO~N OO WNPRP

9
10
11
12

Figure 6: RTP action transfer in pseudocode. The left arrow indi-
cates regular assignment;> y denotesc «— (1 — a)z + ay.

the number of artificial tasks learned.

While RTP action transfer is a product of the related-task
formalism and suboptimality analysis abovejdtes not rely
on knowledge of the classes, outcomes, and state classifica-
tion and next-state functionés such, it is applicable to any
two MDP’s with a shared action set. In the case of tasks that
do obey the proposed formalism, the number of outcomes is
the dimension of the domain’s OVV space, and the number
of classes is a measure of the heterogeneity of the domain’s
dynamics (few classes means large regions of the state space
with uniform dynamics). RTP action transfer thrives in the
presence of few outcomes and few classes. RTP action trans-
fer will also work well if the same action is optimal for many
OVV's, increasing the odds of its discovery and inclusion in
the transferred action set.

Extensions to Continuous Domains RTP transfer read-

ily extends to continuous state spaces. In this case, the
setF cannot be formed from individual states; inste&d,
should encompas®gionsof the state space, each with a
fixed value, whose aggregate area is a fractioof the
state space. A practical implementation of RTP can use,
e.g. tile coding(Sutton & Barto 1998), a popular function-
approximation technique that discretizes the state space into
regions and generalizes updates in each region to nearby re-
gions. The method can be readily adapted to ensure that
fixed-valued regions retain their values (e.g., by resetting
them after every update).

Empirical Results

This section puts RTP action transfer to the test in several
learning contexts, confirming its effectiveness.



Relevance-weighted action selection A valuable vehicle puted from the learner’s policies using an external policy
for exploiting action transfer iaction relevancewhich we evaluator (value iteration) and was unrelated to the learner’s
define to be the fraction of states at which an action is op- own imperfect value estimates.

timal: RELEVANCE(a) = [{s € S : ©*(s) = a}|/|S]. (In
case of continuous-state domains, the potityand the rel-
evance computation are over a suitable discretization of the
state space.) Thegreedy action selection creates a substan-
tial opportunity for exploiting the actions’ relevancesx-
ploratory action choices should select an action with proba-
bility equal to its relevance (estimated from the optimal solu-
tion to the auxiliary task and to its perturbed versions), rather
than uniformly. The intuition here is that the likelihood of

a given actioru being optimal in state is RELEVANCE(a),

Results Figure 8 plots the performance of the four action
sets with different auxiliary tasks. The top of the graph (av-
erage state values 4.28) corresponds to optimal behav-
ior. The optimal and full action-set curves are repeated in
all graphs because they do not depend on the auxiliary task
(however, note the differegtscale in Figure 8).

The optimal action set is a consistent leader. The perfor-
mance of regular transfer strongly depends on the auxiliary
map. The first map’s optimal action set features s T
and it is to the learner’s advantage to explore its action op- and SOUTH actions, _Iea\_/mg the learner unprepared f(_)r the
tions ins in proportion to their optimality potential in test task and resulting in worse performance than with the

. . , ) full action set. Performance with the second auxiliary map is

We have empirically verified the benefits of relevance- ¢ 55 abysmal but is far from optimal. This is because map
weighted action selection and used it in all experiments ; yoes not feature sloWAST andSOUTH actions, which are
below. This technique allows action transfer to accelerate qmmon on the test map. The other two auxiliary tasks’ op-

learning even if it does not reduce thamberof actions. timal action sets resemble the test task’s, allowing regular
In this case, information about the actionslevanceslone action transfer to tie with the optimal set.

gives the learner an appreciable advantage over the default  p1p ransfer, by contrast, consistently rivals the optimal
(learning with the full action set and uniform relevances). action set. The effect of the auxiliary task on RTP transfer
Methodology and Parameter Choices We used Q- is minor, resulting in performance superior to the full action
learning withe = 0.1, o = 0.1, and optimistic initialization seteven with misleading auxiliary experiencehese results

(to 10, the largest value in the domain) to compare the per- show the effectiveness of RTP transfer and the comparative
formance of the optimal, transferred, and full action sets in undesirability of learning with the full and transferred ac-
the primary task shown in Figure 2. The optimal action set tion sets. We have verified that RTP transfer substantially
was the actual set of optimal actions on the primary task, in improves orrandomselection of actions for the partial set.
the given discretization of the action space. The transferred In fact, such randomly-constructed action sets perform more
action sets were obtained from the auxiliary tasks of Fig- poorly than even the full set, past an initial transient.

ure 7 by regular transfer in one case and by RTP transfer in

the other ¢ = 0.1 and10 trials, picked heuristically and not AUXILIARY MAP: A AUXILIARY MAP: B

optimized). Regular and RTP action transfer requirewil-
lion episodes and an appropriate anneal@&gime to solve

o
-

-~ ! . 4
the auxiliary tasks optimally. That many episodes would . ,/ optimal ," optimal
be needed in any event to solve the auxiliary tasks, so the ! transferred -+ 35 O — .
knowledge transfer generated no overhead. i TS ] { e
The experiments used relevance-weightggleedy action 0 pry 000 o : pre 50000

selection. All thel64 actions in the full set were assigned

A AUXILIARY MAP: C AUXILIARY MAP: D
the default relevance af/164. In the transferred action sets,

the relevance of an action was computed by definition from Jf e ] 4
the optimal policy of the auxiliary task; in the case of RTP 7 P
. F; optimal ’ optimal
transfer, the relevances were averaged over all trials. 35k / RTP i a5k ’ RTP J
- ) - ~ ) . ¢ transferred _ __ 4 transferred _ __

For function approximation in the dimension, we used ! ul H ul
H H : H L 1 ] 1
tile coding (Sutton & Barto 1998). Grid world episodes h o =0 o — vt

started in a random cell and ran for 100 time steps, to

avoid spinning indefinitely in absorbing goal/quicksand Figure 8: Comparative performance. Each curve is a point-wise
states. The performance criterion was ttighestaverage average over 100 runs. At a 0.01 significance level, the ordering of
state value under any policy discovered, vs. the number of the curves is: KF< {RTP, O} (mapa, starting at;000); F<T<

episodes completed. This performance metric was com- {sTtR o t(ln(;(%pb’ starting atl 7000). F< {T, RTP, G (mapsc—d
starting at100).

Related Work

Knowledge transfer has been applied to hierarchical
(Hauskrecht et al. 1998; Dietterich 2000), first-
order (Boutilier, Reiter, & Price 2001), and fac-
Figure 7: Auxiliary maps used in the experiments. tored (Guestriret al. 2003) MDP’s. A limitation of this




related research is the reliance on a human designer for an Hauskrecht, M.; Meuleau, N.; Kaelbling, L. P.; Dean, T.; and

explicit description of the regularities in the domain’s dy-
namics, be it in the form of matching state regions in two
problems, a hierarchical policy graph, relational structure, or
situation-calculus fluents and operators. RTP action transfer,
while inspired by an analysis using outcomes, classes, and
state classification and next-state functions, requires none of
this information. It discovers and exploits the domain’s reg-
ularities to the extent that they are present and requires no
human guidance along the way. Furthermore, our method is
robust to unrepresentative auxiliary experience.

In addition, the longstanding tradition in RL has been to
attack problem complexity on the&tateside. For example,
the above methods identify regions of the state space with
similar optimal behavior. By contrast, our method simpli-
fies the problem by identifying usefakttions A promising
approach would be to combine these two lines of work.

Conclusion

This paper presentaction transfer a novel approach to
knowledge transfer across tasks in domains with large action
sets. The algorithm rests on the idea that actions relevant
to an optimal policy in one task are likely to be relevant in
other tasks. The contributions of this paper are: (i) a formal-
ism isolating the commonalities and differences among tasks ©
within a domain, (ii) a formal bound on the suboptimality
of action transfer, and (iii) action transfer withndomized
task perturbation(RTP), a more sophisticated and empir-
ically successful knowledge-transfer approach inspired by
the analysis of regular transfer. We demonstrate the effec-
tiveness of RTP empirically in several learning settings. We
intend to exploit RTP’s potential to handle truly continuous
action spaces, rather than merely large, discretized ones.
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Proof of Theorem 1
Lemmal Let U (Uey,Uey, .-, Uepe)) be the auxiliary

task’s OVV set, and led* be the corresponding action set.
Then maxsea{r(c,a) + ~vt(c,a)v} — max, z.{r(c,a) +
wt(c a)v} < \/iwminueﬁc{ﬂv — ulf2} forall v € Rl and

Proof: Letay = argmaxaeca{r(c,a) + vt(c,a)v}. Letay =
arg maxqea{r(c,a) + vt(c, a)u} for an arbitraryu € U, so
thata, € A". We immediately haver(c, av) + vt(c, av)u <
r(¢, au) + 7vt(c, aw)u. Therefore,
max.ea{r(c,a) + vt(c,a)v} — max,  z.{r(c,a) + vt(c,a)v}
< [r(e av) +7t(c, av)v] = [r(c, au) + 7t(c, au) V]
= [r(c,av) — r(c,an)] — [vt(c, au)v — Yt(c, av)Vv]
< [yt(e, au)u — yt(c, av)u] — [yt(c, au)v — yt(c, av)Vv]
= ’Y[t(q (lu) - t(c7 aV)] ' [u - V}
< It au) = t(e,av)ll2 - [lu = vll2 < V2y - [lu— ]|

Since the choice oft € U. was arbitrary and any other member of
U. could have been chosen in its place, the lemma holds. O

LetV* andV* be the optimal value functions for the primary task
(S, K, m) usingAandA”, respectively. Lef = maxses{V"(s)—
V*(s)}. Thenforalls € S,

{r(6(5).0) +7 %0 t(s), 0,00V (n(s,0)) }

)7 a) + vy Eoeo t(5(5)7 a, O)V* (77(57 O))} - 'Y&

V*(s) = max
acA*

> max {r(k(s
acA

Applying Lemma 1 and denoting by the OVV corresponding to
sin U, we obtain:

V7'(8) 2 V() = Vaymingeg IV — s =70
> V*(s) — V2y maxcec maxucy, {minacp, ||u—a||} — 0
=V*(s) — V2yA(U,U) — 74.

Hence,V*(s) V*(s) <6 < V2YA(U,U) 446, andV*(s) —
V*(s) < AU, U) - V2y/(1 — ) foralls € S. O



