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Abstract

Temporal difference (TD) learning methods (Sutton & Barto
1998) have become popular reinforcement learning techniques
in recent years. TD methods, relying on function approxima-
tors to generalize learning to novel situations, have had some
experimental successes and have been shown to exhibit some
desirable properties in theory, but have often been found slow
in practice. This paper presents methods for further generaliz-
ing across tasks, thereby speeding up learning, via a novel form
of behavior transfer. We compare learning on a complex task
with three function approximators, a CMAC, a neural network,
and an RBF, and demonstrate that behavior transfer works well
with all three. Using behavior transfer, agents are able to learn
one task and then markedly reduce the time it takes to learn a
more complex task. Our algorithms are fully implemented and
tested in the RoboCup-soccer keepaway domain.

Introduction

Temporal difference learning methods (Sutton & Barto 1998)
have shown some success in different reinforcement learning
tasks because of their ability to learn where there is limited
prior knowledge and minimal environmental feedback. How-
ever, in practice, current TD methods are somewhat slow to
produce near-optimal behaviors. Many techniques exist which
attempt to speed up the learning process.

For example, Selfridge et al. (1985) used directed training
to show that a learner can train faster on a task if it has first
learned on a simpler variation of the task. In this paradigm the
state transition function, which is part of the environment, can
change between tasks. Learning from easy missions (Asada et
al. 1994) is a technique that relies on human input to modify
the starting state of the learner over time, making it incremen-
tally more difficult for the learner. Both of these methods re-
duce the total training time required to successfully learn the
final task. However, neither allow for changes to the state or
action spaces between the tasks, limiting their applicability.

Reward shaping (Colombetti & Dorigo 1993; Mataric 1994)
allows one to bias a learner’s progress through the state space
by adding in artificial rewards to the environmental rewards.
Doing so requires sufficient knowledge about the environment
a priori to guide the learner and must be done carefully to
avoid unintended behaviors. While it is well understood how
to add this type of guidance to a learner (Ng, Harada, & Rus-
sell 1999), we would prefer to allow the agent to learn faster
by training on different (perhaps pre-existing) tasks rather than
creating easier, artificial tasks.
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Value-based TD methods learn to estimate a value function
for each possible state. The learner is then able to select the
action which it believes will return the highest value in the long
run. Over time the learned value function approaches the true
value of each state by comparing the expected value of a state
with the actual value received from that state. Value-based TD
methods typically utilize a function approximator so that the
value function can be approximated for novel situations. This
approximation becomes critical as the number of situations the
agents could be in grows, or becomes infinite.

In this paper we study the effect of behavior transfer (Tay-
lor & Stone 2005) on the learning rates of value-based TD
learners. Behavior transfer allows a TD learner trained on
one task to learn significantly faster when training on another
task with related, but different, state and action spaces. This
method is more general than the previously referenced meth-
ods because it does not preclude the modification of the transi-
tion function, start state, or reward function. We will compare
the efficacy of using behavior transfer to speed up learning
in agents that utilize three different function approximators, a
CMAC, a neural network, and an RBF, on a single reinforce-
ment learning problem.

The key technical challenge of behavior transfer is mapping
a value function in one representation to a meaningful value
function in another, typically larger, representation. The map-
ping is necessarily dependent on both the task and the func-
tion approximator’s representation of the value function, but
we posit that the behavior transfer technique will be applica-
ble to multiple tasks and function approximators. This paper
establishes that behavior transfer is general enough to work
effectively with multiple function approximators, in particular
a neural network in addition to a CMAC. This paper also di-
rectly compares the efficacy of a CMAC and a neural network
on the same complex learning task.

Behavior Transfer Methodology

To formally define behavior transfer we first review the rein-
forcement learning framework that conforms to the generally
accepted notation for Markov decision processes (Puterman
1994). There is a set of possible perceptions of the current
state of the world, .S, and a learner has an initial starting state,
Sinitial- When in a particular state s, there is a set of actions,
A, which can be taken. The reward function R maps each
perceived state of the environment to a single number which
is the instantaneous reward for the state. The transition func-
tion, 7', takes a state and an action and returns the state of the
environment after the action is performed. If transitions are
non-deterministic the transition function is a probability dis-
tribution function. A learner is able to sense s, and typically
knows A, but may or may not initially know S, R, or T'.



A policy 7 : S — A defines how a learner interacts with
the environment by mapping perceived environmental states
to actions. 7 is modified by the learner over time to improve
performance, i.e. the expected total reward, and it completely
defines the behavior of the learner in an environment. In the
general case the policy can be stochastic. The success of an
agent is determined by how well it maximizes the total reward
it receives in the long run while acting under some policy 7.
An optimal policy, 7*, is a policy which does maximize this
value (in expectation). Any reasonable learning algorithm at-
tempts to modify 7 over time so that the agent’s performance
approaches that of 7*.

In this paper we consider the general case where S; # S,
and/or A; # As for two tasks. To use the learned policy from
the first task, (1, final), as the initial policy for a TD learner
in a second task, we must transform the value function so that
it can be directly applied to the new state and action space. A
behavior transfer functional p(7) will allow us to apply a pol-
icy in a new task. The policy transform functional p needs to
modify the policy and its associated value function so that it
accepts So as inputs and allows for A, to be outputs. A policy
generally selects the action which is believed to accumulate
the largest expected total reward; the problem of transforming
a policy between two tasks reduces to transforming the value
function. In this paper we will therefore concentrate on trans-
ferring the state action values, Q, from one learner to another.
Defining p correctly is the key technical challenge to enable
general behavior transfer.

One measure of success in speed-
ing up learning using this method
is that given a policy 7(1,final), the
training time for m to reach some
performance threshold decreases
when replacing the initial policy in
task 2, T2 initial)>» With p(7(1, finary)-
This criterion is relevant when task
1 is given and is of interest in its
own right or if m(; fina) can be
used repeatedly to speed up multiple
related tasks. A stronger measure of
success is that the training time for
both tasks using behavior transfer is
shorter than the training time to learn
the second task from scratch. This
criterion is relevant when task 1 is created for the sole purpose
of speeding up learning via behavior transfer and 71, finar) is
not reused.
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Figure 1: This diagram depicts
the 13 state variables used for
learning with 3 keepers and 2
takers. There are 11 distances
to players and the center of the
field, as well as 2 angles along
passing lanes.

Testbed Domain

To test the efficacy of behavior transfer with different func-
tion approximators we consider the RoboCup simulated soc-
cer keepaway domain using a setup similar to past re-
search (Stone, Sutton, & Kuhlmann 2005). RoboCup sim-
ulated soccer is well understood as it has been the basis of
multiple international competitions and research challenges.
The multiagent domain incorporates noisy sensors and actu-
ators, as well as enforcing a hidden state so that agents can
only have a partial world view at any given time. While pre-
vious work has attempted to use machine learning to learn
the full simulated soccer problem (Andre & Teller 1999;
Riedmiller et al. 2001), the complexity and size of the problem
have proven prohibitive. However, many of the RoboCup sub-
problems have been isolated and solved using machine learn-
ing techniques, including the task of playing keepaway.

Keepaway, a subproblem of RoboCup soccer, is the chal-
lenge where one team, the keepers, attempts to maintain pos-
session of the ball on a field while another team, the takers,
attempts to gain possession of the ball or force the ball out of
bounds, ending an episode. Keepers that make better decisions
about their actions are able to maintain possession of the ball
longer and thus have a longer average episode length. Figure 1
depicts three keepers playing against two takers.

As more players are added to the task, keepaway be-
comes harder for the keepers because the field becomes more
crowded. As more takers are added there are more players
to block passing lanes and chase down any errant passes. As
more keepers are added, the keeper with the ball has more
passing options but the average pass distance is shorter. This
reduced distance forces more passes and often leads to more
errors because of the noisy actuators and sensors. For this rea-
son keepers in 4 vs. 3 keepaway (i.e. 4 keepers and 3 takers)
take longer to learn an optimal control policy than in 3 vs. 2.
The hold time of the best policy for a constant field size also
decreases when adding an equal number of keepers and takers.
The time it takes to learn a policy which is near a handcoded
solution roughly doubles as each additional keeper and taker
is added (Stone, Sutton, & Kuhlmann 2005).

Learning Keepaway

The keepers use episodic SMDP Sarsa(\) (Sutton & Barto
1998), a well understood temporal difference algorithm, to
learn their task. In one implementation, we use linear tile-
coding function approximation, also known as CMACs, which
has been successfully used in many reinforcement learning
systems (Albus 1981). A second implementation of our agents
use neural networks, another method for function approxima-
tion that has had some notable past successes (Crites & Barto
1996; Tesauro 1994). The third implementation uses a ra-
dial basis function (RBF) (Sutton & Barto 1998). The keep-
ers choose not from primitive actions (turn, dash, or kick)
but higher-level actions implemented by the CMUnited-99
team (Stone, Riley, & Veloso 2000). A keeper without the ball
automatically attempts to move to an open area (the receive
action). A keeper in possession of the ball has the freedom to
decide whether to hold the ball or to pass to a teammate.

Our CMAC and RBF agents are based on the keepaway
benchmark players distributed by UT-Austin' which are de-
scribed in (Stone ef al. 2005). These benchmark players are
built on the UvA Trilearn team (de Boer & Kok 2002) and the
CMUnited-99 team (Stone, Riley, & Veloso 2000), whereas
previous publications (Stone, Sutton, & Kuhlmann 2005) and
our neural network players are built on the CMUnited-99 play-
ers alone. The newer benchmark players have better low-level
functionality and are thus able to hold the ball for longer than
the CMUnited-99 players, both before and after learning, but
the learning and behavior transfer results are very similar to
the older players.

CMAC:s allow us to take arbitrary groups of continuous state
variables and lay infinite, axis-parallel tilings over them (see
Figure 2). Using this method we are able to discretize the
continuous state space by using tilings while maintaining the
capability to generalize via multiple overlapping tilings. The
number of tiles and width of the tilings are hardcoded and this
dictates which state values will activate which tiles. The func-
tion approximation is learned by changing how much each tile

lFlash file demonstrations, source code, documentation, and mailing list can be
found at http://www.cs.utexas.edu/users/AustinVilla/sim/keepaway/.



contributes to the output of the function approximator. By de-
fault, all the CMAC’s weights are initialized to zero. This ap-
proach to function approximation in the RoboCup soccer do-
main is detailed by Stone and Sutton (2002).

An RBF is a generalization of
the tile coding idea to a contin-
uous function (Sutton & Barto
1998). In the one-dimensional
case, an RBF approximator is
a linear function approximator
f(z) = >, wifi(z), where the
basis functions have the form
filz) = ¢(Jx — ¢l), x is the
current state, and ¢; is the cen-
ter of feature . A CMAC
is a degenerate case of RBF
approximator with ¢;’s equally
spaced and ¢(z) a step function.
Here we use Gaussian radial ba-
sis functions, where ¢(x) =

exp(— %), and the same ¢;’s as
a CMAC. The learning for RBF
networks is identical to that for
CMAC:s except for the calcula-
tion of state-action values where the RBFs are used. As is
the case for CMAC:s, the state-action values are computed as a
sum of one-dimensional RBFs, one for each feature. By tun-
ing o, the experimenter can control the width of the Gaussian
function and therefore the amount of generalization over the
state space. In our implementation, a value of ¢ = 0.25 cre-
ates a Gaussian which roughly spans 3 CMAC tiles. We tried
3 different values for this parameter but more tuning may have
reduced our learning times.

The neural network function approximator likewise allows
a learner to select an action given a set of state variables. Each
input to the neural network is set to the value of a state vari-
able and each output corresponds to an action. The legal ac-
tion with the highest activation is selected. We use a feed-
forward network with a single hidden layer built with the As-
pirin/MIGRANES 6.0 framework. Nodes in the hidden layer
have a sigmoid transfer function and output nodes are linear.
The network is then trained using standard backpropogation,
modifying the weights connecting the nodes. To our knowl-
edge, this work presents the first application of a function ap-
proximator other than a CMAC in the keepaway domain.

For the purposes of this paper, it is particularly important
to note the state variables and action possibilities used by the
learners. The keepers’ states comprise distances and angles of
the keepers K1 — K, the takers 17 — T;,,, and the center of
the playing region C (see Figure 1). Keepers and takers are
ordered by increasing distance from the ball. Note that as the
number of keepers n and the number of takers m increase, the
number of state variables also increase so that the more com-
plex state can be fully described. S must change (e.g. there
are more distances to players to account for) and | A| increases
as there are more teammates for the keeper with possession
of the ball to pass to. Full details of the keepaway domain
and a player implementation similar to ours are documented
elsewhere (Stone, Sutton, & Kuhlmann 2005).
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Figure 2: Tile-coding feature sets
are formed from multiple overlapping
tilings and state variables are used to
determine the activated tile in each of
the different tilings. Every activated
tile contributes a weighted value to the
total output of the CMAC for the given
state. Increasing the number of tilings
allows better generalization while de-
creasing the tile size allows more ac-
curate representations of smaller de-
tails. Note that we primarily use one-
dimensional tilings but that the princi-
ples apply in the n-dimensional case.

Learning 3 vs. 2

On a 25m x 25m field, three keepers are initially placed in
three corners of the field and a ball is placed near one of the
keepers. The two takers are placed in the fourth corner. When

the episode starts, the three keepers attempt to keep control of
the ball by passing amongst themselves and moving to open
positions. The keeper with the ball has the option to either
pass the ball to one of its two teammates or to hold the ball. In
this task A = {hold, passToTeammatel, passToTeammate2}.
S is defined by 13 state variables, as shown in Figure 1. When
a taker gains control of the ball or the ball is kicked out of
the field’s bounds the episode is finished. The reward to the
Sarsa(\) algorithm for the keeper is the number of time steps
the ball remains in play after an action is taken. The episode
is then reset with a random keeper placed near the ball.

All weights in the CMAC function approximator are ini-
tially set to zero. Similarly, all weights and biases in the neu-
ral network are set to small random numbers. We use a 13-
20-4 network where the choice of 20 hidden units was chosen
via experimentation. > As training progresses, the weights of
the function approximator are changed by Sarsa()) so that the
average hold time of the keepers increases. Throughout this
process, the takers use a static hand-coded policy to attempt
to capture the ball as quickly as possible. Policy evaluation is
very noisy do to high environmental randomness.

Learning 4 vs. 3

Holding the field size constant we now add an additional
keeper and an additional taker. R and T’ are essentially
unchanged from 3 vs. 2 keepaway, but now A = {hold,
passToTeammatel, passToTeammate2, passToTeammate3}
and S is made up of 19 state variables due to the added players.
The 4 vs. 3 task is harder and the learned average hold times
after 20 hours of training with a CMAC function approximator
learning from scratch decrease by roughly 32% from 3 vs. 2 to
4 vs. 3. The neural network used is a 19-30-5 network, where
the use of 30 hidden units was chosen under the assumption
that the 4 vs. 3 task is more complex than the 3 vs. 2 task,
which had fewer inputs, hidden units, and outputs.3

In order to quantify how fast an agent in 4 vs. 3 learns,
we set a target performance of 9.0 seconds for CMAC and
neural network learners, while RBF learners have a target of
10.0 seconds. Thus, when a group of four CMAC keepers
has learned to hold the ball for an average of 9.0 seconds over
1,000 episodes we say that the keepers have learned the 4 vs.
3 task. This threshold is chosen so that all trials need to learn
for some nonzero amount of time and the majority of trials are
able to reach the threshold before learning plateaus; because
the RBF learners learn more quickly, they required a higher
target performance. Note that our behavior transfer results
hold for other (higher) threshold times as well. By averaging
over many trials we can measure the effectiveness of learning
in different situations.

Behavior Transfer in Keepaway

Learning on one task and transferring the behavior to a sepa-
rate useful task can reduce the training time. In the keepaway
domain, A and S are determined by the current keepaway task
and thus differ from instance to instance. S;nitia1, B, and T,
though formally different, are effectively constant across tasks.
When S and A change, S;pitiq1, R, and T’ change by definition.
But in practice, R is always defined as 1 for every time step
that the keepers maintain possession, and s;,;t;q; and 1" are
always defined by the RoboCup soccer simulation.

2Five different network sizes were tested, from 15 to 25 hidden nodes and the differ-
ences in performance were very small.

3Again, other networks with different numbers of hidden units were tried, but the
differences in learning times were not significant.



In the keepaway domain we are able to intuit the mappings
between states and actions in the two tasks, p, based on our
knowledge of the domain. Our choice for the mappings is sup-
ported by empirical evidence showing that using this p with
behavior transfer decreases training time. Other domains will
not necessarily have such straightforward transforms between
tasks of different complexity. Finding a general method to
specify p is outside the scope of this paper and will be for-
mulated in future work. One of the main future challenges
will be identifying general heuristics for mapping states and
actions between two related tasks. A primary contribution of
this paper is demonstrating that there exist domains and func-
tion approximators for which p can be constructed and then
used to successfully decrease learning times.

The naive approach of directly using the value function from
T(3vs2, final) 1ails because S and A have changed. Keeping in
mind that 7 : S — A, we see that the new state vectors which
describe the learner’s environment would not necessarily be
correctly used, nor would the new actions be correctly evalu-
ated by T(3ys2, final)- 10 use the learned policy we modify it
to handle the new actions and new state values in the second
task so that the player can reasonably evaluate them.

The CMAC function approximator takes a state and an ac-
tion and returns the expected total reward. The learner can
evaluate each potential action for the current state and then
use 7 to choose one. We construct a pemqc and utilize it so
that when we input a 4 vs. 3 action the weights for the activated
tiles are not zero but instead are initialized by (3,52, finat)- TO
accomplish this, we copy weights from the tiles which would
be activated for a similar action in 3 vs. 2 into the tiles activated
for every new action in 4 vs. 3. The weights corresponding to
the tiles that are activated for the “pass to teammate 2” action
are copied into the weights for the tiles that are activated to
evaluate the “pass to teammate 3” action. T(4ys3,initial) Will
initially be unable to distinguish between these two actions.

To handle new state variables we follow a similar strategy.
The 13 state variables which are present in 3 vs. 2 are already
handled by the CMAC’s weights. The weights for tiles acti-
vated by the six new 4 vs. 3 state variables are initialized to
values of weights activated by similar 3 vs. 2 state variables.
For instance, weights which correspond to “distance to team-
mate 2” values in the state representation are copied into the
weights for tiles corresponding to “distance to teammate 3”
state values. This is done for all six new state variables. As a
final step, any weights which have not been initialized are set
to the average value of all initialized weights. This extra step
provides an larger benifit when fewer 3 vs. 2 episodes are used
and is studdied elsewhere (Taylor & Stone 2005). The 3 vs. 2
training was not exhaustive and therefore some weights which
may be utilized in 4 vs. 3 would otherwise remain uninitial-
ized. Tiles which correspond to every value in the new 4 vs.
3 state vector have thus been initialized to values determined
via training in 3 vs. 2. See Table 1 for examples. Identifying
similar actions and states between two tasks is essential for
constructing p and may prove to be the main limitation when
attempting to apply behavior transfer to different domains.

prBF is analogous to pcarac. The main difference be-
tween the RBF and CMAC function approximators are how
weights are summed together to produces values, but the
weights have similar structure in both function approximators.
For a given state variable, a CMAC summs one weight per
tiling. An RBF differs as it sums multiple weights for each
tiling where weights are multiplied by the Gaussian function
¢(x — ¢;). We thus copy weights from actions and states in

3 vs. 2 into similar actions and states in 4 vs. 3, following the
same schema as in pcarac-

Constructin . .
Prnet is £ Partial Description of pcyqc
.nn.el 1 4 vs. 3 state variable 3 vs. 2 state variable
simlarly dist(K1,C) dist(K1,C)
1ntuitive. dist%Kg, ) dist(Ko,C)
-70- dist(Ks, C dist(Ks3, C
}he 13 lz(.) diASt(K‘l’ C)) _ di_stg[l(g, C;
NetWOrkK 1S ~Min(dist(Kz, 1), dist (K2, 15), | Min(dist(Kz, T1).
augmented f/f‘sigKikfrgs))T ), dist(EKs, Tz) l(f/f'sifiKth%))T )
: in(dzs s ,dis 3, s in(dis 3, s
by adding | G0 o))t e dist(Ks, To))
6 inputs, Min(dist(Kgq, T), dist(Ka, T2), | Min(dist(Ks3, T1),
10 hidden | dist(Ka, T3)) dist(Ks3, Ts))
hidden Table 1: This table describes part of the Py qc transform in keep-
nodes. and away. We denote the distance between a and b as dist(a, b). Rele-
1 E)utput vant points are the center of the field C|, keepers K1 -K 4, and takers
T1-T5. Keepers and takers are ordered in increasing distance from
1’10(:16. The the ball and state values not present in 3 vs. 2 are in bold.
weights

connecting inputs 1-13 to hidden nodes 1-20 are copied over
from the 13-20-4 network. Likewise, the weights from hidden
nodes 1-20 to outputs 1-4 are copied over. The new weights
between the input and hidden layers, i.e. those not present
in the 13-20-4 network, are set to the average learned weight
from the input to hidden layer. The new weights between the
hidden and output layers are set to the average learned weights
from the hidden to output layer. Every weight in the 19-30-5
network is set to an initial value based on the trained 13-20-4
network. Because p,,,c¢ copies the average into the weights
from the input to hidden layer, it is in some sense simpler than
Pemacs Which initializes the weights for the new state variables
to similar old state variables. We explore this simpler pcymqc
to suggest that there are multiple ways to formulate p. Future
work will attempt to determine a priori what type of p will
work best for a given function approximator and pair of tasks.
Having constructed ps which handle the new states
and actions for function approximators, we can now set
T (4vs3,initial) = P(T(3vs2,finat)) for all three sets of agents.
We do not claim that these initial value functions are correct
(and empirically they are not), but instead that they allow the
learners to more quickly discover a near-optimal policy.

Results and Discussion
In Tables 2 and 3 we see that

CMAC Learning Results a CMAC, an RBF, and a neu-

#ol3vs. 2TAve. 4vs. 3T~ Ave. tolal ] ra] network successfully allow
episodes | time (hours)| time (hours) ind d 1 i
15.26 1526 1independent players to learn to
! 1229 12.29 hold the ball from opponents
10 10.06 10.08 hen learning fi h
50 4.83 493 when learning from scratch.
%28 g-g% tZ%Z However, the training times for
500 399 505 agents that use neural nz:tworks
1000 372 5.85 'S sioni i
3000 3 Dion is significantly longer. * Previ
9000 1.38 50.49 ous research has shown that a
18000 1.24 9801 | CMAC function approximator

was able to successfully learn
in this domain (Stone, Sutton,
& Kuhlmann 2005), but to our
knowledge no other function
approximators had been tested
in keepaway. This work confirms that other function approxi-
mators can be successfully used and that a CMAC is more effi-
cient than a neural network, another obvious choice. We posit
that this difference is due to the CMAC’s property of locality.

Table 2: Results showing that learn-
ing keepaway with a CMAC and apply-
ing behavior transfer can reduce training
time. Minimum learning times are bold.

4Note that these neural network results use an older version of the agents than used
by the CMAC or RBF. However, the newer version of the neural network players also
learn much slower than the CMAC and RBF players.



Neural Network and RBF Learning Results

#o0f3vs. 2 Ave. NNET | Ave. NNET Ave. RBF Ave. RBF
episodes 4 vs. 3 time total time 4 vs. 3 time total time
397.16 397.16 12.02 12.02
10 283.55 283.57 7.78 7.80
50 240.07 240.17 7.09 7.23
100 221.89 222.08 7.53 7.79
250 296.73 297.22 7.26 797
500 392.82 393.88 7.14 8.62
1,000 357.32 359.45 6.90 10.13

Table 3: Results from learning keepaway with different amounts of 3 vs. 2 training time
(in hours) indicates behavior transfer can reduce training time for neural network (9.0
second threshold) and RBF players (10.0 second threshold).

When a particular CMAC weight for one state variable is up-
dated during training, the update will affect the output value of
the CMAC for other nearby state variable values. The width
of the CMAC tiles determines the generalization effect and
outside of this tile width, the change has no effect. Contrast
this with the non-locality of a neural network. Every weight is
used for the calculation of a value function, regardless of how
close two inputs are in state space. Any update to a weight in
the neural network must change the final output of the network
for every set of inputs. Therefore it may take the neural net-
work longer to settle into an optimal configuration. The RBF
function approximator had the best performance of the three.
The RBF shares the CMAC’s locality benefits, but is also able
to generalize more smoothly due to the Gaussian summation
of weights. When comparing the times of the RBF function
approximator to that of the CMAC, it is important to note that
the CMAC was only learning to hold the ball for an average of
9.0 second in 4 vs. 3. For example, when the 4 vs. 3 threshold
is set to 10.0 seconds for the CMAC, behavior transfer from
1000 3v2 episodes takes 8.41 hours to learn 4 vs. 3, a 44% in-
crease over the time to learn a 9.0 second hold time, and 20%
longer than the equivalent RBF 4 vs. 3 training time.

To test the effect of using behavior transfer with a learned
3 vs. 2 value function, we train a set of keepers for a num-
ber of 3 vs. 2 episodes, save the function approximator’s
weights (3452, finat)) from a random 3 vs. 2 keeper, and use

the weights to initialize all four keepers® in 4 vs. 3 so that
P(T (3052, final)) = T(4vs3,initial)- Then we train on the 4 vs. 3
keepaway task until the average hold time for 1,000 episodes
is greater than 9.0 seconds. Note that in our experiments we
set the agents to have a 360° field of view although agents do
also learn with a more realistic 90° field of view. Allowing the
agents to see 360° speeds up the rate of learning and increases
the learned hold time, reducing data collection time.

Table 2 reports the average time spent training in 4 vs. 3
with CMAC players to achieve a 9.0 second average hold time
for different amounts of 3 vs. 2 training. Column two reports
the time spent training on 4 vs. 3 while the third column shows
the total time to train 3 vs. 2 and 4 vs. 3. As can be seen from
the table, spending time training in the simpler 3 vs. 2 domain
can cause the time learning 4 vs. 3 to decrease. To overcome
the high amounts of noise in our evaluation we run at least 45
independent trials for each data point reported.

Table 2 shows the potential of behavior transfer. We use
a t-test to determine that the differences in the distributions
of 4 vs. 3 training times and total training times when using
behavior transfer are statistically significant (p < 5.7 % 10~11)

5We do so under the hypothesis that the policy of a single keeper represents all of
the keepers’ learned knowledge. Though in theory the keepers could be learning different
policies that interact well with one another, so far there is no evidence that they do. One
pressure against such specialization is that the keepers’ start positions are randomized. In
earlier informal experiments, there appeared to be some specialization when each keeper
started in the same location every episode.

when compared to training 4 vs. 3 from scratch. Not only is
the time to train the 4 vs. 3 task decreased when we first train
on 3 vs. 2, but the total training time is less than the time to
train 4 vs. 3 from scratch. We can therefore conclude that
in the keepaway domain training first on a simpler task can
increase the rate of learning enough that the total training time
is decreased when using a CMAC function approximator.

To verify that the 4 vs. 3 CMAC players were benefiting
from behavior transfer and not from having non-zero initial
weights, we initialized CMAC weights uniformly to 1.0 in one
set of experiments and then to random numbers from 0.0-0.5
in a second set of experiments. The learning time was greater
than learning from scratch in both experiments. Haphazardly
initializing CMAC weights may hurt the learner but systemat-
ically setting them through behavior transfer is beneficial.

Table 3 shows the average training time in 4 vs. 3 for differ-
ent amount of 3 vs. 2 training using a neural network function
approximator. All numbers reported are averaged over at least
35 independent trials. Not only is the 4 vs. 3 training time
needed to reach the 9.0 second target performance reduced by
using behavior transfer, but the total training time can also be
reduced. A t-test confirms that the difference in total train-
ing times between using behavior transfer and training from
scratch is statistically significant when using fewer than 500
3 vs. 2 episodes (p < 1.2 x 1072). Notice that the 4 vs. 3
training time increases as more 3 vs. 2 episodes are added. We
posit this is due to overtraining, as the weights become more
specific to the 3 vs. 2 task.® Table 3 also has results for the
RBF players. All numbers reported are averaged over at least
29 independent trials; both 4 vs. 3 time and total time can be
reduced with behavior transfer. A t-test confirms that all be-
havior transfer results differ from scratch (p < 1.4 * 107°).

We would like to be able to determine the optimal amount
of time needed to train on an easier task to speed up a more
difficult task. Determining these training thresholds for tasks
in different domains is currently an open problem and will be
the subject of future research, but our results suggest that the
amount of time spent on the first task should be much smaller
than the amount of time spent learning the second task.

Related Work

The concept of seeding a learned behavior with some initial
simple behavior is not new. There have been approaches to
simplifying reinforcement learning by manipulating the tran-
sition function, the agent’s initial state, and/or the reward func-
tion, such as directed training (Selfridge, Sutton, & Barto
1985), learning from easy missions (Asada et al. 1994), and
reward shaping (Colombetti & Dorigo 1993; Mataric 1994),
as discussed in the Introduction. The “transfer of learning”
approach (Singh 1992) applies specifically to temporally se-
quential subtasks. The subtasks must all be very similar in
that they have the same state spaces, action spaces, and envi-
ronment dynamics, although the reward function R may dif-
fer. While these four methods allow the learner to spend less
total time training, they rely on a human modifying the task to
create artificial problems to train on. We contrast this with be-
havior transfer where we allow the state and/or action spaces
to change between actual tasks. This added flexibility permits
behavior transfer to be applied to a wider range of domains
as well as allowing independent modification of the transition
function, the start state, or the reward function.

6Such an effect may be due to the particular neural network or player implementation
used. We saw a similar effect before when using a CMAC with the CMUnited-99 players.



In some problems where subtasks are clearly defined by fea-
tures, the subtasks can be automatically identified (Drummond
2002) and leveraged to increase learning rates. Learned sub-
routines have been successfully transfered in a hierarchical re-
inforcement learning framework (Andre & Russell 2002). By
analyzing two tasks, subroutines may be identified which can
be directly reused in a second task that has a slightly modi-
fied state space. For tasks which can be framed in a relational
framework (Dzeroski, Raedt, & Driessens 2001), there is re-
search (Morales 2003) which suggests ways of speeding up
learning between two relational reinforcement learning tasks.

Imitation is another technique which may transfer knowl-
edge from one learner to another (Price & Boutilier 2003).
However, there is the assumption that “the mentor and ob-
server have similar abilities” and thus may not be directly ap-
plicable when the number of dimensions of the state space
changes or the agents have a qualitatively different action set.
Other research (Fern, Yoon, & Givan 2004) has shown that it
is possible to learn policies for large-scale planning tasks that
generalize across different tasks in the same domain.

Another approach (Guestrin et al. 2003) uses linear pro-
gramming to determine value functions for classes of similar
agents. Using the assumption that T and R are similar among
all agents of a class, class-based value subfunctions are used
by agents in a new world that has a different number of ob-
jects (and thus different S and A). However, as the authors
themselves state, the technique will not perform well in het-
erogeneous environments or domains with “strong and con-
stant interactions between many objects (e.g. RoboCup).”

Conclusions

We have introduced the behavior transfer method of speeding
up reinforcement learning and given empirical evidence for its
usefulness. We have trained CMAC and neural network agents
using TD reinforcement learning in related tasks with differ-
ent state and action spaces and shown that not only is the time
to learn the final task reduced, but that the total training time
is reduced using behavior transfer when compared to simply
learning the final task from scratch. In the future we will con-
tinue to explore how to apply behavior transfer to additional
function approximators. Additionally, we will work on identi-
fying tasks that are less directly related to each other but still
benefit from behavior transfer.
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