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Abstract

Reinforcement learning (RL) methods have become popular
in recent years because of their ability to solve complex tasks
with minimal feedback. Both genetic algorithms (GAs) and
temporal difference (TD) methods have proven effective at
solving difficult RL problems, but few rigorous comparisons
have been conducted. Thus, no general guidelines describing
the methods’ relative strengths and weaknesses are available.
This paper summarizes a detailed empirical comparison be-
tween a GA and a TD method in Keepaway, a standard RL
benchmark domain based on robot soccer. The results from
this study help isolate the factors critical to the performance
of each learning method and yield insights into their general
strengths and weaknesses.

Introduction

Reinforcement learning (RL) problems are characterized by
agents making sequential decisions with the goal of maxi-
mizing total reward, which may be time delayed. RL prob-
lems contrast with classical planning problems in that agents
do not know a priori how their actions will affect the world
and with supervised learning because the agent is never given
training examples with the correct action labeled.

Temporal difference (TD) methods are one popular way
to solve RL problems. TD methods learn a value func-
tion that estimates the expected long-term reward for tak-
ing a particular action in a state. Genetic algorithms (GAs)
can also address RL problems by searching the space of
policies for one that receives maximal reward. Although
these two approaches have both had success in difficult RL
tasks, only a few studies (Gomez & Miikkulainen 2002;
Moriarty & Miikkulainen 1996; Pollack, Blair, & Land 1997)
have directly compared them. As a result, there are cur-
rently no general guidelines describing the methods’ relative
strengths and weaknesses.

One possible reason for the lack of such comparisons is
that the two communities are largely disjoint. While TD
practitioners typically publish papers in AAAI or ICML, the
GA community more often sends papers to GECCO or CEC.
As an example of this separation, one of the canonical books
on RL (Sutton & Barto 1998) explicitly does not discuss evo-
lutionary methods because they “do not consider evolution-
ary methods by themselves to be especially well suited to
reinforcement learning problems.” We view such a divide as
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unproductive: both classes of algorithms can be used to ef-
fectively solve the same type of problems and therefore rig-
orous comparisons between them are important.

This paper takes a step towards bridging the divide by pre-
senting results from a previous study (Taylor, Whiteson, &
Stone 2006) that compares two representative TD and GA
methods. This study uses 3 vs. 2 Keepaway (Stone et al.
2006), a standard RL benchmark domain based on robot soc-
cer in which agents have noise in both their sensors and actu-
ators. In addition to the benchmark task, we also experiment
in fully observable and deterministic variants of Keepaway
that are designed to isolate factors critical to the performance
of each method.

The results demonstrate that the relative performance of
the two methods depends on the given task’s particular char-
acteristics. Based on these results, we suggest some use-
ful guidelines for objectively choosing between the two ap-
proaches. We intend for these guidelines to be useful when a
novel RL task is encountered and either a TD or GA method
could be used. Furthermore, we hope that this study will en-
courage researchers to conduct more empirical comparisons
across the two communities and to explore a variety of algo-
rithms and tasks, thereby testing how broadly the conclusions
we have drawn can generalize.

The Benchmark Keepaway Task
RoboCup simulated soccer is a multiagent domain that has
noisy sensors and actuators as well as hidden state. In 3 vs.
2 Keepaway, a subproblem of the full 11 vs. 11 simulated
soccer game, a team of 3 keepers attempts to maintain pos-
session of the ball on a 20m x 20m field while 2 takers at-
tempt to gain possession of the ball or force the ball out of
bounds, ending an episode. All our experiments are run on a
code base derived from version 0.6 of the benchmark Keep-
away implementation1 and we set parameters to be consis-
tent with past research (Stone, Sutton, & Kuhlmann 2005;
Stone et al. 2006).

Keepaway is an appealing platform for empirical com-
parisons because previous studies (Kostiadis & Hu 2001;
Stone, Sutton, & Kuhlmann 2005) have already established
the performance of TD methods. While GAs have been ap-
plied to variations of Keepaway (Hsu & Gustafson 2002;
Whiteson et al. 2005), they have never been applied to the
benchmark version of the task.

1Available at http://www.cs.utexas.edu/

˜AustinVilla/sim/Keepaway/



Each keeper learns to maximize the average episode length
by learning to maximize the team’s reward in this task. Each
keeper, when in possession of the ball, must use its policy to
map the current 13-dimensional state of the world (see Fig-
ure 1) to one of three higher-level macro-actions: A = {hold,
passToTeammate1, passToTeammate2}. Any keeper not in
possession of the ball follows a static policy and either at-
tempts to go to the ball or try to get open for a pass. Takers
follow a static policy and do not learn. The initial state is
different in each episode because the same keeper does not
always start with the ball, the three keepers are placed near
three corners, and the takers are placed near the fourth corner
(rather than in exact locations).

Learning Keepaway

Figure 1: 13 state variables are used
for learning with 3 keepers and 2
takers. The state is ego-centric and
rotationally invariant for the keeper
with the ball; there are 11 distances,
indicated with blue lines, between
players and the center of the field as
well as 2 angles along passing lanes.

This section pro-
vides an overview
of the GA and TD
methods used in our
experiments. There
are a wide variety
of both GAs and
TD methods in use
today but to empiri-
cally compare these
different approaches
we must focus on
specific instantiations.
NeuroEvolution of
Augmenting Topolo-
gies (NEAT) (Stanley
& Miikkulainen
2002), a GA that
performs a policy
search by evolving
neural networks,
has had substantial
success in RL domains like double pole balancing (Stan-
ley & Miikkulainen 2002) and robot control (Stanley &
Miikkulainen 2004a). Sarsa (Rummery & Niranjan 1994;
Singh & Sutton 1996) is a popular TD method that
has also had multiple empirical successes (Sutton 1996;
Sutton & Barto 1998).

We use Sarsa and NEAT as representative methods be-
cause of their empirical success in the benchmark Keep-
away task (Stone, Sutton, & Kuhlmann 2005) or variations
thereof (Whiteson et al. 2005), and because they are the
methods that the authors are most familiar with. In addition
to the practical advantages, this familiarity enables us to set
both algorithms’ parameters with confidence. We attempted
to give equal effort to optimizing the parameters of each algo-
rithm, though such factors are admittedly difficult to control
for. Wherever possible, the original study (Taylor, Whiteson,
& Stone 2006) quantifies the amount of tuning involved.

NEAT

NEAT represents policies with neural networks and searches
“policy space” to find an appropriate topology and set of
weights for the networks. NEAT begins with a uniform pop-
ulation of 100 simple networks with no hidden nodes and in-

puts connected directly to outputs. Over time new structure
is introduced to networks in the population incrementally via
two special evolutionary mutation operators that add new
hidden nodes and links to the network. Only the structural
mutations that yield performance advantages tend to survive
evolution’s selective pressure. NEAT also learns appropriate
weights for the networks through crossover and mutation.

NEAT is a general purpose optimization technique and can
be applied to a wide variety of problems. We use NEAT to
perform policy search RL and represent policies via a pop-
ulation of neural network action selectors. Inputs to each
network describe the agent’s current state. There is one out-
put for each available action and the agent takes whichever
action has the highest activation.

Each candidate network is evaluated by allowing it to con-
trol the keepers’ behavior and observing how much reward
it receives. The policy’s fitness is the sum of the rewards
accrued while under the network’s control. In deterministic
domains, each policy in the population can be evaluated in
a single episode. However, in stochastic domains it is nec-
essary to evaluate each member of the population for many
episodes to get accurate fitness estimates, and we used pre-
liminary experiments to determine that NEAT learns well
when each policy in Keepaway is evaluated for an average
of 60 episodes.

Learning with Sarsa

Sarsa learns to estimate the action-value function, Q(s, a),
which predicts the long-term expected return of taking an ac-
tion, a, in some state, s. Learning a value function allows an
agent to estimate the efficacy of each action in a given state,
in contrast to GAs which evaluate entire policies holistically
without regard to individual actions’ values.

Sarsa is an acronym for State Action Reward State Ac-
tion, describing the 5-tuple needed to perform the update:
(s, a, r, s′, a′), where s and a are the the agent’s current state
and action, r is the immediate reward the agent receives
from the environment, and s′ and a′ are the agent’s subse-
quent state and chosen action. In the simple case, the action-
value function is represented in a table, with one entry per
state-action pair. After each action, the table is updated via:
Q(s, a) ← (1 − α)Q(s, a) + α(r + γQ(s′, a′)), where α
is the learning rate and γ is a discount factor used to weight
immediate rewards more heavily than future rewards.

In continuous domains like Keepaway, the value function
cannot be represented in a table. In such cases, TD meth-
ods rely on function approximators, which map state-action
pairs to values via more concise, parameterized functions
and use supervised learning methods to set these parame-
ters. Many function approximators have been used, including
neural networks, CMACs, and radial basis functions (Sutton
& Barto 1998). In this study we use a radial basis func-
tion approximator (RBF), a method with previous empiri-
cal successes (Stone et al. 2006). Sarsa is able to modify
the weights in the RBF function approximator over time, us-
ing standard ǫ-greedy action selection, so that the keepers are
able to learn an approximation for the true action-value func-
tion and thus increase the average episode length.
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Figure 2: A comparison of the mean hold times of the policies discovered by NEAT and Sarsa in: (A) the benchmark task, (B) the fully
observable version of the task, and (C) the deterministic version of the Keepaway task.

Results
In order to compare the two learning methods, we first ran a
series of independent trials using each learning method un-
til each trial plateaued. Afterwards, we evaluated the best
learned policy in each trial after various amounts of time
spent learning. All times reported in this paper refer to sim-
ulator time. Thus we report only the time the agents spend
interacting with the environment and ignore the time they are
performing calculations; the running time for our learning
methods is negligible compared to that of the Soccer Server.

Benchmark Keepaway Results

After running trials in the benchmark version of Keepaway,
we computed the mean hold time of the best policy found so
far by each method at regular intervals. The mean hold times
were then averaged across all trials of each of the methods to
obtain the plots shown in Figure 2A. Sarsa learners plateau
before the NEAT learners, but the performance of the Sarsa
learners is extended on the graph even after learning has fin-
ished, denoted by a horizontal performance line without plot-
ted data points. For presentation purposes we plot the aver-
age performance every 10 hours for the first 200 hours and
then every 50 hours after that (increasing the sampling reso-
lution does not reveal any interesting detail).

The results demonstrate that NEAT can learn better poli-
cies in the benchmark Keepaway task than Sarsa with RBFs,
the best performing TD method to date. Student’s t-tests con-
firm the difference in performance between NEAT and Sarsa
is statistically significant for times greater than or equal to
650 hours. While NEAT ultimately learns better policies, it
requires many more evaluations to do so. Sarsa learns much
more rapidly: in the early part of learning its average policy
is much better than NEAT’s.

Fully Observable Keepaway Results

In the benchmark Keepaway task, the agents’ sensors are
noisy. Since the agents can only partially observe the true
state of the world, the task is non-Markovian: the probability
distribution over next states is not independent of the agents’
state and action histories. Sarsa’s TD update assumes that the
environment is Markovian, though in practice TD methods
can still perform well when it is not (Sutton & Barto 1998).
By contrast, NEAT can evolve recurrent networks that cope
with non-Markovian tasks (Gomez & Schmidhuber 2005).

We hypothesized that Sarsa’s relative performance would
improve if sensor noise was removed, rendering the Keep-

away task fully observable and effectively Markovian. To
test this hypothesis, we conducted a second experiment in a
version of the Keepaway task which had all noise from the
simulated agents’ sensors removed. Figure 2B shows the re-
sults of these experiments, with mean hold times computed
as before and averaged across all trials of a single method.
Sarsa again learns much more rapidly than NEAT, but now
also learns substantially better policies. The difference in
performance between NEAT and Sarsa is statistically signif-
icant for all points graphed.

Deterministic Keepaway Results

Even in the fully observable version of the task, which has no
sensor noise, the task remains highly stochastic due to noise
in the agents’ actuators and randomness in the start state. In
both the benchmark task and the fully observable variation,
this stochasticity greatly slows NEAT’s learning rate: NEAT
is able to learn well only when the fitness estimate for each
candidate policy is averaged over many episodes. Therefore,
we tested a second variation of Keepaway in which noise was
removed from the sensors and actuators, and the agent’s ini-
tial states were fixed which created a completely determin-
istic task. We hypothesized that NEAT would learn much
faster in this deterministic variation as it could perfectly eval-
uate each organism in a single episode.

These experiments used the same parameters as before,
except NEAT required only 100 episodes per generation (1
episode per policy in the population). Figure 2C shows the
experimental results with mean hold times computed as be-
fore and averaged across all trials of a single method. In the
deterministic version of the task, NEAT learns more rapidly
than Sarsa, in addition to discovering dramatically superior
policies, and the difference in performance is statistically sig-
nificant for all points graphed.

Discussion
Investigating the tradeoffs between different RL methods is
important for three reasons. First, cases where one class
of method outperforms the other may suggest ways to en-
hance particular methods, e.g. by finding ways to play to each
methods’ strengths. For instance, hybrid methods (Whiteson
& Stone 2006) may be able to combine benefits from each
method.

Second, RL is beginning to play an increasingly impor-
tant role in complex systems like those used to solve difficult
challenge problems. Consequently, developing accurate rec-



ommendations about which methods to use when is becom-
ing more and more crucial. The experiments presented in this
paper provide a preliminary basis for such recommendations.
In particular, the results suggest that the choice between us-
ing a GA and a TD method should be made based on some of
the given task’s characteristics. In deterministic domains, the
fitness of an organism can be quickly evaluated and GAs are
likely to excel. If the task is fully observable but nondeter-
ministic, TD methods may have an advantage. If the task is
partially observable and nondeterministic, each method may
have different advantages: TD methods in speed and GAs in
asymptotic performance.

Third, such experiments test claims about the strengths and
weaknesses of the different approaches. For example, the re-
sults in the benchmark Keepaway task show that GAs can
excel at RL tasks, challenging Sutton and Barto’s claim that
such methods are not well suited to them. Additionally, re-
sults in the benchmark and fully observable tasks confirm
the common conception that GAs are slow even when they
learn well, through results in the deterministic task highlight
how quickly GAs can learn when fitness evaluations are ac-
curate. Furthermore, results in the fully observable task show
that the performance of TD methods is sensitive to the pres-
ence of the Markov property, buttressing claims by the GA
community that their methods are better equipped to tackle
non-Markovian tasks.

No empirical comparison between two parameterized
learning methods can be completely conclusive. Most learn-
ing methods have some number of parameters to set, and the
amount of time devoted to “tweaking” them can have a dra-
matic impact on the success of learning. Furthermore, no
single study is able to compare all algorithmic variants or
consider every relevant domain. Though both the algorithms
and the domain used in this paper were carefully chosen to be
representative, further data is clearly needed to make conclu-
sive statements about the relative strengths and weaknesses
of GAs and TD methods. We hope that in the future there
will be many more studies that address these types of issues.

Conclusion
This paper presents the results of a detailed empirical com-
parison between NEAT and Sarsa in Keepaway, a standard
RL benchmark domain based on robot soccer. The results
demonstrate that NEAT can learn better policies in this do-
main than Sarsa with RBF function approximation, the previ-
ous best known method, though it requires more evaluations
to do so. Additional experiments in two variations of Keep-
away demonstrate that Sarsa learns better policies when the
domain is fully observable and NEAT learns faster when the
domain has a deterministic fitness function. Together, these
results help isolate factors critical to the performance of each
method and yield insights into how they may perform on ad-
ditional tasks. Additional studies using more domains and
different algorithms are necessary to draw definitive guide-
lines about when to use a GA or TD method. This study
provides a model of how comparisons may be done fairly and
provides an initial data point for establishing such guidelines.
Furthermore, we hope that this study helps demonstrate the
need for further collaboration between practitioners of the
different approaches to RL so that such methods can be more

accurately evaluated, compared, and made useful in practice.

Acknowledgments
We would like to thank Ken Stanley for help setting up NEAT in
Keepaway, as well as Nate Kohl, David Pardoe, Joseph Reisinger,
Jefferson Provost, and the anonymous reviewers for helpful com-
ments and suggestions. This research was supported in part
by DARPA grant HR0011-04-1-0035, NSF CAREER award IIS-
0237699, and NSF award EIA-0303609.

References
Gomez, F., and Miikkulainen, R. 2002. Robust nonlinear control
through neuroevolution. Technical Report AI02-292.
Gomez, F., and Schmidhuber, J. 2005. Co-evolving recurrent neu-
rons learn deep memory POMDPs. In GECCO-05: Proceedings of
the Genetic and Evolutionary Computation Conference, 491–498.
Hsu, W. H., and Gustafson, S. M. 2002. Genetic programming and
multi-agent layered learning by reinforcements. In Genetic and
Evolutionary Computation Conference, 764–771. New York,NY:
Morgan Kaufmann.
Kostiadis, K., and Hu, H. 2001. KaBaGe-RL: Kanerva-based gen-
eralization and reinforcement learning for possession football. In
Proceedings of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS 2001).
Moriarty, D. E., and Miikkulainen, R. 1996. Efficient reinforce-
ment learning through symbiotic evolution. Machine Learning
22:11–32.
Pollack, J. B.; Blair, A. D.; and Land, M. 1997. Coevolution of a
backgammon player. In Langton, C. G., and Shimohara, K., eds.,
Artificial Life V: Proc. of the Fifth Int. Workshop on the Synthesis
and Simulation of Living Systems, 92–98. Cambridge, MA: The
MIT Press.
Rummery, G. A., and Niranjan, M. 1994. On-line Q-learning using
connectionist systems. Technical Report CUED/F-INFENG-RT
116, Engineering Department, Cambridge University.
Singh, S. P., and Sutton, R. S. 1996. Reinforcement learning with
replacing eligibility traces. Machine Learning 22:123–158.
Stanley, K. O., and Miikkulainen, R. 2002. Evolving neural net-
works through augmenting topologies. Evolutionary Computation
10(2):99–127.
Stanley, K. O., and Miikkulainen, R. 2004a. Competitive coevo-
lution through evolutionary complexification. Journal of Artificial
Intelligence Research 21:63–100.
Stone, P.; Kuhlmann, G.; Taylor, M. E.; and Liu, Y. 2006.
Keepaway soccer: From machine learning testbed to benchmark.
In Noda, I.; Jacoff, A.; Bredenfeld, A.; and Takahashi, Y.,
eds., RoboCup-2005: Robot Soccer World Cup IX, volume 4020.
Berlin: Springer Verlag. 93–105.
Stone, P.; Sutton, R. S.; and Kuhlmann, G. 2005. Reinforce-
ment learning for RoboCup-soccer keepaway. Adaptive Behavior
13(3):165–188.
Sutton, R. S., and Barto, A. G. 1998. Introduction to Reinforce-
ment Learning. MIT Press.
Sutton, R. S. 1996. Generalization in reinforcement learning:
Successful examples using sparse coarse coding. In Advances in
Neural Information Processing Systems 8, 1038–1044.
Taylor, M. E.; Whiteson, S.; and Stone, P. 2006. Comparing
evolutionary and temporal difference methods in a reinforcement
learning domain. In Proc. of the Genetic and Evolutionary Com-
putation Conference, 1321–28.
Whiteson, S., and Stone, P. 2006. Evolutionary function approx-
imation for reinforcement learning. Journal of Machine Learning
Research.
Whiteson, S.; Kohl, N.; Miikkulainen, R.; and Stone, P. 2005.
Evolving keepaway soccer players through task decomposition.
Machine Learning 59(1):5–30.


