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Abstract
As autonomous agents proliferate in the real world,
both in software and robotic settings, they will increas-
ingly need to band together for cooperative activities
with previously unfamiliar teammates. In such ad hoc
team settings, team strategies cannot be developed a
priori. Rather, an agent must be prepared to cooper-
ate with many types of teammates: it must collaborate
without pre-coordination. This paper challenges the AI
community to develop theory and to implement proto-
types of ad hoc team agents. It defines the concept of
ad hoc team agents, specifies an evaluation paradigm,
and provides examples of possible theoretical and em-
pirical approaches to challenge. The goal is to encour-
age progress towards this ambitious, newly realistic,
and increasingly important research goal.

1 Introduction

Imagine that you are in a foreign country where you
do not speak the language, walking alone through a
park. You see somebody fall off of his bicycle and injure
himself badly; there are a few other people in the area,
and all of you rush to help the victim. There are several
things that need to be done. Somebody should call
an ambulance, someone should check that the victim is
still breathing, and someone should try to find a nearby
doctor or policeman. However, none of you know one
another, and thus you do not know who has a mobile
phone, who is trained in first aid, who can run fast, and
so forth. Furthermore, not all of you speak the same
language. Nonetheless, it is essential that you quickly
coordinate towards your common goal of maximizing
the victim’s chances of timely treatment and survival.

This scenario is an example of what we call an ad hoc
team setting. Multiple agents (in this case humans)
with different knowledge and capabilities find them-
selves in a situation such that their goals and utilities
are perfectly aligned (effectively, everyone’s sole interest
is to help the victim), yet they have had no prior op-
portunity to coordinate. In addition to the emergency
setting described above, ad hoc teams may arise among
robots or software agents that have been programmed
by different groups and/or at different times such that
it was not known at development time that they would
need to coordinate. For example, rescue robots may be

Copyright c© 2010, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

brought to an earthquake site from different parts of the
world, or an e-commerce agent may need to coordinate
with other legacy agents that can no longer be altered.
Note that in this latter example, the agents may need
to coordinate repeatedly on the same or similar tasks.

In order to be a good “ad hoc team player,” an agent
must be adept at assessing the capabilities of other
agents, especially in relation to its own capabilities. If
you are trained in first aid, you may be the best person
to examine the fallen bicyclist. But if one of the other
people is a doctor, you should take on a different role.
Similarly, a good team player must also be adept at
assessing the other agents’ knowledge states (does any-
body know the right phone number?). Furthermore, it
must be proficient at estimating the effects of its ac-
tions on the other agents. How will the others react
if you immediately run away, if you pull out a mobile
phone, if you start screaming, or if you calmly measure
the victim’s pulse?

Ad Hoc Human Teams

The concept of ad hoc human teams has arisen re-
cently in military and industrial settings, especially
with the rise of outsourcing. There have also been au-
tonomous agents developed to help support human ad
hoc team formation (Just, Cornwell, & Huhns 2004;
Kildare 2004). But ad hoc autonomous agent teams
have not been relevant in the past because autonomous
agents, especially robots, have tended to be deployed
only for short times, and teams have been developed
by cohesive development groups. As a result, it has
typically been possible (and usually necessary) to ad-
just and tune the agents’ behaviors so that they interact
well with one another.

Ad Hoc Autonomous Agent Teams

As the field progresses towards long-lasting autonomy,
however, reasoning on the fly about interactions with
other agents will become increasingly essential. Unlike
most team settings considered so far (e.g., (Stone &
Veloso 1999; Rosenfeld et al. 2008)), agents in ad hoc
team settings are not all programmed by the same peo-
ple, and may not all have the same communication pro-
tocols or world models. Furthermore, they are likely to
have heterogeneous sensing and acting capabilities that
may not be fully known to one another. As a result,



team strategies cannot be developed a priori. Rather,
an agent that is to succeed in such an ad hoc team set-
ting must be prepared to adjust its behavior to interact
as well as possible with many types of teammates: those
with which it can communicate and those with which it
cannot; those that are more mobile and those that are
less mobile; those with better sensing capabilities and
those with worse capabilities. A good team player’s
best actions are likely to differ significantly depending
on the characteristics of its teammates. The fact that
humans are routinely called upon to coordinate in an
ad hoc fashion strongly motivates the challenge of con-
structing autonomous agents of similar flexibility.

The Challenge

Our challenge to the community identifies a specific,
novel, high-risk, but high-payoff research area. Specif-
ically, we call for theoretical treatments and concrete
implementations of robust, autonomous agents that are
good ad hoc team players.

That is, we challenge the community:

To create an autonomous agent that is able
to efficiently and robustly collaborate with
previously unknown teammates on tasks to
which they are all individually capable of
contributing as team members.

The remainder of this paper is organized as follows.
First, Section 2 gives further insight into the details of
the challenge via a specification of how potential solu-
tions can be evaluated. Then, Sections 3 and 4 dis-
cuss possible theoretical and empirical approaches to
the challenge, respectively. Section 5 expands on the
ways in which the challenge can be decomposed and/or
the scope of the challenge can be gradually increased,
Section 6 touches on prior research most related to the
challenge, and Section 7 concludes.

2 Evaluation

Though there is plenty of room for theoretical treat-
ment of the problem (see Section 3), the challenge in-
troduced in Section 1 is ultimately an empirical chal-
lenge. Additionally, though it pertains to teamwork, it
is fundamentally a challenge pertaining to building a
single autonomous agent. In this section, we shed fur-
ther light on the intention of the challenge by specifying
a way in which potential solutions can be evaluated.

Let a0 and a1 be two ad hoc teammates whose perfor-
mance is to be compared in domain D, from which tasks
d can be sampled. For example, D may be a multiagent
planning domain with each task having different initial
conditions and/or goals; or D may be robot soccer, with
each task being a match against a particular opponent
team. It may also be the case that there is only one
task in the domain that is repeatedly “sampled.”

Assume that there is some quantitative performance
measure, or “score” s(B, d), that results when a set of
agents B performs task d once, such as time to goal

achievement, joint discounted reward over a fixed time,
number of goals scored, or any other objective measure.
Note that s may be a stochastic function.

Let there be a pool of potential teammates A =
{a2, . . . , an}, each of which has some competency in do-
main D. Specifically, we say that agent a ∈ A is compe-
tent if there is some subset B ⊂ A such that a ∈ B, and
the team comprised of the agents in B is able to achieve
a minimal threshold expected performance, smin, on all
tasks in D:1

∀a ∈ A,∀d ∈ D,∃B ⊂ A s.t. a ∈ B ∧ E[s(B, d)] ≥ smin

Note that it may be possible for an individual agent to
achieve smin, for instance in a domain such as foraging
where having teammates is helpful but not essential; or
D may be a fundamentally multiagent domain in which
agent teams are needed to perform the task at all, such
as pushing heavy boxes. Note further that the agents
in A need not be themselves aware that they are acting
as teammates; indeed when they are “team aware” the
interactions among the agents can become considerably
more complex.

We propose comparing agents a0 and a1 as potential
ad hoc teammates of the agents in set A in domain D
according to the following procedure.

Evaluate(a0, a1, A, D)

• Initialize performance (reward) counters r0 and r1 for
agents a0 and a1 respectively to r0 = r1 = 0.

• Repeat:

– Sample a task d from D.
– Randomly draw a subset of agents B, |B| ≥ 2, from

A such that E[s(B, d)] ≥ smin.
– Randomly select one agent b ∈ B to remove from

the team to create the team B−.
– increment r0 by s({a0} ∪ B−, d)
– increment r1 by s({a1} ∪ B−, d)

• If r0 > r1 then we conclude that a0 is a better ad-
hoc team player than a1 in domain D over the set of
possible teammates A.

Note that there is a lot of potential variability both
in the breadth of the domain D (how different the tasks
can be) and especially in the breadth of teammate ca-
pabilities in A. We address these issues in more detail
in Section 5. Note that we assume that agents a0 and
a1 are aware of the domain D and the set of potential
teammates A. But A may have infinite cardinality, in
effect just placing bounds on teammate characteristics,
such as the teammate will not be able to move faster
than 2 m/s. In addition, even if A is finite, on each
iteration the set B− is initially unknown to the ad hoc
team agents being evaluated.

This evaluation paradigm serves to emphasize that
an ad hoc team agent is fundamentally an individual
agent. To be successful, it must perform well with any
set of teammates with which it is presented.

1For notational convenience, we assume that larger per-
formance values indicate better task performance.



3 Example Theoretical Approach

Although our challenge is ultimately empirical, there
is also ample room for theoretical analysis of compo-
nents of the full problem. For example, aspects of ad
hoc teamwork can be usefully studied within the frame-
work of game theory (Leyton-Brown & Shoham 2008).
Specifically, a good ad hoc team agent should be able
to learn to interact with a previously unknown team-
mate in a fully cooperative (common payoff) iterative
normal form game. If the teammate plays a fixed (possi-
bly stochastic) strategy, the ad hoc team agent should
simply learn what that strategy is and play the best
response. But even in this simplest of scenarios, the
problem can become quite intricate to analyze if the
teammate may itself be adaptive.

Collaborative Multi-Armed Bandits

As an initial theoretical analysis of an aspect of ad hoc
teamwork, Stone and Kraus (2010) consider a situation
in which the ad hoc team player interacts repeatedly in
a stochastic environment with a teammate that is both
less capable and less knowledgeable than itself. Specif-
ically, the teammate can only execute a subset of the
actions that the ad hoc team agent can execute, and,
unlike the ad hoc team agent, it is unaware of the rel-
ative utilities of the various actions. It is also unaware
that it is acting as a part of a team. They formalize
this situation as an instance of the well-studied k-armed
bandit problem (Robbins 1952).

The basic setting of the k-armed bandit problem is
as follows. At each time step, a learning agent selects
one of the k arms to pull. The arm returns a payoff
according to a fixed, but generally unknown, distribu-
tion. The agent’s goal is to maximize the sum of the
payoffs it receives over time. The setting is well-suited
for studying exploration vs. exploitation: at any given
time, the agent could greedily select the arm that has
paid off the best so far, or it could select a different
arm in order to gather more information about its dis-
tribution. Though k-armed bandits are often used for
this purpose, the authors were the first to consider a
multiagent cooperative setting in which the agents have
different knowledge states and action capabilities.

In order to study the ad hoc team problem, the au-
thors extend the standard setting to include two dis-
tinct agents, known as the teacher and the learner, who
select arms alternately, starting with the teacher. They
initially consider a bandit with just three arms such
that the teacher is able to select from any of the three
arms, while the learner is only able to select from among
the two arms with the lower expected payoffs. The au-
thors consider the fully cooperative case such that the
teacher’s goal is to maximize the expected sum of the
payoffs received by the two agents over time (the teacher
is risk neutral). Specifically, the authors make the fol-
lowing assumptions:
• The payoff distributions of all arms are fully known

to the teacher, but unknown to the learner.

• The learner can only select from among the two arms
with the lower expected payoffs.

• The results of all actions are fully observable (to both
agents).

• The number of rounds (actions per agent) remaining
is finite and known to the teacher.

• The learner’s behavior is fixed and known: it acts
greedily, always selecting the arm with the highest
observed sample average so far. If there are any pre-
viously unseen arms, the learner selects one of them
randomly (optimistic initialization).

The teacher must then decide whether to do what is
best in the short term, namely pull the arm with the
highest expected payoff; or whether to increase the in-
formation available to its teammate, the learner, by
pulling a different arm. Note that if the teacher were
acting alone, trivially its optimal action would be to
always pull the arm with highest expected payoff.

By these assumptions, the learner is both less capable
and less knowledgeable than the teacher, and it does not
understand direct communication from the teacher. It
is tempting to think that we should begin by improving
the learner. But in the ad hoc team setting, that is not
an option. The learner “is what it is” either because it
is a legacy agent, or because it has been programmed
by others. Our task is to determine the teacher’s best
actions given such learner behavior.

This setting is only a limited representation of the
full ad hoc team setting from Section 1. However it
retains the most essential property, namely that a sin-
gle agent in our control must interact with a teammate
without the advance coordination. Nonetheless, even
this initial scenario presents some interesting mathe-
matical challenges. Specifically, Stone and Kraus prove
several theoretical results pertaining to which arms the
teacher should consider pulling, and under what con-
ditions (including for the natural generalization with
more than three arms). Furthermore, when the payoffs
from the arms are discrete, they present a polynomial
algorithm for the teacher to find the optimal arm to
pull. (Stone & Kraus 2010).

The study of collaborative k-armed bandits described
in this section serves as a starting point for the theoret-
ical analysis of ad hoc teams. However it leaves open
many directions for extensions: situations in which the
teacher does not have full knowledge, the learner is
“team aware,” the number of iterations is not known,
and/or the learner’s behavior is not known a priori to
the teacher, among others. We hope that this ad hoc
teamwork challenge will inspire many new and chal-
lenging problems in the theoretical analysis of optimal
control and optimal teamwork.

4 Example Empirical Approach

While theoretical analyses are likely to be able to iden-
tify some situations in which optimal decision-making
is possible, they are also likely to identify aspects of ad
hoc teamwork that are not tractably solvable. There



are also likely to be aspects of ad hoc teamwork that
are not easily analyzable at all. In such aspects of the
problem, there will be plenty of room for useful empir-
ical analyses. In this section, we illustrate a possible
empirical approach using the domain of robot soccer.

Human Soccer

Human soccer is a perfect example of the ad hoc team
setting. When given the opportunity, teams of human
soccer players train together and hone their interactions
so as to refine their ability to cooperate with one an-
other. However individual soccer players are also able
to join “pick-up” games with players that they’ve never
met before, let alone played with. They can even do
so in foreign countries where they don’t know the lan-
guage, leaving no way to communicate with their ad hoc
teammates other than mutual observation and experi-
mentation. A talented human player is able to make
quick judgments about how she will best fit into her
ad hoc team. When playing with worse players, she is
likely to play in the center of the field; when playing
with better players she may look for a supporting role
that limits responsibility. Furthermore, at the begin-
ning of the game, it may be useful in this situation to
take actions that highlight one’s particular strengths,
such as kicking with the left foot, or passing the ball
precisely, so as to teach one’s teammates how best to
incorporate the newcomer into the team.

Robot Soccer

Similarly, robot soccer teams at the international
RoboCup competitions are typically developed as cohe-
sive units with communication protocols and sophisti-
cated methods for distributing the players on the field
into complementary positions (Stone & Veloso 1999).
However, it is also possible to consider a “pick-up” game
in which the players are not able to pre-coordinate.

As an instantiation of the bandit example in Sec-
tion 3, one could consider a center midfielder, who can
pass to any of three forwards, teaching an outside mid-
fielder, who can only pass to two of them. If the outside
midfielder is new to the team and still learning about
the forwards’ capabilities, we find ourselves in an in-
stantiation of exactly the abstract k-armed bandit sce-
nario. Just as in the abstract setting, it is naturally ex-
tensible to model sophisticated learners, partial teacher
knowledge, unknown learner behavior, and so on.

Eventually, one can imagine staging field tests of ad
hoc team agents at the annual RoboCup competitions.
Several participants with robots of varying strengths
could be invited to participate in a robot soccer “pick-
up game.” That is, the robots would be placed on the
field as a team without any prior coordination among
the human programmers.

A successful ad hoc team player will be able to quickly
evaluate whether it is playing with forwards or defend-
ers, whether it is playing with more skillful players or
with less skillful players, etc., and adjust its play ac-
cordingly. If it is placed on a team with no goalie, then

it should notice and adopt that role; if it is placed on
a team with worse players, it should actively go to the
ball more often, and so on.

The essential aspect is that the ad hoc team player
should be able to deal with whatever teammates it
might come across, and without any foreknowledge of
the teammates’ actual behaviors on the part of the
agents or the programmers.

5 Controlling the Scope: Task and

Teammate Breadth

An ad hoc team player must be prepared to collaborate
with all types of teammates. Thus one possible view
of the process of creating a fully capable ad hoc team
player is that it is akin to equipping it with a toolbox,
each tool being useful for interacting with a class of
possible teammates, as well as with a method for iden-
tifying to which class the current teammates belong.

From this perspective, in order to create an ad hoc
team player, one will need to address three high-level
technical challenges.
1. Identify the full range of possible teamwork situa-

tions that a complete ad hoc team player needs to be
capable of addressing.

2. For each such situation, find theoretically optimal
and/or empirically effective algorithms for behavior.

3. Develop methods for identifying and classifying
which type of teamwork situation the agent is cur-
rently in, in an online fashion.

Challenges 2 and 3 are the core technical aspects of the
challenge. But the first can also be seen as a sort of
knob, which can be used to incrementally increase the
difficulty of the challenge.

For this purpose, we start from the literature on ad
hoc human team formation (Kildare 2004) to organize
teamwork situations along three dimensions:
Teammate characteristics: features of the individ-

ual teammates such as action capabilities, sensing ca-
pabilities, decision making and learning capabilities,
whether they can communicate directly, and prior
knowledge.

Team characteristics: features of the collection of
team members such as whether they are homoge-
neous or heterogeneous, how many teammates are on
the team, and whether they can observe each other’s
actions.

Task characteristics: features of the cooperative
task to be performed such as the goal, the time hori-
zon, whether it is turn-taking, and how closely coor-
dinated the agents need to be in their actions. Can
they divide the task at a high level and then act in-
dependently, or do they need to coordinate low-level
actions?
By initially limiting teammate, team, and task char-

acteristics (A and D from Section 2), we can render
the challenge approachable even though the full-blown
version is quite ambitious. For example, Stone and



Kraus’s k-armed bandit scenario summarized in Sec-
tion 3 is appropriate for situations in which the team-
mates have limited action capabilities, perfect sensing,
greedy decision making, no direct communication, and
prior knowledge limited to their own observations; the
team is heterogeneous, consists of two agents, and can
fully observe each other’s actions; and the task ’s goal
is to maximize the sum of discrete action utilities over
a finite horizon where the agents act individually in a
turn-taking fashion. In that work, the authors found
the theoretically optimal action for the ad hoc team
player, thus taking a first step towards research chal-
lenge 2.

We expect that the initial responses to this chal-
lenge will address subproblems by similarly limiting the
scopes of A and D. Indeed, most of the examples given
in this paper consider sets A such that the potential
teammates are not even necessarily aware that they are
a part of an ad hoc team; this case is the simplest to
consider. However, it will be an important aspect of the
challenge to consider sets A that include other agents
that are aware that they are on an ad hoc team. Even-
tually, there will be opportunities to generalize and/or
combine these subproblems into a more complete ad
hoc team agent.

6 Discussion and Related Work
This challenge is predicated on the assumption that
software agents and robots will soon be able to be de-
ployed for extended periods of time in the real world.
That is, their usefulness will outlive our ability to eas-
ily change their behaviors. Such a phenomenon has al-
ready occurred with conventional computer programs,
as became apparent when the world was worried about
the “Y2K bug.” COBOL programmers were called out
of retirement to try to reprogram computers that were
essential to business processes and vital infrastructure,
but that were black boxes to everyone who used them.

Were autonomous agents to become similarly long-
lived, it would be a huge landmark in their robustness
and reliability. However it would also expose us to the
problem that this challenge addresses. Namely, a new
agent may need to collaborate with older agents whose
behavior is already fixed and not easily changeable.

Ad hoc teams are also already needed for environ-
ments where agents with diverse capabilities and no
common framework must quickly work as a team. As
presented in Section 1, one example is when robots from
different developers come together on a common rescue
mission. A second example arises when software agents,
programmed in isolation, must act within a team set-
ting. These agents might need to analyze scheduling
data from different people to help coordinate meetings
on their behalf, or they might need to coordinate with
legacy agents that can no longer be altered.

The main focus of this research challenge is ad hoc
teams in which teammates need to work together with-
out any prior coordination. This perspective is at
odds with most prior treatments of teamwork, such as

SharedPlans (Grosz & Kraus 1996), STEAM (Tambe
1997), and GPGP (Decker & Lesser 1995) which de-
fine explicit coordination protocols, languages, and/or
shared assumptions about which the agents are mutu-
ally aware. In applications such as the annual RoboCup
robot soccer competitions, entire teams of agents are
designed in unison, enabling explicit pre-coordination
via structures such as “locker room agreements” (Stone
& Veloso 1999).

Other than the multi-armed bandit work previously
described, the work that we are aware of that takes
a perspective most similar to ad hoc teams is that
of Brafman and Tennenholtz (Brafman & Tennenholtz
1996) in which they consider a teacher agent and a
learner agent repeatedly engaging in a joint activity.
While the learner has no prior knowledge of this ac-
tivity, the teacher understands its dynamics. However
they mainly consider a situation in which teaching is
not costly: the goal of their teacher is to maximize the
number of times that the learner chooses the “right”
action. Thus in some sense, the teacher is not “embed-
ded” in the environment as a real teammate.

Although the complete challenge put forth in this pa-
per is very ambitious and likely to take many years to
meet in a fully satisfactory way, there are numerous ex-
isting techniques that may be useful starting points for
certain aspects of the challenge (e.g., for certain proper-
ties of A and D). The remainder of this section provides
a small sampling of such existing techniques.
• As mentioned in Section 3, game theory (Leyton-

Brown & Shoham 2008) provides a useful theoret-
ical foundation for multiagent interaction. Though
originally intended as a model for human encounters
(or those of human institutions), it has become much
more broadly applied over the last several decades.

• A good ad hoc team player may need to make an
explicit assumption that its teammates are observ-
ing and reacting to its actions (that they are “team
aware”). In doing so, the agent is actually plan-
ning its actions intending for them to be observed
and interpreted. Intended plan recognition (in con-
trast to keyhole recognition) is the term used when
the observed agent knows that it is being observed,
and is acting under the constraints imposed by this
knowledge (Carrbery 2001). Much of the work on
planning for intended recognition settings has focused
on natural language dialogue systems (Sidner 1985;
Lochbaum 1991).

• An important aspect of the ad hoc team challenge is
recognizing, or “modeling” the capabilities of one’s
teammates. For this purpose, work from the oppo-
nent modeling literature (e.g., (Carmel & Markovitch
1995; Stone, Riley, & Veloso 2000; Oshrat, Lin, &
Kraus 2009)) may be readily adaptable to similarly
model teammates.

In addition, a good ad hoc team agent must recognize
the possibility that, while it is attempting to model
its teammates, the teammates may be simultaneously



modeling it. In such a case, the agent is engaged in
a recursive modeling setting (Vidal & Durfee 1995).

• Claus and Boutilier (Claus & Boutilier 1998) show
how reinforcement learning can provide a robust
method for agents to learn how to coordinate their
actions. This work is one of many approaches for co-
operative multiagent learning (see surveys at (Stone
& Veloso 2000; Panait & Luke 2005)).
In addition to existing AI methods, as mentioned in

Section 1, previous work has examined the use of agents
to support the formation of human ad hoc teams (Just,
Cornwell, & Huhns 2004; Kildare 2004). This work
relies on an analysis of the sources of team variabil-
ity, including member characteristics, team character-
istics, and task characteristics (Kildare 2004), which
we borrow as a structure for classifying types of au-
tonomous teammates in Section 5. In addition, soft-
ware agents have been used to support the operation
of human teams (Chalupsky et al. 2001), and for dis-
tributed information gathering from distinct, otherwise
independent information sources (Sycara et al. 1996).
But we are not aware of any such work that enables an
autonomous agent to itself act as an ad hoc teammate
with previously unknown teammates.

7 Conclusion

This paper presents the concept of ad hoc autonomous
agent teams and challenges the community to develop
novel theoretical and empirical approaches to creating
effective ad hoc teammates. Though today most agent
teams are developed as a unit, we believe that it will
not be long before autonomous agents, both in software
and robotic settings, will very often need to band to-
gether on the fly (possibly with humans on their teams
as well!). We hope that this challenge will encourage the
research necessary to ensure that agents will be able to
do so effectively when that time arrives.
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