
To appear in Proceedings of the Twenty-Fifth Conference on Artificial Intelligence (AAAI 11),
San Francisco, USA, August 2011.

Multiagent Patrol Generalized to Complex Environmental Conditions

Noa Agmon, Daniel Urieli and Peter Stone∗
Department of Computer Science
The University of Texas at Austin

{agmon,urieli,pstone}@cs.utexas.edu

Abstract

The problem of multiagent patrol has gained considerable at-
tention during the past decade, with the immediate applicabil-
ity of the problem being one of its main sources of interest. In
this paper we concentrate on frequency-based patrol, in which
the agents’ goal is to optimize a frequency criterion, namely,
minimizing the time between visits to a set of interest points.
We consider multiagent patrol in environments with complex
environmental conditions that affect the cost of traveling from
one point to another. For example, in marine environments,
the travel time of ships depends on parameters such as wind,
water currents, and waves. We demonstrate that in such envi-
ronments there is a need to consider a new multiagent patrol
strategy which divides the given area into parts in which more
than one agent is active, for improving frequency. We show
that in general graphs this problem is intractable, therefore
we focus on simplified (yet realistic) cyclic graphs with pos-
sible inner edges. Although the problem remains generally
intractable in such graphs, we provide a heuristic algorithm
that is shown to significantly improve point-visit frequency
compared to other patrol strategies. For evaluation of our
work we used a custom developed ship simulator that realisti-
cally models ship movement constraints such as engine force
and drag and reaction of the ship to environmental changes.

1 Introduction
The problem of multiagent patrol has gained considerable
attention during the past decade (e.g. (Chevaleyre 2004;
Machado et al. 2003; Almeida et al. 2004; Elmaliach,
Agmon, and Kaminka 2009; Basilico, Gatti, and Amigoni
2009; Agmon, Kraus, and Kaminka 2008)), with the im-
mediate applicability of the problem being one of its main
sources of interest. The problem is formally described as
repeatedly visiting some interest points in order to monitor
them. The points may either be in a discrete environment,
a continuous 1-dimensional environment (along a line), or a
continuous 2-dimensional environment (inside an area).1

In this paper we concentrate on the continuous 2-
dimensional multiagent patrol problem, with discrete points
of interest, in complex environmental conditions. In this
problem, we are given a graphG = (V,E), and we need to
define patrol paths for a team ofk agents that will minimize
the maximal time some vertex of the graph is left unvisited.

∗This work has taken place in the Learning Agents Research
Group (LARG) at UT Austin. LARG research is supported in part
by NSF (IIS-0917122), ONR (N00014-09-1-0658), and the FHWA
(DTFH61-07-H-00030).
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Of course higher dimensions are also possible.

The complexity of the environment is expressed via the cost
of travel between each pair of vertices of the graph.

Current strategies for multiagent patrol offer, roughly, two
alternatives for agents’ patrol paths. The first strategy, de-
noted here asSingleCycle, is to create one simple cyclic
path that travels through the entire area (graph), and to let
all agents patrol along this cyclic path while maintaining
uniform distance between them (Elmaliach, Agmon, and
Kaminka 2009; Chevaleyre 2004). The second strategy, de-
noted byUniPartition, is to partition the area (graph) intok
distinct subareas, where each agent patrols inside one area.

We suggest a third, general, strategy, denoted by
MultiPartition, in which the graph is divided intom sub-
graphs,m ≤ k, such that a subteam of agents jointly patrols
in each subgraph. We define the problem of findingk (possi-
bly overlapping) paths for the agents such that the maximal
time between any two visits at a vertex is minimized, and
show that the problem isNP-Hard. TheSingleCycle and
UniPartition strategies are special cases ofMultiPartition,
and are also intractable in general graphs.

We therefore investigate the problem on a special fam-
ily of graphs, which are cyclic graphs with non intersecting
shortcuts (diagonals), calledouterplanar graphs(Chartrand
and Harary 1967). This simplified, yet realistic, family of
graphs have some characteristics that can help in finding so-
lutions to the multiagent patrol problem. For example, an
optimalSingleCycle strategy is unique and can be found in
linear time. Unfortunately, the time complexity of the gen-
eral problem of finding an optimalMultiPartition strategy
even in such graphs appears to be intractable as well. We
therefore suggest a heuristic algorithmHeuristicDivide for
finding a partition of the graph into disjoint cycles in the out-
erplanar marine environment, and a partition of thek agents
among those cycles.

For evaluation of our work we used a custom developed
ship simulator, UTSEASIM , that was designed to realisti-
cally model ship movement constraints in marine environ-
ments. We first show that in a simple scenario in which
the optimalMultiPartition strategy is easily computable,
it outperforms the other two strategies (SingleCycle and
UniPartition). We then show that in a more complex envi-
ronment, our heuristic algorithmHeuristicDivide, follow-
ing theMultiPartition strategy, performs significantly better
than the tractableSingleCycle strategy.

2 Related Work
The problem of multiagent patrol can be roughly divided
into two problems: multiagent frequency-based patrol (e.g.

(Machado et al. 2003; Chevaleyre 2004; Elmaliach, Agmon,
and Kaminka 2009)), and multiagent patrol in adversarial
environments (e.g. (Agmon, Kraus, and Kaminka 2008;
Basilico, Gatti, and Amigoni 2009)). The problems differ in
the objective function that should be optimized, namely opti-
mizing frequency-based criteria or optimizing probability of
detecting events controlled by an adversary (respectively).
In this paper we focus on the problem of frequency-based
patrol, in which we aim at minimizing the time between two
visits at a point.

Mechadoet al. (2003) were the first to define the problem
of multiagent patrol in graph environments, and introduced
the notion ofidleness, meaning the time between two vis-
its in a vertex of the graph. They consider environments
with uniform length edges, and perform an empirical eval-
uation of various architectures for multiagent patrol in dif-
ferent graphs. They did not theoretically define nor evaluate
the multiagent patrol problem on graphs.

The first theoretical analysis of the problem of mul-
tiagent patrol was given by Chevaleyre (2004). Cheva-
leyre refers mainly to theworst idlenesscriterion, which
is the largest amount of time that some vertex remained
unvisited throughout the execution of the patrol algorithm.
He discusses two possible strategies: aCyclic strategy,
in which one cyclic path travels through the entire graph,
and all agents follow this path (denoted bySingleCycle)
and aPartition-basedstrategy, in which the graph is par-
titioned into k distinct subgraphs (k being the number of
agents), where each agent visits one subgraph in a cyclic
tour (denoted byUniPartition). In our work we redefine
the multiagent patrol problem in a more general form, in
which the graph is possibly partitioned into disjoint sub-
graphs, however agents can share a subgraph (denoted by
MultiPartition). This general definition includes also the
two strategies proposed by Chevaleyre as subcases, i.e.,
SingleCycle, UniPartition ⊆ MultiPartition.

Ahmadi and Stone (2006) investigated the multiagent pa-
trol problem in prioritized environments, i.e., where differ-
ent areas require different attention from the agents. They
suggest a learning-based method for determining the optimal
patrol path for each robot, which is adapted to the different
constraints of the environment. Marieret al. (2010) also
consider the prioritized multi-robot patrol, in which theyas-
sign non-uniform weights on the vertices of the graph, cor-
responding to the importance of the node. They describe
the problem as information gain (rather than idleness), and
examine the performance of their heuristic algorithms with
respect to the known (or unknown) duration of the patrol.
They do not, however, refer to the graph theoretic problem.

Multi-robot patrol in areas was considered by Elmaliah
et al. (2009), which offered an optimal patrol algorithm
based on a coordinated movement of the robots along one
cyclic path with minimal cost that passes through the entire
areaTheir solution assumes that the area and the size of the
robots meet several constraints, allowing them to find an op-
timal solution (minimal cost cyclic path) in polynomial time.

3 Motivation - Ship Patrol and Marine
Environment

As surveyed in Section 2, the problem of multiagent patrol
has become a canonical problem in multiagent (and specif-

ically multi-robot) systems in the past several years. In this
paper, we investigate this problem in a realistic ship simula-
tor that we have designed in our lab and that introduces im-
portant new travel-time constraints to the problem. The gen-
eral problem defined in graph environments requires a team
of k agents to repeatedly visit allN nodes of the given graph
while minimizing the longest time a node has remained un-
visited by some robot. Generally, the solutions that exist in
the literature for defining optimal patrol paths for a team of
robots, can be roughly divided into two types:SingleCycle
andUniPartition strategies, which consider the entire cyclic
path, or divide the area intok regions, each covered by one
agent (respectively).

When looking at the example described in Figure 1 for
three ships, we can see that there exists another strat-
egy: Letting one ship patrol in one cycle (here points
p3, p4, p5, p6), and the other two ships can jointly patrol
in one cycle (pointsp1, p2, p7, p8, p9, p10). We denote this
strategyMultiPartition, i.e., a partition into areas in which
more than one agent can patrol in each area. In this exam-
ple, the worst idleness when the sea conditions were calm
(no winds or currents) was651, 786, and614 seconds for
the SingleCycle, UniPartition and MultiPartition strate-
gies (respectively). When we introduced currents to the sys-
tem, the advantage of using theMultiPartition strategy be-
came more evident: the worst idleness results were795, 792
and613 seconds using theSingleCycle, UniPartition and
MultiPartition strategies (respectively).

This example, along with other similar phenomena we
have viewed in our simulator, motivated us to redefine the
problem of multiagent patrol in a more general form, the
MultiPartition strategy, and investigate possible solutions to
the problem in circular environments, but with additional
shortcuts between the points of interest.

Figure 1: An example of a scenario handled by the simulator. The
circles represent the points of interest (nodes of the graph), and the
drop shapes are the ships. The large grey shapes are obstacles, and
the drawn arrows indicate the direction of the water current.

4 Problem definition and complexity
In this section, we define the general problem of multi-
agent frequency based patrol on general graphs. We de-
scribe the decision version of the problem, where the input
is the graphG = (V,E) (|V | = N), an integerk < N
that corresponds to the number of agents, and an integerf
which is the maximal worst idleness, i.e., the maximal re-
quested idleness from all vertices of the graph (similar to
the definition in (Chevaleyre 2004)). Formally, iffi denotes
the idleness of a vertexvi, then the worst idleness of the

graphG, wi(G), guaranteed by an AlgorithmA is defined
as wi(G) = max1≤i≤N{fi}.

Note that real world constraints dictate modeling the
world with directed graphs, i.e., the travel time from a ver-
tex v to a vertexu is not necessarily the same as that from
u to v. However, we assume that the graph issymmetric,
i.e., if an edge exists fromv to u, then an edge exists also
from u to v (not necessarily of the same cost). We therefore
describe the general problem on undirected graphs. Once a
cycle is defined, the algorithms will decide whether to go
clockwise or counterclockwise along the cycle, depending
on the direction that has lower cost.
Multiagent patrol in general graphs

Definition: Multiagent Graph Patrol (MGP)
Given a graphG = (V,E,C) where |V | = N , and
∀(vi, vj) ∈ E, cij ∈ C is the associated cost of the edge,
an integerk < N denoting the number of agents, and a de-
sired maximal worst idleness targetf , is there a division of
V into m ≤ k cyclic pathsV1, V2, . . . , Vm (not necessarily
simple), each assigned withki agents such that allki agents
visit all vertices inVi and

∑m

i=1 km = k, such that the worst
idleness wi(G) is at mostf?

In the following theorem we show that theMGP problem
is NP complete for generalk’s.

Theorem 1. TheMGP problem isNP complete.2

In our work, we would like to consider a special case of
theMGP problem, in which each pathV1, . . . , Vm is cyclic,
i.e., it is a closed path with no repeated vertices. Moreover,
we restrict our attention to sets of distinct paths that do not
share any vertices, i.e,V = V1

⊕

. . .
⊕

Vm. This prob-
lem handles restrictions that are more suitable for realistic
robotic environments, in which two requirements are met:

1. Two robots will not meet, thus will not interfere with one
another, during the execution of the patrol.

2. Robots will not need to interact outside of their subteam,
i.e., the patrol algorithm requires only local coordination
(unless the environment changes the optimality of the cur-
rent patrol algorithm). Moreover, if different human oper-
ators observe each subteam, it does not require continuous
coordination among the human operators.

The formal definition of the problem is as follows.
Definition: Multiagent Cyclic Graph Patrol (MCGP)
Given a graphG = (V,E,C) where |V | = N , and
∀(vi, vj) ∈ E, cij ∈ C is the associated cost of the edge, an
integerk < N denoting the number of agents and a desired
maximal worst idleness targetf , is there a division ofV into
m ≤ k distinct simplecyclesV = V1

⊕

V2

⊕

. . .
⊕

Vm,
each cycleVi assigned withki agents coordinatedly travel-
ing alongVi and

∑m

i=1 km = k, such that the worst idleness
wi(G) is at mostf?

The MCGP is a special case of theMGP, in which the
cyclic paths are required to be disjoint, and each cycle is
simple (with no repeated vertices). TheNP-Hardness proof
resembles the proof for theMGP problem, thus we conclude
the following.

2Proofs are omitted throughout the paper due to space con-
straints.

Theorem 2. The MCGP problem on general graphs is
NP-Hard.

We can define the worst idleness in this problem as fol-
lows. If k′ agents visit a cyclic path, denoted byV C , where
V C = {vi1 , vi2 , . . . , vil

}, vij
∈ V (G), (vij

, vi(j+1 mod l)
) ∈

E(G), and denote the total weight of edges in the cy-
cle by w(V C) =

∑l

j=1 ciji(j+1 mod l)
, then∀vij

∈ V C ,

fij
= w(V C)

k′
. Therefore ifG is divided intom distinct

cycles, where each cycleV C
i is visited byki agents, then

wi(G) = max1≤i≤m{w(V C
i)

ki
}.

Algorithm AssignKAgents (described below) is given
as inputm cyclic paths, an integerk corresponding to the
number of agents, and a maximal idlenessf , and has to an-
swer the question of whetherk agents are sufficient to guar-
antee a maximal idleness off on the given graphs. It re-
turns the assignment of number of agents per graph (K =
{k1, . . . , km} such that

∑m

i=1 ki = k andki agents are nec-
essary to visitGi in order to guarantee minimal idleness
f) and the maximal idleness guaranteed by this assignment
(floc). Denote the edges along the cyclic pathGi in clock-
wise direction byGcw

i and in the counterclockwise direction
by Gccw

i . The algorithm will work for either symmetric di-
rected graphs (in which it will refer to the direction with
minimal cost — either going clockwise or counterclock-
wise) or undirected graphs (in whichw(Gcw

i) = w(Gccw
i)

wherew() is the cycle weight, or length, function).

Algorithm 1 < K, floc > = Algorithm
AssignKAgents({G1, . . . , Gm}, k, f)

1: C ← 0, K ← ∅
2: for i← 1, . . . , m do
3: wi ← min{w(Gcw

i), w(Gccw
i)}

4: gi ← argminGcw
i

,Gccw
i
{w(Gcw

i), w(Gccw
i)}

5: ki ← ⌈wi/f⌉
6: if ki > k then
7: Return∅
8: K ← K

S

ki, C ← C
S

gi

9: k ← k − ki

10: floc ← max1≤i≤m{w(C[i])/K[i]}
11: ReturnK, floc

Multiagent patrol in outerplanar graphs
Motivated by the problem of multi-robotperimeter patrol
(e.g. (Agmon, Kraus, and Kaminka 2008)), we examine
the MCGP problem in circular environments. However,
we add more realistic considerations to the environment,
namely adding possibleshortcutsbetween vertices that pass
inside the circle. To avoid possible interference by agents
that travel along the edges, we require the inner edges not
to intersect one another. The resulting graph is planar, and
moreover, it is abiconnected outerplanargraph (Chartrand
and Harary 1967), i.e., it is a planar graph that is cyclic, and
there are no nodes that are inside the cycle (all nodes in the
graph are on the same outer face). In the family of outer-
planar graphs, several hard problems become very easy to
solve. For example finding a Hamiltonian cycle is done in
linear time, as the only possible simple cycle that visits all
nodes in the graph is the external cycle. Therefore also find-
ing the optimalSingleCycle strategy is done in linear time,

as the solution is unique. Another interesting characteristic
of outerplanar graphs is that every subgraph of an outerpla-
nar graph is outerplanar, thus a biconnected component of a
subgraph of an outerplanar graph also has a unique Hamil-
tonian cycle (Chartrand and Harary 1967).

We draw a connection between disjoint cycles and bicon-
nected components in Lemma 3. Generally, a biconnected
component in an outerplanar graph has a unique Hamilto-
nian cycle, which is the outer-cycle that visits all vertices.
We would therefore like to find a way to use this property in
order to find disjoint cycles, as defined in theMultiPartition
strategy. As a first step, we look at the case of dividing the
graph into two disjoint cycles. We show in the lemma that in
order to find such disjoint cycles, it is sufficient and required
(in the general case) to consider all biconnected components
that are created by the removal of two edges from the graph.
We later use this property in the heuristic algorithm for solv-
ing theMCGP problem in outerplanar graphs.
Lemma 3. Given a biconnected outerplanar graphG =
(V,E), each division ofG into two disjoint biconnected
components can be achieved by removing one pair of edges
and computing the biconnected components of the remain-
ing graph. If removing one pair of edges, the number of
remaining disjoint biconnected components (excluding dis-
connected vertices) will not exceed3.

This lemma results in the fact that finding two disjoint cy-
cles (and possibly3) in a graph can be done efficiently in
time complexity of at most

(

|E|
2

)

. Since finding the partition
of k into two (or three) components is done efficiently as
well, theMCGP problem can be solved optimally in poly-
nomial time ifm is restricted to be2.
Corollary 4. In an outerplanar graphG = (V,E), finding
a division of the graph into up to two disjoint simple cycles
V C

1 andV C
2 such thatV = V C

1

⊕

V C
2 andwf(G) (for any

value ofk) is minimized can be done in polynomial time,
using AlgorithmDivideTo2Cycles.

Algorithm DivideTo2Cycles receives as input the graph
G = (V,E) and the maximal frequency criterionf that
should be met, and returns the best division of the graphs
into two components such that the division results in maxi-
mal idleness of at mostf . If no such division exists, it re-
turns the empty set. Note that in order to get all possible
divisions ofG into two disjoint cyclic paths, the algorithm
should be given the valuef = w(G)/k. The algorithm re-
moves all possible pairs of edges from the original graph,
and computes the biconnected components of the remaining
graph. For those biconnected components, it checks whether
there is an assignment ofk into those biconnected compo-
nents such that the maximal idleness of the graph is at most
f , using AlgorithmAssignKAgents. The optimal assign-
ment of agents can then be done by examining at most|V |2

options of dividingk into two (or three cycles). By Corol-
lary 4, the algorithm examines all possibilities of dividing
the graph into two cycles (which has time complexity of
O(|E|2)). Since checking all possibilities of partitioning the
numberk into at most3 components is polynomial ink, and
determining the idleness is linear in|E|, then the total time
complexity of AlgorithmDivideTo2Cycles is O(|E|3).

As shown by de Mier and Noy (2009), the number of cy-
cles in a maximal outerplanar graph is exponential in the

Algorithm 2 < U,K, floc > = Algorithm
DivideTo2Cycles(G = (V,E), f, k)

1: S ← ∅
2: for Every pair of edgesei = (vi, ui) and ej = (vj , uj),

ei, ej ∈ E do
3: E′ ← E \ {ei, ej}
4: U ← biconnected components ofG′ = (V, E′)
5: if < K, floc >= AssignKAgents(U, k, f)! = ∅ then
6: floc ← optimal assignment ofk agents toU
7: S ← S

S

{< U, K, floc >}
8: ReturnS[i] for whichfloc is minimal

number of vertices of the graph, thus if examining all pos-
sible sets that generate a direct sum ofV it will result in at
least an exponential time complexity. We therefore believe
(although do not prove) that theMCGP problem, also in the
simple biconnected outerplanar environment, is intractable,
as the number of all possibilities of the division of the graph
into up tok subgraphs grows exponentially withk.

We therefore describe a heuristic algorithm, Algorithm
HeuristicDivide, for finding a division of the graph into dis-
joint cycles.

Heuristic algorithm for multiagent patrol in
outerplanar graphs
We describe in this section a heuristic algorithm, Algorithm
HeuristicDivide, for finding a set of any number of dis-
joint cycles in an outerplanar graph (based on Algorithm
DivideTo2Cycles), and dividing thek agents among these
disjoint cycles in a way that aims to find a low overall max-
imal idleness.

The algorithm applies algorithmDivideTo2Cycles once,
then further applies itself recursively on each element of
the set of disjoint biconnected components that yield low-
est worst idleness. The depth of the recursion is therefore at
mostk. In this way it performs a greedy heuristic search and
halts once it completes all possible divisions up tok cycles.
The algorithm receives as input the graphG, the number of
agentsk, andf = w(G)

k
.

Note that once the cycles, the direction of travel along the
cycles, and the division of the agents among the cycles are
determined, it is only left to distribute the agents along the
cycles (number of agents per cycle as determined by the al-
gorithm), and require the agents in each cycle to maintain
uniform distance between them and continue traveling coor-
dinatedly along their circular path.

Algorithm 3 Algorithm HeuristicDivide(G = (V,E), f, k)

1: ResSet← DivideTo2Cycles(G, f, k)
2: if ResSets = ∅ then
3: ReturnG
4: CurChoice = argmin<Ui,Ki,fi>∈ResSet{fi}
5: Return

S

Gi∈U(CurChoice) HeuristicDivide(Gi, Ki, fi)

Time complexity of Algorithm HeuristicDivide:
The time complexity ofHeuristicDivide is defined by two
components: The depth of the search and the time to process
each level of the search tree. Since at each step we deepen
the recursion we lose at least one vertex (as the minimal di-
vision to two distinct cycles is to a vertexv and to a cyclic

graphG \ {v}), the depth of the tree is at mostk − 1. The
time complexity ofAssignKAgents is linear in the num-
ber of edges, and the complexity of finding biconnected
components is also linear in outerplanar graphs. Therefore
the complexity of examining each pair of edges isO(|E|).
When we go down in the recursion, ifE is divided into up to
three disjoint biconnected componentsE1, E2 andE3, then
we have complexity ofO(|E1|

2 + |E2|
2 + |E3|

2) where0 ≤
|E1| ≤ |E2| ≤ |E3| < |E| and|E1| + |E2| + |E3| = |E|.
Therefore, sinceO(|E1|

2 + |E2|
2 + |E3|

2) < O(|E|2) it
leads to a total time complexity ofO(k|E2|). Added to the
time complexity ofDivideTo2Cycles, the time complexity
of HeuristicDivide is O(|E|3).

5 Empirical evaluation
We evaluatedHeuristicDivide under realistic marine envi-
ronment using our novel UTSEASIM Simulator. In the fol-
lowing section we describe the simulator, the experimental
setting and the empirical results from executing the patrol
algorithms described above.

The UTSEASIM Simulator
For our experiments, we use a custom-designed naval sur-
face navigation simulator that will soon be open-source, that
we call UTSEASIM . The UTSEASIM simulator is written as
a supporting platform for research on autonomous sea nav-
igation. It uses realistic2D physical models of marine en-
vironments and sea vessels, and runs both in GUI and in
non-GUI modes. Figures 1 and 2 show snapshot of the sim-
ulator’s GUI (with blue highlights added), taken during a
real-time simulation.

The simulator’s core contains three main modules: a
Sea Environmentmodule, aShipmodule, and aDecision-
Making module. The sea environment module includes
models of winds, water currents, waves, and obstacles. The
ship module models all relevant aspects of a ship, includ-
ing the ship’s physical properties, sensing capabilities,and
ship actuators. The decision making-module implements an
agent that controls a ship autonomously. At each time step,
the agent receives the perceptions sensed by the ship, pro-
cesses them to update its current world state, and decides on
control actions for the ship based on its current world state
and its decision-making strategy.

Experimental Setting and Results

In our experiments, we examined several different environ-
ments. Due to space constraints, we describe one interesting
environment, in which the graph is outerplanar with a large
number of possible division of the graph into disjoint cycles.
The marine environment was implemented in UTSEASIM ,
and illustrated in Figure 2 (distances are shown in meters).
In this environment,N = |V | = 36, and the number of ships
(k) varies from1 to 30. Although the points of interest are
arranged in two straight lines, this environment can become
equivalent to many realistic cases by controlling the currents
between nodes thus controlling the edge lengths. Moreover,
this environment can represent a man-made group of points
of interest, for instance a sequence of oil rigs.

We examined four different scenarios, where in each one
the sea conditions were different. In the first environment
(Sea Condition0), there were no currents and the cost of
traveling between two points correlates to the geographical

Figure 2: The evaluation environment.

distance. We then gradually added more currents to the sys-
tem with three different strengths -Sea Condition1, 2 and
3, for weak, medium and strong, respectively, where their
directions was as shown in Figure 2. We ran Algorithm
HeuristicDivide initially with the worst idleness of∞ and
let it find the best division it can. We then simulated the
patrol-division returned by the algorithm for 20,000 seconds
(333 minutes), and reported the worst node-idleness, i.e.,the
highest average time between consecutive node visits, for
any node. In all the results, lower values arebetter.

Figure 3 shows the worst idleness resulting from
HeuristicDivide when running on sea conditions 0–3. Note
that in Sea Condition0 (no currents) the algorithm always
returned theSingleCycle strategy, which is indeed the best
division for the case of no currents. As expected, the
worst idleness becomes higher as the sea conditions become
rougher.

Figure 3: The worst idleness returned from Algorithm
HeuristicDivide in the four different sea conditions examined.

In order to evaluate the performance ofHeuristicDivide,
we compared its worst idleness with the worst idleness of
the following:

SingleCycle The patrol algorithm in which all ships travel
along one cycle while maintaining uniform distance be-
tween adjacent pairs.

k+1 Incremental change. In this case,HeuristicDivide was
computed fork ships, and upon the arrival of a new ship
it is added to the cycle with highest worst idleness (for the
best improvement in idleness). This is compared to run-
ning HeuristicDivide with k + 1 ships, and the goal is to
check whetherHeuristicDivide, as a heuristic algorithm,
does better than just a straightforward increment.

k-1 Decremental change. HereHeuristicDivide was com-
puted fork+1 ships, and a ship needs to be removed from
the system. We assume that in this case a ship is removed
from the cycle with best worst idleness (for minimal in-
crease in the worst idleness). This is compared to running
HeuristicDivide with k − 1 ships, again with the goal of
checking whetherHeuristicDivide does better than just a
straightforward adjustment.

Note that our solution could not be compared against the
UniPartition strategy, as the calculation of the optimal strat-
egy is intractable (even fork = 2).

The results for Sea Conditions3 are shown in Figure
4. In Sea Condition0, HeuristicDivide’s solution is al-

Figure 4: The worst idleness results ofHeuristicDivide,
SingleCycle, k+1 andk−1 in Sea Condition3 (strong currents).

ways theSingleCycle strategy, hence for every givenk
HeuristicDivide’s solution is identical to theSingleCycle,
k + 1 and k − 1 solutions. In Sea Conditions2 and 3,
HeuristicDivide performs statistically significantly (using
paired t-test) better than theSingleCycle strategy and the
incrementalk + 1 and decrementalk − 1 cases, with p-
values< 0.002 for Sea Condition3 (in all cases) and p-value
< 0.04 for Sea Condition2 (in all cases). In Sea Condition
1, although the results are generally better, no significant
results are achieved. Interestingly, there are some cases in
which SingleCycle slightly outperformsHeuristicDivide,
even thoughHeuristicDivide (theoretically) does not divide
a cycle into smaller cycles unless it improves the worst idle-
ness (observed mainly in Sea Condition1). The reason for
that lies in the fact that deciding whether to break a big cycle
into smaller cycles is done using an estimation of the cost of
traveling along an edge, by averaging across simulations of
ships patrolling along the edges of arbitrary paths, which are
usually different then the paths found byHeuristicDivide’s
solution. For instance, consider the case where the final
solution requires a180◦ turn towards the next point. The
physics of ship movement require the ship to travel in an
arc, which makes the path to the next point longer than its
estimate. We leave the incorporation of the cost of traveling
along angular paths inHeuristicDivide to future work.

6 Conclusions and Future Work
In this paper we introduced a new class of strategies for the
frequency-based multiagent patrol problem suitable for mul-
tiagent patrol in complex environmental conditions. In this
new strategy class, which we callMultiPartition, a graph is

divided into disjoint cycles in which a subteam of the agents
travel coordinatedly such that the maximal time between
visits to interest points is minimized. This strategy class
is a generalization of existing strategies that either create
one cyclic path throughout the entire graph (SingleCycle
strategies) or divide the graph into k disjoint subgraphs (k
being the number of agents), where each agent patrols in
its own subgraph—theUniPartition strategy. We showed
that finding an optimal strategy to the problem isNP-Hard
in the general case, and also intractable in a realistic sim-
plified family of outerplanar graphs. We then introduced a
heuristic algorithm that divides the outerplanar graph into
disjoint cycles. We evaluated our heuristic algorithm in a
custom-developed ship simulator that realistically models
ship movement constraints such as engine force and drag,
and reaction of the ship to environmental changes. Results
indicate that this algorithm significantly improves the fre-
quency of visits compared to other known patrol strategies.

This paper opens up several directions for future work.
First, it would be interesting to consider the problem of mul-
tiagent patrol in prioritized environments, i.e., where ver-
tices of the graph should be visited with different frequen-
cies. Second, we intend to add more learning methods for
determining the cost of travel, especially in prioritized en-
vironments. From a larger perspective, this paper raises the
challenge of finding effective heuristics, central and local,
for theMultiPartition problem on general graphs.

References
Agmon, N.; Kraus, S.; and Kaminka, G. A. 2008. Multi-
robot perimeter patrol in adversarial settings. InProc. of
ICRA’08.
Ahmadi, M., and Stone, P. 2006. A multi-robot system for
continuous area sweeping tasks. InProc. of ICRA’06.
Almeida, A.; Ramalho, G.; Santana, H.; Tedesco, P.;
Menezes, T.; Corruble, V.; and Chevaleyr, Y. 2004. Re-
cent advances on multi-agent patrolling.Lecture Notes in
Computer Science3171:474–483.
Basilico, N.; Gatti, N.; and Amigoni, F. 2009. Leader-
follower strategies for robotic patrolling in environments
with arbitrary topologies. InProc. of AAMAS’09.
Chartrand, G., and Harary, F. 1967. Planar permutation
graphs. Annales de l’institut Henri Poincare’ (B) Proba-
bilite’s et Statistiques3(4):433–438.
Chevaleyre, Y. 2004. Theoretical analysis of the multi-agent
patrolling problem. InProc. of IAT’04.
de Mier, A., and Noy, M. 2009. On the maximum number of
cycles in outerplanar and series-parallel graphs.Electronic
Notes in Discrete Mathematics31:489–493.
Elmaliach, Y.; Agmon, N.; and Kaminka, G. A. 2009.
Multi-robot area patrol under frequency constraints.Annals
of Math and Artificial Intelligence journal (AMAI)57(3—
4):293—320.
Machado, A.; Ramalho, G.; Zucker, J.; and Drogoul, A.
2003. Multi-agent patrolling: An empirical analysis of al-
ternative architectures. InProc. of MABS’02, 155–170.
Marier, J.; Besse, C.; and Chaib-draa, B. 2010. Solving
the continuous time multiagent patrol problem. InProc. of
ICRA’10.

