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Pseudo-random number generation on the Atari 2600
was commonly accomplished using a Linear Feedback Shift
Register (LFSR). One drawback was that the initial seed for
the LFSR had to be hard-coded into the ROM. To overcome
this constraint, programmers sampled from the LFSR once
per frame, including title and end screens. Since a human
player will have some random amount of delay between see-
ing the title screen and starting to play, the LFSR state was
effectively randomized at the beginning of the game despite
the hard-coded seed. Other games used the player’s actions
as a source of randomness. Notable pseudo-random games
include Adventure in which a bat randomly steals and hides
items around the game world and River Raid which used
randomness to make enemy movements less predictable.

Relying on the player to provide a source of randomness is
not sufficient for computer controlled agents which are capa-
ble of memorizing and repeating pre-determined sequences
of actions. Ideally, the games themselves would provide
stochasticity generated from an external source such as the
CPU clock. In practice, this was not an option presented by
the hardware. Atari games are deterministic given a fixed
policy leading to a set sequence of actions. This article dis-
cusses different approaches for adding stochasticity to Atari
games and examines how effective each approach is at de-
railing an agent known to memorize action sequences. Ad-
ditionally it is the authors’ hope that this article will spark
discussion in the community over the following questions:

• How important is stochasticity in Atari 2600 games?

• Can an agent be considered general if it is memorizing
multiple deterministic games?

• Should a distinction be made between agents that memo-
rize sequences of actions and those that do not?

• Given that Atari games are deterministic, what is the right
way to inject randomness?

• How well do the current methods for adding stochasticity
perform?

This article examines three ways to add stochasticity: 1)
Randomly skipping frames at the beginning of an episode 2)
ǫ-greedy action selection, and 3) randomly repeating actions
throughout an episode.
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Case Study

In order to test the efficacy of different methods for
adding randomness, we re-use an agent from (Hausknecht
et al. 2013), memorizing-NEAT, a memorizing agent
evolved on fully-deterministic Atari games. Its counterpart,
randomized-NEAT, is an agent that was evolved on the
same set of games with ǫ-greedy action selection (ǫ =

.005). Randomized-NEAT exhibits lower performance, but
increased tolerance for randomness.

The following experiments compare the performance
of memorizing-NEAT and randomized-NEAT under dif-
ferent types of stochasticity. In all of the following fig-
ures, solid, rectangular boxplots correspond to memorizing-
NEAT while hollow, pinched boxplots correspond to
randomized-NEAT. Each boxplot represents a single eval-
uation of all 61 Atari games currently supported by ALE.
Z-Score normalization is then applied to normalize the per-
game scores of all results in that figure.

An ideal type of randomness should decrease the scores
of memorizing-NEAT without degrading the scores of
randomized-NEAT.

Random Initialization

Random initialization is currently implemented in ALE
and adds a random number of NOOP actions to the be-
ginning of each game. The number of NOOPs is se-
lected uniformly between 0 and 499. This option is
enabled in ALE by adding the command line flag
-use environment distribution. Random initial-
ization is minimally invasive in the sense that it allows the
agent to play exactly as it wants provided it can handle
the randomized starting state. Furthermore, random initial-
ization resulted in a change in memorizing-NEAT’s scores
for all 61 games (except Pitfall which had zero score in
both cases). This indicates that random initialization forced
memorizing-NEAT to start playing in an unfamiliar game
state for all 61 games.

While effective at adding stochasticity, random initializa-
tion is quite detrimental to the performance of randomized-
NEAT, indicating that it may be too harsh of a randomization
method (Figure 1).
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Figure 1: Effects of random initialization on memorizing-
NEAT (solid rectangular boxplots) and randomized-NEAT
(pinched hollow boxplots). Reference scores of each agent
are provided in a fully deterministic environment and a fully
random environment (enforced ǫ = 1 greedy action selec-
tion). Higher aggregate Z-Scores are better.

Epsilon-Greedy Action Selection

ǫ-greedy action selection chooses a random legal action at
each frame with probability ǫ. (Bellemare et al. 2013; Mnih
et al. 2013) used ǫ-greedy action selection with ǫ = .05.

Enforcing an ǫ-greedy action selection step in ALE would
be difficult to implement in an algorithm-friendly manner.
Two main factors to consider: 1) should ALE overwrite a re-
quested action with a random one or simply insert a random
action after a requested action? and 2) Should ALE report
back to the algorithm that it overwrote/inserted a random
action or should it silently take the random action and re-
port the resulting reward and next state as if nothing spe-
cial happened? The former would require a more complex
agent/ALE interface, while the latter would hide potentially
important information from the agent. Given the dissatisfy-
ing qualities of both options, perhaps the least of all evils is
to encourage some standard value of ǫ and rely on practi-
tioners to implement and self-report.
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Figure 2: ǫ-Greedy Action Selection: Even small values of
ǫ drastically reduce memorizing-NEAT’s performance. ǫ =

0 corresponds to the entirely deterministic agent while ǫ = 1

is a completely random agent.

Figure 2 indicates that ǫ-greedy action selection is effec-
tive at derailing memorizing-NEAT even at small values of
ǫ such as 0.005. Perhaps the prior practice of using ǫ = .05

could be relaxed, leading to increased agent performance.
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Figure 3: ǫ-Repeat Action Selection has the most detrimen-
tal effects towards memorizing-NEAT and the least effect on
randomized-NEAT.

Epsilon-Repeat Action Selection

Rather than choosing an entirely random action with prob-
ability ǫ, ALE could instead repeat the last requested action
for an extra frame. This would have a randomizing effect for
all but the most degenerate of policies.1 Additionally, as Fig-
ure 3 shows, repeating a selected action is less detrimental
than selecting an action entirely at random. Implementation-
wise, enforcing randomized action repeats in ALE would
have the same complications as enforcing ǫ-greedy action
selection. Figure 3 confirms that ǫ-repeat action selection is
just as effective as ǫ-greedy action selection at degrading
memorizing-NEAT’s performance but has very little effect
on randomized-NEAT.

Discussion

Any form of forced randomness that does not come from the
environment will necessarily degrade the performance of a
learning agent. Of the different methods for adding stochas-
ticity to Atari 2600 games, ǫ-repeat action selection best fits
the desired criteria: it has the most detrimental effects to-
wards memorizing agents and is the least detrimental to al-
ready randomized agents.

In the future, perhaps the best way to overcome the Atari
2600’s determinism is through two-player games (or com-
petitions) in which randomness stems from the other player.
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1A policy that only selects a single action would be unaffected.


