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Abstract

A desirable goal for autonomous agents is to be able
to coordinate on the fly with previously unknown team-
mates. Known as “ad hoc teamwork”, enabling such a
capability has been receiving increasing attention in the
research community. One of the central challenges in ad
hoc teamwork is quickly recognizing the current plans
of other agents and planning accordingly. In this paper,
we focus on the scenario in which teammates can com-
municate with one another, but only at a cost. Thus, they
must carefully balance plan recognition based on obser-
vations vs. that based on communication.

This paper proposes a new metric for evaluating how
similar are two policies that a teammate may be follow-
ing - the Expected Divergence Point (EDP). We then
present a novel planning algorithm for ad hoc team-
work, determining which query to ask and planning ac-
cordingly. We demonstrate the effectiveness of this al-
gorithm in a range of increasingly general communica-
tion in ad hoc teamwork problems.

Introduction

Modern autonomous agents are often required to solve com-
plex tasks in challenging settings, and to do so as part of
a team. For example, service robots have been deployed
in hospitals to assist medical teams in the recent pandemic
outbreak. The coordination strategy of such robots cannot
always be fixed a priori, as it may involve previously un-
met teammates that can have a variety of behaviors. These
robots will only be effective if they are able to work to-
gether with other teammates without the need for coordina-
tion strategies provided in advance (Cakmak and Thomaz
2012). This motivation is the basis for ad hoc teamwork,
which is defined from the perspective of a single agent,
the Ego Agent', that needs to collaborate with teammates
without any pre-coordination (Stone et al. 2010; Albrecht
and Stone 2018). Without pre-coordination, only very lim-
ited knowledge about any teammate, such as that they have
limited rationality or what their potential goals are, is avail-
able. An important capability of ad hoc teamwork is plan
recognition of teammates, as their goals and plans can affect
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the goals and plans of the ego agent. Inferring these goals
is not trivial, as the teammates may not provide any infor-
mation about their policies, and the execution of their plan
might be ambiguous. Hence, it is up to the ego agent to dis-
ambiguate between potential goals. The first contribution of
this paper is a metric to evaluate ambiguity between two
potential teammate policies by quantifying the number of
steps a teammate will take (in expectation) until it executes
an action that is consistent with only one of the two policies.
We show how this EDP metric can be computed in practice
using a Bellman update.

In addition to applying a reasoning process to indepen-
dently infer the goal of its teammate, the ego agent can also
directly communicate with that teammate to gain informa-
tion faster than it would get by just observing. However, if
such a communication channel is available, it can come with
a cost, and the ego agent should appropriately decide when
and what to communicate. For example, if the previously de-
scribed medical robot can fetch different tools for a physi-
cian in a hospital, the physician would generally prefer to
avoid the additional cognitive load of communicating with
the robot, but may be willing to answer an occasional ques-
tion so that it can be a better collaborator. We refer to this
setting where the ego agent can leverage communication to
collaborate with little to no knowledge about its teammate as
Communication in Ad hoc Teamwork, or CAT (Mirsky et al.
2020). The second contribution of this paper is using EDP in
a novel planning algorithm for ad hoc teamwork that rea-
sons about the value of querying and chooses when and what
to query about in the presence of previously unmet team-
mates.

Lastly, this paper presents empirical results showing the
performance of the new EDP-based algorithm in these com-
plex settings, showing that it outperforms existing heuris-
tics in terms of total number of steps required for the team
to reach its goal. Moreover, the additional computations re-
quired of the EDP-based algorithm can mostly take place
prior to the execution, and hence its online execution time
does not differ significantly from simpler heuristics.

Related Work

There is a vast literature on reasoning about teammates
with unknown goals (Fern et al. 2007; Albrecht and Stone
2018) and on communication between artificial agents (Co-



hen, Levesque, and Smith 1997; Decker 1987; Pynadath
and Tambe 2002), but significantly less works discuss the
intersection between the two, and almost no work in an
ad hoc teamwork setting. Goldman and Zilberstein (2004)
formalized the problem of collaborative communicating
agents as a decentralized POMDP with communication
(DEC-POMDP-com). Communication in Ad-Hoc Team-
work (CAT) is a related problem that shares some assump-
tions with DEC-POMDP-com:

e All teammates strive to be collaborative.

e The agents have a predefined communication protocol
available that cannot be modified during execution.

e The policies of the ego agent’s teammates are set and
cannot be changed. This assumption does not mean that
agents cannot react to other agents and their actions, but
rather that such reactions are consistent as determined by
the set policy.

However, these two problems make different assumptions
that separate them. DEC-POMDP-com uses a single model
jointly representing all plans, and this model is collabora-
tively controlled by multiple agents. CAT, on the other hand,
is set from the perspective of one agent with a limited knowl-
edge about its teammates’ policies (such as that all agents
share the same goal and strive to be collaborative) and thus
it cannot plan a priori how it might affect these teammates
(Stone et al. 2013; Ravula, Alkoby, and Stone 2019).

In recent years there have been some works that consid-
ered communication in ad hoc teamwork (Barrett et al. 2014;
Chakraborty et al. 2017). These works suggested algorithms
for ad hoc teamwork, where teammates either share a com-
mon communication protocol, or can test the policies of the
teammates on the fly (e.g. by probing). These works are situ-
ated in a very restrictive multi-agent setting, namely a multi-
arm bandit, where each task consists of a single choice of
which arm to pull. Another recent work on multi-agent se-
quential plans proposed an Inverse Reinforcement Learning
technique to infer teammates’ goals on the fly, but it as-
sumes that no explicit communication is available (Wang
et al. 2020).

With recent developments in deep learning, several works
were proposed for a sub-area of multi-agent systems, where
agents share information using learned communication pro-
tocols (Hernandez-Leal, Kartal, and Taylor 2019; Mordatch
and Abbeel 2018; Foerster et al. 2016). These works make
several assumptions not used in this work: that the agents
can learn new communication skills, and that an agent can
train with its teammates before execution. An exception to
that is the work of Van Zoelen et al. (2020) where an agent
learns to communicate both beliefs and goals, and applies
this knowledge within human-agent teams. Their work dif-
fers from ours in the type of communication they allow.

Several other metrics have been proposed in the past to
evaluate the ambiguity of a domain and a plan. Worst Case
Distinctiveness (WCD) is defined as the longest prefix that
any two plans for different goals share (Keren, Gal, and
Karpas 2014). Expected Case Distinctiveness (ECD) weighs
the length of a path to a goal by the probability of an agent
choosing that goal and takes the sum of all the weighted

path lengths (Wayllace, Hou, and Yeoh 2017). Both these
works only evaluate the distinctiveness between two goals
with specific assumptions about how an agent plans, while
EDP evaluate the expected case distinctiveness for any pair
of policies, which may or may not be policies to achieve two
different goals.

A specific type of CAT scenarios refers to tasks where
a single agent reasons about the sequential plans of other
agents, and can gain additional information by querying its
teammates or by changing the environment (Mirsky et al.
2018, 2020; Shvo and Mcllraith 2020). In this paper, we fo-
cus on a specific variant of this problem known as Sequen-
tial One-shot Multi-Agent Limited Inquiry CAT scenario, or
SOMALI CAT (Mirsky et al. 2020). Consider the use case of
a service robot that is stationed in a hospital, that mainly
has to retrieve supplies for physicians or nurses, and has
two main goals to balance: understanding the task-specific
goals of its human teammates, and understanding when it is
appropriate to ask questions over acting autonomously. As
the name SOMALI CAT implies, this scenario includes sev-
eral additional assumptions: The task is episodic, one-shot,
and requires a sequence of actions rather than a single ac-
tion (like in the multi-armed bandit case); the environment
is static, deterministic, and fully observable; the teammate
is assumed to plan optimally, given that it is unaware of the
ego agent’s plans or costs; and there is one communication
channel, where the ego agent can query as an action, and if
it does, the teammate will forgo its action to reply truthfully
(the communication channel is noiseless). The definition of
EDP and the algorithm presented in this paper rely on this
set of assumptions as well. While previous work by the au-
thors in SOMALI CAT gave effective methods for determin-
ing when to ask a query (Mirsky et al. 2020), they did not
provide a principled method for determining what to query.
In this work, we extend previous methods with a principled
technique for constructing a query.

Background

The notation and terminology we use in this paper is pat-
terned closely after that of Albrecht and Stone (2017),
extended to reason about communication between agents.
We define a SOMALI CAT problem as a tuple C =
(S, Aa, Ap, T, C) where S is the set of states, A4 is the set
of actions the ad-hoc agent can execute, A7 is the set of ac-
tions the teammate can execute, 71’ is the transition function
T:SxAsxArxS —[0,1],and C : Agx A — R maps
joint actions to a cost. Specifically, A4 = O4 U Q) consists
of a set of actions O 4 that can change the state of the world,
which we refer to as ontic actions, as defined in Muise et al.
(2015), and a set of potential queries () it can ask. Similarly,
Ar = O U R is a set of ontic actions that the teammate
can execute O and the set of possible responses R to the
ego agent’s query. Actions in O; can be selected indepen-
dently from the decisions of other agents, but if the ego agent
chooses to query the teammate at timestep ¢, then the action
of the ego agent is some ¢ € ) and the teammate’s action
must be r € R. In this case, if the ego agent queries, both
agents forego the opportunity to select an ontic action; the
ego agent uses an action to query and the teammate uses an



action to respond. A policy m for agent i is a distribution over
tuples of states and actions, such that 7;(s, a) is the proba-
bility with which agent A; executes a € A; in state s € S.
Policy 7r; induces a trajectory Tr; = (s°,al, s, a?,s%...).
The cost of a joint policy execution is the accumulated cost
of the constituent joint actions of the induced trajectories.
For simplicity, in this work we assume that all ontic actions
have a joint cost of 1. Queries and responses have different
costs depending on their complexity.

Additional useful notation that will be used through-
out this paper is the Uniformly-Random-Optimal Policy (or
UROP) T4, that denotes the policy that considers all plans
that arrive at goal g with minimal cost, samples uniformly
at random from the set of these plans, and then chooses the
first action of the sampled plan.

In order to ground @ to a discrete, finite set of potential
queries, we first need to define a goal of the teammate g as
the set of states in .S such that a set of desired properties
holds (e.g., both the physician and the robot are in the right
room). Given this definition, we can use a concrete set of
queries () of the format: “Is your goal in G?” where G is
a subset of possible goals. This format of queries was cho-
sen as it can replace any type of query that disambiguates
between potential goals (e.g. “Is your goal on the right?”,
“What are your next k actions?”), as long as we know how
to map the query to the goals it can disambiguate.

Expected Divergence Point

The first major contribution of this paper is a formal way to
quantify the ambiguity between two policies, based on the
number of steps we expect to observe before we see an ac-
tion that can only be explained by a plan that can be executed
when following one policy, but not by a plan that follows
the other policy. Consider 2 policies 7y, 72, and assume that
policy w2 was used to construct the trajectory 1'rs.

Definition 1. The divergence point (DP) from my, or the
minimal point in time such that we know T'ro was not pro-
duced by 1, is defined as follows:

dp(my | Try) = min{t | m1(s¢_1,ab) = 0}

Figure 1 shows an example in which the teammate is in
the light gray tile (4, 3) and is marked using the robot image.
The goal of this agent can either be g; or go (dark gray tiles),
and the policies 74, and 74, are the UROPs for g; and g»
respectively. If an agent were to follow the path outlined in
red starting at state (4, 3), then the dp of this path with 7y,
would be 3 as the path diverges from 7,4, at timestep 3.

To account for stochastic policies, where a policy will
generally produce more than one potential trajectory from
a state, we introduce the expected divergence point that con-
siders all possible trajectories constructed from 75.

Definition 2. The Expected Divergence Point (EDP) of pol-
icy m from o, starting from state s is

EDP(S,’]Tl | 7'('2) = ETTQ [dp(ﬂ'l | T’I’Q)]

Computing EDP directly from this equation is non trivial. We
therefore rewrite EDP as the following Bellman update:
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Figure 1: Various EDP values in a grid world with two goals.
Values are presented as EDP(s, 7rg, |74, ) /EDP(S, g, |7g, ).

Theorem 1. The Bellman update for EDP of the policies
1, T, Starting from state s is:

EDP(s, mi|me) = [1— D ma(s,a)l+

agAl(s)
, , D
Z T2 (s, a) * Z T(s,a,s )[1+ EDP(s , 71 |m2)]
a€Al(s) s'es

where A'(s) = {a € Almi(s,a) > 0}.

Proof. We first define P(dp(w1 | Tre) = n) to be the prob-
ability of seeing n steps before observing an action that m;
will not take in state s, _1, assuming that 7'ro is some tra-
jectory sampled from 7. Then EDP can be written as:

Epp(S, T | m2) = Z[P(dp(ﬂ'l | Try) =t) xt]  (2)
t=1
Next, we compute this probability as the joint probability
of the k-th action in 7; being different from a5 forall k < n
and 71 (8p—1,al) = a}:

P(dp(my | Tra) = 1) = P(m1(s0,a3) = 0),
P(dp(m1 | Tra) = 2) = P(m1(s0,a3) # 0) x P(m1(s1,a3) = 0), 3
P(dp(m1 | Try) = 3) = P(mi(s0,a3) # 0) * P(m1(s0,a3) # 0)«
P(m(s1,a3) = 0)
and so on. Given these equations, we can rewrite the infinite
summation in Equation 2:
EDP(s, m1|m2) =
P(m1(s0,a3) = 0)+
2% P(m1(s0,a3) # 0) * P(m1(s1,a3) = 0)+
3% P(m1(s0, a3) # 0) x P(m1(s0,a3) # 0) * P(mi(s1,a3) = 0) + ...
We can factor out a P(m1 (89, a1) # 0) from all of the first
portion of the summation to get the following:
EDP(s, m1|m2) =
P(m1(s0,a3) = 0) + P(m1(s0, a3) # 0)*
[2% P(m1,a2 = 0) 4 3 * (w1 (s0,a3) # 0) % P(r1(s1,a3) =0) +...]
In reverse to the transition from Equation 2 to Equation 3 and
by using Bayes rule, the bracketed portion can be compiled
back into an infinite sum:
EDP(s, mm1|m2) =
P(71(so, aé) = 0) + P(m1(so, a%) # 0)%

[(t+1)* P(dp(mi | Tr2) =t +1] ﬂl(so,a%) #0)]

t=1



We distribute the multiplication by (¢ + 1) inside the sum-
mation to arrive at the following:
EDP(s, 71|m2) =
P(m1(s0,a3) = 0) + P(mi(s0,a3) # 0)x

oo

> (¢ P(dpr, (Tr2) = t+ 1| mi(s0,a3) # 0))+

-
Il
—

(P(dpr, (Tr2) = t +1 | m(s0,a3) # 0))]
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-
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—

The second summation simplifies to 1, while the first is
equivalent to the EDP at the following state. Using this
knowledge we derive the following formula for EDP:

EDP(s, 71|m2) =
P(m(so,a%) = 0) + P(ﬂ'l(So,CL%) 7é 0)*

[Z T(s,a9,s) * (1 +EDP(s', m1|m2))]
s’es

Remember that the term P(my(sg,a3) # 0) is the prob-
ability of sampling a first action in T'ry that will be the
same as the action taken in sy according to 7;. Consider
the set A'(s) = {a € A|mi(s,a) > 0}, and note that
P(mi(so,a3) # 0) is the same as >  m2(so,a). We

a€A’(sg)
therefore arrive at the Bellman update from Equation 1. [

There are a few things to note regarding EDP. First, it is
not a symmetric relation: EDP(s, 71 |m2) does not necessar-
ily equal EDP(s, ma|my). For example, Figure 1 presents the
value of EDP(s, 74, |7y,) and the value of EDP(s, 7y, |7y, )
side by side for each tile. In addition, neither of the EDP val-
ues necessarily equals the ECD of this domain, as presented
by Wayllace et al. (2017), where ECD estimates the probabil-
ity of taking action a in state s as the normalized weighted
probability of all goals for which a is optimal from s. Con-
sider tile (7, 6) which is colored in light gray. Assuming uni-
form probability over goals, the ECD when the teammate is
in this state is 1.67, a value distinct from both the EDP values
in this state, as well as from their average.

Next, we show how EDP can be used to compute the
timesteps in which the ego agent is expected to benefit from
querying, and then how this information can be used by the
ego agent for planning when and what to query.

Expected Zone of Querying

Previous work provided a means to reason about when to
act in the environment and when to query, in the form of
three different reasoning zones general to all SOMALI CAT
domains (Mirsky et al. 2020). The zones that were defined
with respect to querying are:

Zone of Information (Z;) given the location of the team-
mate and two of its possible goals g1, g2, Z; is the inter-
val from the beginning of the plan up to the worst case
distinctiveness of gj, go for recognizing the teammate’s
goal, as defined by Keren et al. (2014).

Intuitively, these are the timesteps where the ego agent
might gain information by querying about these goals.

Zone of Branching (Zp) given the location of the ego
agent and two possible goals of the teammate, Zp is the
interval from the worst case distinctiveness of g1, go for
recognizing the ego agent’s goal and up to the end of the
episode. Intuitively, these are the timesteps where the ego
agent might take a non-optimal action if it could not dis-
ambiguate between the two goals of its teammate.

Zone of Querying (Zg) given the locations of the ego
agent, the teammate, and two possible goals of the team-
mate, Z is the intersection of Z; and Zp for these goals,
where there may be a positive value in querying about
the two goals instead of acting. Intuitively, these are the
timesteps where the ego agent cannot distinguish between
the two possible goals of the teammate and it should take

different actions in each case?.

Consider the running example from Figure 1, and assume
that this grid represents a maximal coverage task, where
the agents need to go to different goals in order to cover
as many goals as possible (Pita et al. 2008). Consider an
ego agent with the aim to go to a different goal from its
teammate which is in tile (4, 3). The Zone of Information
which depends only on the behavior of the teammate, is
Zr({g1,92}) = {t | t < 5}, as 5 is the maximum num-
ber of steps that the teammate can take before its goal is
disambiguated (e.g., if the agent moves east 4 times only
its fifth action will disambiguate its goal). If the ego agent
is in tile (5,4), then Zg({g1,92}) = {t | t > 4} and
hence Zg({g1,92}) = {4,5}. However, if the ego agent
is in tile (2,4), then Zg({g1,92}) = {¢t | t > T}, and
hence in this case Zg({g1,92}) = 0. These existing defi-
nitions of zones consider the worst case for disambiguating
goals. However, the worst case might be highly uncommon,
and planning when to query accordingly can induce high
costs. Using EDP, we now have the requirements to compute
the expected case for disambiguation of goals. We introduce
definitions for expected zones:

Definition 3. The Expected Zone of Information eZ; given
the location of the teammate and two goals g1, g2, eZ is the
expected time period during which the teammate’s plan is
ambiguous between g, and ga:

eZ1(s,g1lg2) = {t[t < EDP(s, 7y, |Tg,) }

where the policies 7y, , g, are the UROPs of the teammate
for goals g1 and g2 respectively.

Intuitively, eZ; for two goals is the set of timesteps where
we don’t expect to see an action that can only be executed
by g1 but not by go. Similarly, eZp for two goals is the set
of all timesteps where we expect that the ego agent will take
a non-optimal action if it does not have perfect knowledge
about the teammate’s true goal.

Definition 4. The Expected Zone of Branching for goals
g1, g2 is the expected time period where the ego agent can
take an optimal action for go without incurring additional
cost if the teammate’s true goal is gy :

€ZB(5791|92) = {t|t > EDP(Saﬁ-gzh%gl)}

2For the rest of the paper, when it is clear from context, we omit
the state of the agents from the use of zones for brevity.



where the policies 4, and 7y, are the UROPs of the ego
agent for goals g1 and gs respectively.

Definition 5. The Expected Zone of Querying for goals
g1, g2 is the time period where the ego agent is expected to
benefit from querying:

eZq(s, 91l92) = eZB(s,91lg2) NeZ;(s, g1]g2)

In our empirical settings, we have control over the ego
agent, and can therefore guarantee it will follow an optimal
plan given its current knowledge about the teammate’s goal.
In this case, we can use the original definition of Zp instead
of eZp, as they are equivalent in this setting.

Using ¢Z for Planning

Next, we present a planning algorithm for the ego agent that
uses the value of a query to minimize the expected cost of
the chosen plan. In this planning process, there are two main
problems that need to be solved: determining when to query
and what to query. Using the definition of Zg, we can eas-
ily determine when querying would certainly be redundant,
and respectively, when a query might be useful. Once we
know that a query might be beneficial, we can use eZg to
determine what to query exactly. Notice that the conclusion
might still be not to query at all. For example, consider the
maximal coverage example from Figure 1, where the team-
mate is in tile (4, 3), and the ego agent is in tile (8,4). As
the teammate can choose to move east, there is still ambi-
guity between g; and g- and the ego agent must choose be-
tween moving north or south - so according to Zg the ego
agent should query. However, if it highly unlikely that the
teammate would go east, the expected gain from querying
decreases significantly. Thus, even though Zg is not empty,
it is not a good strategy for the ego agent to query.

In this section, we discuss how to use the new eZg to
compute the value of a specific query more accurately than
proposed by previous approaches This information will be
used in an algorithm for the ego agent that chooses the best
query. The first step is calculating the EDP for each pair of
goals g1 and g2 and their corresponding UROPs 74, and 7y, .
We use a modified version of the dynamic programming pol-
icy evaluation algorithm (Bellman 1966) applied on the bell-
man update presented in Equation 1 (additional details can
be found in the Appendix (Macke, Mirsky, and Stone 2021)).
As this policy evaluation does not depend on the teammate’s
actions, it can be done offline prior to the plan execution,
as presented in Figure 1. Next, using these values, we can
compute the value of a specific query.

Computing the Value of a Query

Given a SOMALI CAT domain (S, A4, Ar, T, C), we want
to quantify how much, in terms of expected plan cost, the
ego agent can gain from asking a specific query. Therefore,
we define the value of a query as follows:

Definition 6. Value of a Query Let q be a query with possi-
ble responses R, and ‘P, be the set of possible plans of both
agents that arrive at goal g. Then the value of query q is

V(q) = Epep, [cost(p) ZP r)xEpep, [cost(p)|r] (4)
reR

Algorithm 1 Query Policy

procedure QUERY(Z for each pair of goals, eZqg for
each pair of goals, G, P, current timestep t)
ifdg1,90 € Gs.t. t € ZQ(gl,gg)) then
query < ChooseQuery(G,eZqg, P)
if value(query) — cost(query) > 0 then
return query
end if
end if
return No Query
end procedure

Computing the expected cost of this set of plans is non-
trivial. We therefore define the following concept:

Definition 7. The Marginal Cost of a plan p in a SOMALI
CAT domain with a goal g (MC,(p)) is the difference be-
tween the cost of p and the cost of a minimal-cost plan that
arrives at g.

We can replace cost(p) in Equation 4 with M C,(p) to yield
an equivalent formula that is easier to compute:

Vig) =

(Epep, [cost(p)] — cy) Z P(r) * Epep, [cost(p)|r] — ¢;) =
rER
Epep, [MCy( ZP ) * Epep, [MCy(p)|r]

reR
(5)
where ¢ is the minimal cost of a plan that arrives at g.
In SOMALI CAT, Eyep, [MCy(p)] at state s is propor-

tional to the number of timesteps in which the ego agent
doesn’t know which ontic actions are optimal, or formally:

EpEPg [Mcg(p)] 08 | U eZQ(s,g’|g)|
g9'eG

In addition, notice that computing V'(¢) using Equation 5
assumes that the goal of the teammate, g, is known. How-
ever, the ego agent does not know the true goal g ahead of
time, so we need to consider the expected value of a query
for each possible goal of the teammate, or Egc [V (q)]g].

Choosing What to Query

Our policy for determining whether or not to query at each
timestep is shown in Algorithm 1. It takes as input the Zone
of Querying for each pair of goals, Zg, the expected Zone
of Querying eZg, the current set of possible goals G, the
ego agent’s current belief of the teammate’s goal P and the
current timestep t. First the algorithm checks if the current
timestep is within a Zone of Querying of two goals or more.
If not, then the agent knows of an optimal ontic action and
no querying is required. Otherwise, we then find the best
possible query given eZ, and only ask this query if its value
is greater than its cost.

To optimize the expected value of a chosen query, we de-
fine a binary vector x for each possible query, such that x;
is 1 if and only if g; is included in that query. We then opti-
mize for the difference between the value of a query above



Figure 2: Example instance of the tool fetching domain.
Workstations are shown by the grey boxes, toolboxes are
shown by the black boxes with a T, the fetcher is shown as
the gray circle labeled with an F, while the worker is shown
as a gray circle labeled with a W.

and its cost over these vectors using a genetic algorithm. We
use a population size of 50 and optimize for 100 genera-
tions. Members are selected using tournament selection, and
then combined using crossover. Each bit in the two resulting
members is mutated with probability 0.001.

Experimental Setup

Previous work in SOMALI CAT introduced an experimental
domain known as the tool fetching domain (Mirsky et al.
2020). This domain consists of an ego agent, the fetcher, at-
tempting to meet a teammate, the worker, at some worksta-
tion with a tool. The worker needs a specific tool depending
on which station is its goal, and the worker’s goal and pol-
icy are unknown to the fetcher. It is the job of the fetcher to
deduce the goal of the worker based on its actions, to pick
up the correct tool from a toolbox and to bring it to the cor-
rect workstation. At each timestep, the agents can execute
one ontic action each. In this work, the fetcher infers the
worker’s true goal by setting a goal’s probability to zero and
normalizing the belief distribution when observing a non-
optimal action for that goal. Alternatively, the fetcher can
query the worker with questions of the form “Is your goal
one of the stations g1, g2...gn?”, where g1, ...,gy C Gisa
subset of all workstations, and the worker replies truthfully.
All queries are assumed to have a cost identical to moving
one step, regardless of the content of the query. To show the
benefits of our algorithm, we introduce 3 generalizations to
the tool fetching domain that make the planning problem for
the ego agent more complex to solve.

Multiple Zps We allow multiple toolboxes in the domain.
Each toolbox contains a unique set of tools, and only one
tool for each station is present in a domain. Including this
generalization means that each pair of goals may have dif-
ferent Zp values, which makes determining query timing
and content more challenging.

Non-uniform Probability We allow non-uniform proba-
bility distributions for assigning the worker a goal. For in-
stance, goals may be assigned with probability correspond-
ing to the Boltzmann distribution over the negative of their
distances. This modification means that the worker is more
likely to have goals that are closer to it. Including this gen-
eralization means that querying about certain goals may be
more valuable than others, and the fetcher will have to con-
sider this distribution when deciding what to query about.

Cost Model We allow for a more general cost model,
where different queries have different costs. In particular,
we consider a cost model where each query has some base
cost and an additional cost is added for each station asked, a
per-station cost. So for instance if queries have a base cost of
0.5 and a per-station cost of 0.1, then the query “Is your goal
station 1, 3 or 5?”” would have a cost of 0.5 +3 x 0.1 = 0.8.
Including this generalization means that larger queries will
cost more, and it may be more beneficial to ask smaller but
less informative queries. Results used a cost of 0.5 when ini-
tiating a query and varied the per station cost of each query.

We compare the performance of Algorithm 1 (eZg
Query) against two baseline ego agents: one agent that never
queries but always waits when it is uncertain about which
action to take (Never Query). The other baseline is the al-
gorithm introduced by Mirsky et al. (2020), where the ego
agent chooses a random query once inside a Zg (Base-
line). In addition, we extended Baseline in two ways to
make it choose queries in a more informed way. First by
accounting for the changing cost of different queries, as
well as for the probability distribution over the teammate’s
goals (BL:Cost+Prob) (Macke, Mirsky, and Stone 2020).
The second method involves creating a set of stations that
each ontic action would be optimal for, and then querying
about the set with the median size of these sets. Intuitively,
this method first attempts to disambiguate which toolbox to
reach and then attempts to disambiguate the worker’s station
(BL:Toolbox). All methods take a NOOP action if they are
uncertain of the optimal action and do not query. Additional
details about the setup and the strategies can be found in the
Appendix (Macke, Mirsky, and Stone 2021).

Results

We ran experiments in a 20 x 20 grid, with 50 workstations
and 5 toolboxes. Locations of the stations, toolboxes, and
agents in each domain instance are chosen randomly. All
results are averaged over 100 domain instances.

Figure 2 shows an example of such a tool-fetching do-
main. We now compare the new algorithm with previous
work and the heuristics described above. We demonstrate
that eZg Query is able to effectively leverage the additional
information from our generalizations to obtain a better per-
formance over previous work and the suggested heuristics,
in terms of marginal cost (Definition 7).

Figure 3 shows the marginal cost averaged over 100 do-
main instances with different per-station costs (x-axis) when
the probability distribution of the goals of the worker is the
Boltzmann distribution over the worker’s distances to each
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Figure 3: Per-station cost vs marginal cost of domain with
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Figure 4: Histogram of number of queries (y-axis) executed
per timestep (x-axis) by each method with the Boltzmann
distribution of the worker’s distances to goals and a per-
station cost of 0.

goal. This distribution means that the worker is more likely
to choose goals that are farther from it. eZy Query per-
forms similarly to the heuristics when the per-station cost
is 0, but dramatically outperforms all other methods as this
value increases. Additional results showing eZq Query un-
der additional goal distributions can be seen in the Ap-
pendix (Macke, Mirsky, and Stone 2021).

We also provide an analysis of how the eZg Query
method is achieving better performance than other methods.
Figure 4 shows a histogram of the number of queries ex-
ecuted per timestep by each method. As shown in the his-
togram, eZq Query tends to ask more queries in the earlier
timesteps compared to BL:Toolbox and BL:Cost+Prob. This
increase is because eZy Query is focused on learning the
worker’s true goal with minimal cost and is better able to
leverage information about the probability distribution over
goals to make informed queries, and therefore finds the cor-
rect goal more quickly than other methods, but also takes
longer before it knows an optimal action. In addition, we
found that as the per-station cost increases from 0 to 0.5,
the total number of queries executed by eZg query over all
simulations decreases by 23%, showing that eZy Query ex-
ecutes fewer queries when the cost is higher.

Finally, there is an increased computational cost of using
eZ¢q Query over other approaches and the proposed heuris-

tics. While calculating EDp is expensive and takes several
orders of magnitude longer than the rest of the querying al-
gorithm (several hours per domain on average), these values
can be computed a priori regardless of the teammate’s ac-
tions. As such, the following results are under the assump-
tion that the EDP computation is performed in advance, and
the following time measurements do not include these of-
fline computations. On average, all heuristic methods took
< 0.23 seconds to complete each simulation, while eZg
Query took on average 8.9 seconds on an Ubuntu 16.04 LTS
Intel core i7 2.5 GHz, with the genetic algorithm taking on
average 6.1 seconds to run. In practice, the increased time
should not be a major detriment. If a robot is communicating
with either a human or another robot, the major bottleneck
is likely to be the communication channel (e.g. speech, net-
work speed, decision making of the other agent) rather than
this time. In addition, when using a genetic algorithm for op-
timization as we do in this paper, the eZg Query computa-
tion should only grow in terms of O(|G|?*log(|G])) with the
number of goals (assuming that EDP is precomputed ahead
of time and that the number of members and generations do
not grow with the number of goals).

Discussion and Future Work

In this paper, we investigated a new metric to quantify ambi-
guity of teammate policies in ad hoc teamwork settings, by
estimating the expected divergence point between different
policies a teammate might posses. We then utilized this met-
ric to construct a new ad hoc agent that reasons both about
when it is beneficial to query, but also about what is bene-
ficial to query about in order to reduce the ambiguity about
its teammate’s goal. Our empirical results show that regard-
less of the goal-choosing policy of the worker and a varying
query cost model, eZg Query remains more effective than
any of the other methods tested, and even when querying is
almost never beneficial, it is still able to adapt and obtain
performance that is consistently better than Never Query.

The scope of this work is limited to SOMALI CAT prob-
lems. In addition, our current methods are designed to work
in relatively simple environments with finite state spaces and
a limited number of goals. However, the EDP formalization
opens up new avenues for investigating other complicated
SOMALI CAT scenarios and other CAT scenarios, such as
those in which an agent can advise or share its beliefs with
its teammates. We conjecture that the eZy algorithm can
be modified relatively easily to address such challenges, as
long as the ego agent remains the initiator of the commu-
nication. For instance, EDP may be able to be calculated in
domains with larger and continuous state spaces by leverag-
ing more sophisticated RL techniques than the policy evalu-
ation algorithm. It might be more challenging to extend this
work to domains in which the teammate is the one to initiate
the communication, as other works have investigated in the
context of reinforcement learning agents (Torrey and Taylor
2013; Cui and Niekum 2018). Nonetheless, this work pro-
vides the means to investigate collaborations in ad hoc set-
tings in new contexts, while presenting concrete solutions
for planning in SOMALI CAT settings.
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