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Abstract

For mobile robots to perform complex missions, it may
be necessary for them to plan with incomplete informa-
tion and reason about the indirect effects of their ac-
tions. Answer Set Programming (ASP) provides an el-
egant way of formalizing domains which involve indi-
rect effects of an action and recursively defined fluents.
In this paper, we present an approach that uses ASP for
robotic task planning, and demonstrate how ASP can be
used to generate plans that acquire missing information
necessary to achieve the goal. Action costs are also in-
corporated with planning to produce optimal plans, and
we show how these costs can be estimated from expe-
rience making planning adaptive. We evaluate our ap-
proach using a realistic simulation of an indoor envi-
ronment where a robot learns to complete its objective
in the shortest time.

Introduction
Automated planning provides great flexibility over direct
implementation of behaviors for robotic tasks. In mobile
robotics, uncertainty about the environment stems from
many sources. This is particularly true for domains inhab-
ited by humans, where the state of the environment can
change outside the robot’s control in ways hard to pre-
dict. Probabilistic planners attempt to capture this complex-
ity, but planning in probabilistic representations makes rea-
soning much more computationally expensive. Furthermore,
correctly modeling the system using probabilities is more
difficult than representing knowledge symbolically. Indeed,
robotic planning systems are frequently based on symbolic
deterministic models, and execution monitoring. The brittle-
ness owing to errors in the model and unexpected conditions
are overcome through monitoring and replanning.

Automated symbolic planning includes early work such
as situational calculus (McCarthy and Hayes 1969), STRIPS
(Fikes and Nilsson 1971), ADL (Pednault 1989); recent ac-
tion languages such as C+ (Giunchiglia et al. 2004) and
BC (Lee, Lifschitz, and Yang 2013); and declarative pro-
gramming languages such as Prolog and logic programming
based on answer set semantics (Gelfond and Lifschitz 1988;
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1991). The latter is also referred to as Answer Set Program-
ming (ASP). These languages allow users to formalize dy-
namic domains as transition systems, by a set of axioms that
specify the precondition and effects of actions and the rela-
tionship between state variables. In ASP, the frame problem
(McCarthy and Hayes 1969) can be solved by formalizing
the commonsense law of inertia.

Compared to STRIPS or PDDL-style planning languages,
ASP and action languages provide an elegant way of formal-
izing indirect effects of actions as static laws, and thus solve
the ramification problem (Lin 1995). Although the original
specification of PDDL includes axioms (which correspond
to non-recursive static laws in our terminology), the seman-
tics for these axioms are not clearly specified. Indeed, in
most planning domains investigated by the planning com-
munity and in planning competitions, no axioms are needed.
Thiébaux et al. (Thiébaux, Hoffmann, and Nebel 2003) ar-
gued that the use of axioms not only increases the expres-
siveness and elegance of the problem representation, but also
improves the performance of the planner. Indeed, in recent
years, robotic task planning based on ASP or related ac-
tion languages has received increasing attention (Caldiran
et al. 2009; Erdem and Patoglu 2012; Chen et al. 2010;
Chen, Jin, and Yang 2012; Erdem et al. 2013; Havur et al.
2013).

Incorporating costs in symbolic planning (Eiter et al.
2003) is important for applications that involve physical sys-
tems that have limited resources such as time, battery, com-
munication bandwidth etc. In this paper, we show how costs
can be incorporated into a robot planning system based on
ASP, and how these costs can be learned from experience. It
is important to learn costs from the environment, since these
costs may not be same for different robots, and may even dif-
fer for the same robot under different environmental condi-
tions. For instance, while a fully articulated humanoid robot
may be slower than a wheeled robot for navigation tasks, the
extra dexterity it possesses may allow it to be faster at open-
ing doors. Similarly, construction inside a building may ren-
der certain paths slow to navigate. If the robot learns these
costs on the fly, it becomes unnecessary to worry about them
during domain formalization. As such, the main contribu-
tion of this paper is an approach that uses ASP for robot task
planning while learning costs of individual actions through
experience.
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We evaluate our approach using a simulated mobile robot
navigating through an indoor environment and interacting
with people. Should certain information necessary for com-
pleting a task be missing, the planner can issue a sensing
action to acquire this information through human-robot in-
teraction. By integrating the planner with a learning module,
the costs of actions are learned from plans’ execution. Since
the only interface between the planner and the learning mod-
ule is through costs, the action theory is left unchanged, and
the proposed approach can in principle be applied to any
metric planner. All the code used in this paper has been im-
plemented using the ROS middleware package (Quigley et
al. 2009), and the realistic 3D simulator GAZEBO (Koenig
and Howard 2004), and is available in the public domain1.

Related Work
In recent years, action languages and answer set pro-
gramming have begun to be used for robot task planning
(Caldiran et al. 2009; Erdem and Patoglu 2012; Erdem et al.
2013; Havur et al. 2013). In these previous works, domains
are small and idealistic. The planning paradigm is typical
classical planning with complete information, and shortest
plans are generated. Since the domains are small, it is possi-
ble to use grid worlds so that motion control is also achieved
by planning. In contrast, we are interested in large and con-
tinuous domains, where navigation is handled by a dedicated
module to achieve continuous motion control, and require
planning with incomplete information by performing knowl-
edge acquisition through human-robot interaction.

The work of Erdem et al. (Erdem, Aker, and Patoglu
2012) improves on existing ASP approaches for robot task
planning by both using larger domains in simulation, as well
as incorporating a constraint on the total time required to
complete the goal. As such, their work attempts to find the
shortest plan that satisfies the goal within this time con-
straint. In contrast, our work attempts to explicitly minimize
the overall cost to execute the plan (i.e. the optimal plan),
instead of finding the shortest plan. Another difference be-
tween the two approaches is that Erdem et al. attempt to
include geometric reasoning at the planning level, i.e. the
ASP solver considers a coarsely discretized version of the
true physical location of the robot. Since we target larger
domains, we discretize the location of the robot at the room
level to keep planning scalable and use dedicated low-level
control modules to navigate the robot.

The difficulty in modeling the environment has motivated
a number of different combinations of planning and learning
methods. The approach most closely related to ours is the
PELA architecture (Jimnez, Fernndez, and Borrajo 2013).
In PELA, a PDDL description of the domain is augmented
with cost information learned in a relational decision tree
(Blockeel and De Raedt 1998). The cost computed for each
action is such that the planner minimizes the probability of
plan failures in their system. We estimate costs based on
any metric observable by the robot. Some preliminary work
has been done in PELA to learn expected action durations
(Quintero et al. 2011), using a variant of relational decision

1
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Figure 1: The architecture implemented in our approach. The
planner invokes a cost estimator that learns the actual action costs
from the sensor data during execution.

trees. Differently, we learn costs simply using exponentially
weighted averaging, which allows us to respond to recent
changes in the environment. Furthermore, while that work is
specific to PDDL-style planners, we perform the first inte-
gration between ASP and learning, at the advantage of defin-
ing indirect effects of actions and recursively defined fluents
as planning heuristics.

Architecture Description
Our proposed architecture (shown in Figure 1) has two mod-
ules that comprise the decision making: a planning module,
and a cost estimation module. At planning time, the plan-
ner polls the cost of each action of interest, and produces
a minimum plan. The planner itself is constituted by a do-
main description specified in ASP and a solver, in our case
CLINGO (Gebser et al. 2011a). After plan generation, an ex-
ecutor invokes the appropriate controllers for each action,
and grounds numeric sensor data into symbolic fluents, for
the planning module to verify. If the observed fluents are
incompatible with the state expected by the planner, replan-
ning is triggered. During action execution, the cost estimator
receives the sensor data, and employs a learning algorithm to
estimate the value of the expected cost of each action from
the experienced samples.

This architecture allows to treat the planning module as
a black box, and can in principle be adopted with any met-
ric planner. For the same reason, the formalism used to rep-
resent the state space in the planner and the cost estimator
modules need not be same. In the following sections, we
give a detailed description of the different elements of the
system.

Domain Representation
In order to demonstrate how ASP can be used for robot
task planning under incomplete information and with action
costs, we consider a domain where a mobile robot navigates
inside a building, visiting and serving the inhabitants. In this
section, we use a small floor plan, illustrated in Figure 2,
to clearly explain the domain formalization process. In the
experimental section, we will evaluate our approach on a do-
main with a much larger floor plan based on a real building.



Figure 2: The layout of the example floor plan with an overlay of
the rigid knowledge provided to the planner.

Formalizing the Dynamic Domain
Domain knowledge about a building includes the follow-
ing four different types of information: rigid knowledge,
time-dependent external knowledge, time-dependent inter-
nal knowledge and action knowledge. We explain each of
these in detail in the following subsections. All rules formal-
izing aspects of the domain are presented using syntax from
GRINGO (Gebser et al. 2011b). Due to space constraints,
some portions of the ASP encoding are not present and can
be viewed online in our code base.

Rigid knowledge includes information about the building
that does not depend upon the passage of time. In other
words, as the robot moves around inside the building, rigid
knowledge should not change. In our example, rigid knowl-
edge includes information about offices, labs, corridors,
doors, and accessibility between all these locations. It also
includes information about building residents, their occupa-
tions, the offices to which they are assigned, and whether
a person knows where another person is. Rigid knowledge
has been formalized in our system using the following pred-
icates:

• office(X), door(Y), room(Z): X is an office, Y is
a door and Z is a room.

• hasdoor(X,Y): room X has door Y.

• acc(X,Y,Z): room X is accessible from room Z via
door Y.

• indacc(X,Y,Z): room X is indirectly accessible from
room Z via door Y.

• secretary(X), faculty(Y), person(Z): X is a
secretary, Y is a faculty, and Z is a person.

• in office(X,Y): person X is assigned to office Y.

• knows(X,ploc(Y)): person X knows the location of
person Y.

The following rules define the rigid knowledge in the exam-
ple environment illustrated in Fig. 2:
room(cor).
office(o1;;o2;;o3;;lab1).
room(X):- office(X).
door(d1;;d2;;d3;;d4;;d5).
hasdoor(o1,d1;;o2,d2;;o3,d3;;

lab1,d4;;lab1,d5).

secretary(carol).
faculty(alice;;bob).
in_office(alice,o1;;bob,o2;;carol,o3).
knows(carol,ploc(X)):- faculty(X).
person(X) :- faculty(X).
person(X) :- secretary(X).

We also define additional rules that define accessibility in-
formation between 2 rooms:
acc(X,Y,cor):- room(X),door(Y),hasdoor(X,Y).

acc(Z,Y,X):- acc(X,Y,Z).
indacc(X,Y,Z):- acc(X,Y,Z).
indacc(X,Y,Z):- acc(X,Y,Z1),indacc(Z1,Y1,Z).

It is important to notice that indacc is recursively de-
fined by the last rule above, which is usually not easily
achieved in a PDDL-style language. Later we will show that
indacc is used to formulate planning heuristics which sig-
nificantly shorten planning time.

Time-dependent external knowledge includes informa-
tion about the environment that can change over time and
cannot be affected by the robot’s actions. For the example
environment, time-dependent external knowledge is formal-
ized as follows:

• The current location of a person is formalized by the flu-
ent inside. inside(X,Y,I) means at time instant I,
person X is located in room Y.

• By default, a person is inside the office that he is assigned
to:

inside(X,Y,0):- in_office(X,Y),
not -inside(X,Y,0).

In the above rule we used two kinds of negation: - is
known as strong negation (classical negation) in ASP lit-
erature (Gelfond and Lifschitz 1991), which is the same as
the negation sign¬ in classical logic, and not is known as
negation as failure (Gelfond and Lifschitz 1988), which
is similar to the negation in Prolog and intuitively under-
stood as there is no evidence.

• A person can only be inside a single room at any given
time:

-inside(X,Y,I):- inside(X,Y1,I), Y1!=Y,
room(Y).

• inside is an inertial fluent. An inertial fluent is a fluent
whose value does not change by default. These two rules
formalize the commonsense law of inertia for the fluent
inside:

inside(X,Y,I+1):- inside(X,Y,I),
not -inside(X,Y,I+1), I<n.

-inside(X,Y,I+1):- -inside(X,Y,I),
not inside(X,Y,I+1), I<n.

where n denotes maximum possible time steps. To solve
a planning task, the value of n specifies the upper-bound
on the number of steps in the plan.

Time-dependent internal knowledge describes the flu-
ents that are directly affected by the robot’s actions. In the
example domain, time-dependent internal knowledge is for-
malized through the following predicates and rules:



• open(X,I): a door X is open at time I. By default, a
door is not open.

-open(X,I):- not open(X,I), door(X).

• facing(X,I): the robot is next to and facing door X at
time I. The fluent is inertial. The robot cannot face two
different doors simultaneously.

facing(X,I+1):- facing(X,I),
not -facing(X,I+1), I<n.

-facing(X,I+1):- -facing(X,I),
not facing(X,I+1), I<n.

-facing(X2,I):- facing(X1,I), X1!=X2,
door(X2),I<=n.

• beside(X,I): the robot is next to door X at time I.
beside is implied by facing, but not the other way
around. The fluent is inertial. The robot cannot be beside
two different doors simultaneously.

beside(X,I):- facing(X,I).
beside(X,I+1):- beside(X,I),

not -beside(X,I+1), I<n.
-beside(X,I+1):- -beside(X,I),

not beside(X,I+1), I<n.
-beside(X2,I):- beside(X1,I), X1!=X2,

door(X2),I<=n.

Since beside is implied by facing, it is an indirect
effect of any actions that affect facing.

• at(X,I): the robot is at room X at time I. at is inertial,
and the robot must be at exactly one location at a given
time.

{at(X,I+1)}:- at(X,I), room(X), I<n.
:- not 1{at(X,I):room(X)}1.

• visiting(X,I): the robot is visiting a person X at
time I. By default, a robot is not visiting anyone.

-visiting(X,I):- not visiting(X,I),
person(X).

Action knowledge includes the rules that formalize robot
actions, the preconditions to execute these actions, and the
effects of these actions. Actions are divided into non-sensing
and sensing actions. Non-sensing actions change the state
of the world, for instance a robot can approach a door and
change its own location. On the other hand, sensing actions
don’t change the state of the world and are executed to ac-
quire missing information. The robot has four non-sensing
actions:
• approach(X,I): the robot approaches door X at

time I. A robot can only approach a door accessible from
its current location if it is not facing the door already. Ap-
proaching a door should result in the robot facing that
door.

:- approach(Y,I), at(X,I),
{door(Y):acc(X,Y,Z)}0, I<n.

:- approach(X,I), facing(X,I), I<n.
facing(X,I+1):- approach(X,I),door(X),I<n.

• gothrough(X,I): the robot goes through door X at
time I. The robot can only go through a door if the door is
accessible from the robot’s current location, if it is open,
and if the robot is facing it.

:- gothrough(Y,I), at(X,I),
{door(Y):acc(X,Y,Z)}0, I<n.

:- gothrough(Y,I), not open(Y,I), I<n.
:- gothrough(Y,I), not facing(Y,I), I<n.

Executing the gothrough action results in the robot’s
location being changed to the connecting room and the
robot no longer facing the door.

at(Z,I+1):- gothrough(Y,I),
at(X,I), acc(X,Y,Z), I<n.

-facing(Y,I+1):- gothrough(Y,I),
at(X,I), acc(X,Y,Z), I<n.

• greet(X,I): the robot greets person X at time I. A
robot can only greet a person if both the robot and that
person are in the same room. Greeting a person results in
the visiting fluent being true.

:- greet(X,I), at(Y,I), inside(X,Y1,I),
Y!=Y1, I<n.

visiting(X,I+1):- greet(X,I), I<n.

• opendoor(X,I): the robot opens a closed door X at
time I. The robot can only open a door that it is facing.

:- opendoor(X,I), not facing(X,I), I<n.
:- opendoor(X,I), open(X,I), I<n.
open(X,I+1):-opendoor(X,I),-open(X,I),I<n.

The robot has one sensing action:
• askploc(X,I): The robot asks the location of person X

at time I if it does not know the location of person X.
Furthermore, the robot can only execute this action if it is
visiting a person Y who knows the location of person X.
The resulting state should include the location of person X
entered by person Y as room Z.

:- askploc(X,I), inside(X,Y,I), I<n.
:- askploc(X,I),

{visiting(Y,I):person(Y)}0, I<n.
:- askploc(X,I), visiting(Y,I),

not knows(Y,ploc(X)), I<n.
1{inside(X,Z,I+1):room(Z)}1:-

askploc(X,I), I<n.

Also included are a set of constraints that forbid concur-
rent execution of actions and a set of choice rules such that at
any time, executing any action is arbitrary. We present only
one example of a choice rule below which formalizes that at
any time I<n, the robot has the right to approach a door X.

{approach(X,I)}:- door(X), I<n.

Generating and executing plans
The planner first queries the robot for its initial state, which
is returned through sensing in the form of observable fluent
values for at, beside, facing and open:

at(lab1,0) -beside(d4) -beside(d5) ...

The sensors guarantee that the values for at is always
returned for exactly one location, and beside and facing
are returned with at most one door.

With the initial state available, the planner uses the answer
set solver CLINGO to plan the steps for achieving a formally
described goal. For instance, if the goal is to visit Bob, then
the goal is formalized as:

:- not visiting(bob,n).



To find the shortest plan for this goal, we iteratively in-
crement n (starting at 1) and call the answer set solver to
see if a plan exists. Since we are interested in a plan of
reasonable size, we assign an upper bound to n, denoted
by max size. If a plan is not generated within this upper
bound, we declare that the goal cannot be achieved. Assum-
ing that the robot starts in lab1 and does not face a door
initially, the answer set solver successfully finds the follow-
ing plan when n=7:

approach(d4,0) opendoor(d4,1)
gothrough(d4,2) approach(d2,3)
opendoor(d2,4) gothrough(d2,5)
greet(bob,6)

These atoms represent the plan and are executed on the
robot one at a time. The answer set also contains atoms that
represent world transitions, such as:

at(lab1,0) -open(d4,0) -facing(d4,0)
at(lab1,1) -open(d4,1) facing(d4,1)
at(lab1,2) open(d4,2) facing(d4,2)
...

These atoms can be used to monitor execution. Exe-
cution monitoring is important since it is possible that
the action being currently executed by the robot does not
complete successfully. In that case, the robot may re-
turn observations different from the expected effects of
the action. For instance, let’s assume that the robot is
currently executing approach(d4,0). The robot at-
tempts to navigate to door d4, but fails and returns
an observation -facing(d4,1). Since this observation
does not match the expected effect of approach(d4,
t), which is facing(d4,1), the robot incorporates
-facing(d4,0) as part of a new initial state and replans.

Planning with incomplete information
Planning can also account for incomplete information, as
the robot can sense missing information from the environ-
ment. Consider a visiting faculty named Dan who is inside
the building. The robot needs to visit Dan, but does not know
where he is. However, the robot is aware that Carol knows
the location of all faculty inside the building, and the gen-
erated plan includes visiting her to acquire Dan’s location.
The goal of such a plan is described below:

faculty(dan).
:- not visiting(dan, n).

We call CLINGO with this goal to generate the shortest
plan. Assuming again that the robot is inside lab1, when
n=9, CLINGO returns the answer set which contains the fol-
lowing actions:

approach(d4,0) opendoor(d4,1)
gothrough(d4,2) approach(d3,3)
opendoor(d3,4) gothrough(d3,5)
greet(carol,6) askploc(dan,7)
greet(dan,8)

It is important to note that the robot greets Dan immedi-
ately after asking Carol for his location, without moving to a
different room. This plan is returned because the answer set
contains the following atom:

inside(dan,d3,8)

This atom is the effect of executing sensing action
askploc(dan,7). Since we search for the shortest plan
by incrementing the value of steps n, Dan being located
in the same office as Carol facilitates the generation of the
shortest plan. Therefore, at plan generation time, this miss-
ing information is assumed optimistically.

As before, the plan is executed and the execution is mon-
itored. The robot executes action askploc(dan,7) by
asking Carol for Dan’s location. The robot obtains Carol’s
answer as an atom, for instance, inside(dan,o1,8),
which contradicts the optimistic assumption. Similar to exe-
cution failures, a replan is called with a new initial state that
contains:

inside(dan,o1,0)

After running CLINGO again, a new plan is found:
approach(d3,0) opendoor(d3,1)
gothrough(d3,2) approach(d1,3)
opendoor(d1,4) gothrough(d1,5)
greet(dan,6)

It is important to note that in this scenario, formalizing
sensing action askploc is essential to achieve the task of
visiting Dan. Without this action, no plan can be found be-
cause no other action can generate knowledge about Dan’s
location. On the other hand, even if askploc is formalized
to have multiple effects, only those that contribute to finding
the shortest plans can occur in the plan, and the plan is re-
vised during execution. This paradigm is different from con-
ditional planning with sensing actions (Son, Tu, and Baral
2004), where all outcomes of sensing actions are generated
off-line to obtain a tree-shaped plan, which is exponentially
larger than a linear plan.

Planning with costs
In the previous section, the planner generates multiple plans
of equal size out of which one is arbitrarily selected for ex-
ecution. In practice, those plans are not equivalent because
different actions in the real world have different costs. In
our domain, we consider the cost of an action to be the time
spent during its execution. For instance, in the example in
the previous section, when the robot plans to visit Carol to
acquire Dan’s location, the generated plan includes the robot
exiting lab1 through door d4. The planner also generated
another plan of the same size where the robot could have ex-
ited through door d5, but that plan was not selected. If we
see the layout of the example environment in Fig. 2, we can
see that it is indeed faster to reach Carol’s office o3 through
door d5. In this section, we present how costs can be associ-
ated with actions such that a plan with the smallest cost can
be selected to achieve the goal.

Costs are functions of both the action being performed
and the state at the beginning of the action. In this paper, for
simplicity, we assume all actions apart from approach to
have the following fixed costs:

cost(1,I):- sense(X,I), I<n.
cost(5,I):- gothrough(X,I), I<n.
cost(1,I):- greet(X,I), I<n.
cost(1,I):- opendoor(X,I), I<n.

We now define the cost for the approach(X,I) action,
which depends on the physical location of the robot. In most



(a) Simulation in GAZEBO (b) Experiment floor plan

Figure 3: Final experiment domain which contains 20 rooms, 25 doors and multiple rooms with multiple doors. The circle marks the robot’s
start position, the cross marks the destination. The 3 plans evaluated in the results are also marked.

cases, fluents uniquely identify the physical location of the
robot in the environment as the robot moves from one door
to the next. We compute the cost of approaching door X from
door Y in location Z as follows:
cost(@time(X,Y,Z),I):- approach(X,I),

beside(Y,I),door(X),door(Y), at(Z,I), I<n.

In our domain, the physical location of the robot is un-
certain at the start of an episode. It is impossible to estimate
the true cost of approaching a door X unless the robot starts
next to another door. When the robot starts next to a door,
its physical location is expressed by a fluent and the true
cost can be computed using the rule above. When it does not
start next to a door, we assume the following fixed cost for
approaching a door:
cost(10,I):- approach(X,I), {beside(Y,I)}0,

I<n.

Finally, the following statement guides CLINGO to gener-
ate optimal plans in terms of the cumulative costs:

#minimize[cost(X,Y)=X@1].

As a consequence of planning with costs, the optimal
plan is not necessarily the shortest one. Therefore, differ-
ently from the previous section, we do not repeatedly call
CLINGO with incremental values of n. Rather, we call it once
with n directly assigned to max len. Using the optimiza-
tion statement above, we guide CLINGO to find the optimal
answer set, i.e. the optimal plan within a size of max len.

Estimating costs through environment interactions
Whenever the executor successfully performs an action, the
cost estimator gets a sample of the true cost for that action.
It then updates the current estimate for that action using an
exponentially weighted moving average:

costk+1(X,Y ) = (1− α)× costk(X,Y ) + α× sample

where k is the episode number, α is the learning rate and set
to 0.5 in this paper, X is the action, and Y is the initial state.

To apply this learning rule, we need estimates of all costs
at episode 0. Since we want to explore a number of plans be-
fore choosing the lowest-cost one, we use the technique of
optimistic initialization (Sutton and Barto 1998) and set all

initial cost estimates to a value which is much less than the
true cost. This causes the robot to underestimate the cost of
a plan it has not explored enough, and the robot executes it
to converge the action costs to the true values. As more and
more plans are explored every episode, the costs of all rel-
evant actions converge to their true values, and the planner
settles on the true optimal plan. Since the cost of an action
is independent of the task being performed, a robot can im-
prove its cost estimates while executing different goals every
episode.

The exploration in optimistic initialization is short-
lived (Sutton and Barto 1998). Once the cost estimator sets
the values such that a particular plan becomes higher than
the current best plan, the planner will never attempt to fol-
low that plan even though its costs may decrease in the fu-
ture. There are known techniques such as ε-greedy explo-
ration in literature (Sutton and Barto 1998) that attempt to
solve this problem. We leave testing and evaluation of these
approaches to future work.

Experiments
We evaluate our approach of using ASP for plan cost min-
imization and cost learning in a simulated environment
whose floor plan illustrated in Figure 3b. This environment
has 20 rooms, 25 doors and 5 rooms with multiple doors, and
a 3D simulation for this environment was implemented us-
ing GAZEBO (Koenig and Howard 2004), as depicted in Fig-
ure 3a. This environment uses all the same rules presented
with the example, except that it uses a much larger corpus
of rigid knowledge, which can be viewed online. A simu-
lated differential drive robot capable of understanding the
actions described in this paper moves around inside this sim-
ulation to complete goals. The robot’s interface also trans-
forms any simulated sensor readings into observable fluents
as required by the planner to determine if replanning is re-
quired. Actions inside the simulator are not guaranteed to
succeed. However, on the occasional failure, they do not fail
repeatedly so that replanning can still be successful.

The experiments were carried out on a machine with a
Quad-Core i7-3770 processor, where the processing was



(a) Cost estimation during the first 30 episodes (b) Cost estimation after discovering navigation delay in episode 30

Figure 4: The cost curves of three different plans in the environment during learning.

split between 3D simulation, visualization and the planner
CLINGO. CLINGO is a monolithic system made up of two
parts, the grounder GRINGO which generates variable-free
programs which are then solved by the answer set solver
CLASP. In these experiments, version 3.0.3 and version 2.1.4
of GRINGO and CLASP were used, respectively. CLINGO was
run in parallel over 6 threads with max len set to 15, and
was allowed 1 minute of planning time after which the best
available plan was selected for execution.

In this domain, there are a large number of correct plans,
and the planning time can be prohibitively long. For in-
stance, there are a number of plans that go into the rooms
on the top left corner of the map, or at least approach the
door to that room. We remove such plans from the search
space of the planner by providing the following additional
heuristics along with the goal:
• Do not approach a door if that door is the only door con-

necting the adjacent room to the goal of visiting Bob.

:- approach(Y,I), at(X,I), acc(X,Y,Z),
1{indacc(Z,Y1,W)}1,inside(bob,W,I), Z!=W.

Note that to formulate this constraint we use indacc,
which is recursively defined in the rigid knowledge of the
domain.

• Do not approach a door if the next action in the plan does
not go through it. The formal definition of this heuristic
has not been presented here due to its length, and can be
viewed online.

These heuristics reduce the average time for finding the op-
timal plan at the start of each episode from 23 to 14.275
seconds. More importantly, they greatly reduce the number
of episodes required to converge learning by explicitly iden-
tifying a number of plans as sub-optimal, which need not be
evaluated.

We demonstrate cost learning through repeated episodes
of a single-goal problem illustrated in Fig. 3b. In every
episode, the robot starts at the location indicated by the cir-
cle and attempts to greet a person in the location indicated

by the cross. At the end of each episode, the robot updates its
estimates of action costs. Even with the heuristics mentioned
above, there are still a large number of plans that can achieve
this goal. For instance, there are plans that go through the
seminar room and the lab as well, as without learned costs
the planner has no idea that going through either of them
does not shorten the distance to the goal. Although all these
plans are tried out by the planner, we only present the costs
for the three shortest plans after exiting each door in the ini-
tial room. Plan 1 and Plan 3 are the shortest plans to achieve
the goal (7 steps), and Plan 1 is also the optimal plan. Plan 2
is almost as good as the optimal plan, but requires the robot
to go through 4 doors, making it longer (13 steps). In this
experiment, we only learn costs for the approach action.

Figure 4a shows the total cost of the three plans as the cost
estimates for each individual action are improved starting
from the optimistically initialized values. The cost of plan
3 is significantly higher than the other two, and therefore
after trying the plan once in the second episode, it is not
considered again. Since the other two plans are of similar
cost, their execution is interleaved until the estimate of the
shortest plan converges. In some episodes, plans apart from
these three are executed and the value of these plans may not
change. By episode 30, the cost estimates converge such that
plan 1 is always selected.

In the second experiment we show how the system can

Figure 5: A delay in a portion of the map slows down robot navi-
gation in the gray region shown above, and lengthens the time taken
to complete Plan 1 at episode 30.



adapt when the environment changes. Let’s assume that at
episode 30, the robot starts experiencing a 20 second delay
in the gray region of the map demarcated in Fig. 5, through
which the optimal plan (Plan 1) passes. Consequently, the
cost estimate changes and the robot switches to a different
plan (Plan 2) which is now optimal, as illustrated over the
next 10 episodes in the graph in Fig. 4b.

Conclusion
In this paper, we present an approach that uses ASP for
robotic task planning that incorporates action costs to pro-
duce optimal plans. This approach also allows to plan with
incomplete information, by acquiring missing information
through human-robot interaction. Furthermore, by estimat-
ing costs from experience, planning can be adaptive to envi-
ronmental changes.
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