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ABSTRACT

Temporal difference (TD) learning methods [22] have become pop-
ular reinforcement learning techniques in recent years. TD meth-
ods have had some experimental successes and have been shown
to exhibit some desirable properties in theory, but have often been
found very slow in practice. A key feature of TD methods is that
they represent policies in terms of value functions. In this paper we
introduce behavior transfer, a novel approach to speeding up TD
learning by transferring the learned value function from one task to
a second related task. We present experimental results showing that
autonomous learners are able to learn one multiagent task and then
use behavior transfer to markedly reduce the total training time for
a more complex task.

1. INTRODUCTION

Temporal difference learning methods [22] are a type of rein-
forcement learning that has shown some success in different ma-
chine learning tasks because of its ability to learn where there is
limited prior knowledge and minimal environmental feedback. How-
ever, TD often is very slow in practice to produce near-optimal be-
haviors. Many techniques exist which attempt, with more or less
success, to speed up the learning process.

Two generally accepted techniques for solving reinforcement learn-

ing problems are TD methods and policy search methods [23]. Di-
rect policy search methods modify parameters of a policy, a way
of acting in a particular task, so that over time the resulting policy
will improve. Agents using policy search methods explore policy
space by adjusting parameters of the policy and then observing the
resulting performance. In contrast, value-based methods learn to
estimate a value function for each situation that the learner could
find itself in. The learner is then able to take the action which it
believes will give it the most value in the long run. Over time the
learned value function approaches the true value of each state by
comparing the expected value of a state with the actual value re-
ceived in that state. Over time the agent will build an accurate mea-
sure of how valuable each available action is. Both policy search
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and value-based methods are able to determine the optimal policy
but only value-based methods are inherently able to provide an esti-
mate of the “goodness” of taking a given action from a given state.

Past research [17] has shown that a learner can train faster on a
task if it has first learned on a simpler variation of the task, referred
to as directed training. In this paradigm the state transition func-
tion, which is part of the environment, can change between tasks.
Learning from easy missions [4] is a technique that relies on human
input to modify the starting state of the learner over time, making
it incrementally more difficult for the learner. Both of these meth-
ods reduce the total training time required to successfully learn the
final task. However, neither allow for changes to the state or action
spaces between the tasks, limiting their applicability. Reward shap-
ing [6, 11] allows one to bias a learner’s progress through the state
space by adding in artificial rewards to the environmental rewards.
Doing so requires sufficient knowledge about the environment a
priori to guide the learner and must be done carefully to ensure that
unintended behaviors are not introduced. While it is well under-
stood how to add this type of guidance to a learner [13], we would
prefer to allow the agent to learn faster by training on different (per-
haps pre-existing) tasks rather than creating artificial tasks that are
easier to learn.

In this paper we introduce behavior transfer, whereby a TD learner
trained on one task can learn faster when training on another task
with related, but different, state and action spaces. Behavior trans-
fer is more general than the previously referenced methods because
it does not preclude the modification of the transition function, start
state, or reward function. The key technical challenge is mapping a
value function in one representation to a meaningful value function
in another, typically larger, representation. The primary contribu-
tion of this paper is to establish an existence proof that there are
domains in which it is possible to construct such a mapping and
thereby speed up learning via behavior transfer. While we expect
that behavior transfer is possible for both TD and policy search
learners, the two types of learners will likely require different tech-
niques; in this paper we address only behavior transfer in TD learn-
ers.

The remainder of this paper is organized as follows. Section 2
formally defines the behavior transfer methodology and its benefits.
Section 3 gives an overview of the domain in which we quantita-
tively test behavior transfer. Section 4 gives details of learning in
this domain. Section 5 describes how we perform behavior transfer
in the test domain. Section 6 presents the results of our experiments
and discusses some of their implications. Section 7 details other re-
lated work while contrasting our methods and Section 8 concludes.



2. BEHAVIOR TRANSFER METHODOLOGY

To formally define behavior transfer we first briefly review the
general reinforcement learning framework that conforms to the gen-
erally accepted notation for Markov decision processes [15]. There
is some set of possible perceptions of the current state of the world,
S, and a learner has some initial starting state, Sinitia;. When in
a particular state s there is a set of actions A which can be taken.
The reward function R maps each perceived state of the environ-
ment to a single number which is the value, or instantaneous re-
ward, of the state. The transition function, 7", takes a state and an
action and returns the state of the environment after the action is
performed. If transitions are non-deterministic the transition func-
tion is a probability distribution function. A learner is able to sense
s, and typically knows A, but may or may not initially know S, R,
orT.

A policy m : S +— A defines how a learner interacts with the
environment by mapping perceived environmental states to actions.
7 is modified by the learner over time to improve performance, i.e.
the expected total reward accumulated, and it completely defines
the behavior of the learner in an environment. In the general case
the policy can be stochastic. The success of an agent is determined
by how well it maximizes the total reward it receives in the long
run while acting under some policy 7. An optimal policy, 7™,
is a policy which does maximize this value (in expectation). Any
reasonable learning algorithm attempts to modify 7 over time so
that it reaches 7™ in the limit.

Past research confirms that if two tasks are closely related the
learned policy from one task can be used to provide a good initial
policy for the second task. For example, Selfridge (1985) showed
that the 1-D pole balancing task could be made harder over time by
shortening the length of the pole and decreasing its mass; when the
learner was first trained on a longer and lighter pole it could more
quickly learn to succeed in the more difficult task with the modi-
fied transition function. In this way, the learner is able to refine an
initial policy for a given task: (S1,5(1,initial), 41,11, R1,m0) =
T(1,final) Where task 1 starts from no initial policy as indicated by
the 7o in the last value of the tuple. Task 2 can then be defined as
(S2, 8(2,initiat)s A2, T2, R2, T(2,initial)) = T(2,final)- The time
it takes to learn m(2, finar) = 5 may beless for (S2, $(2,initiar), Az,
Tz, R2, (1, finaty) than (S, (2 initialy» A2, T2, R2,m0). Note that
since S1 = Sz and A; = A, m(1,finar) is a legitimate policy for
task 2.

In this paper we consider the more general case where S1 #
Sa, and/or Ay # Aaz. To use the policy 7(1,finary as the initial
policy for a TD learner in second task, we must transform the value
function so that it can be directly applied to the new state and action
space. A behavior transfer functional p(7) will allow us to apply a
policy in a new task (S2, 8(2,initiat), A2, T2, R2, p(T(1, finar))) =
(2, final)- The policy transform functional, p, needs to modify the
policy and its associated value function so that it accepts the states
in the new task as inputs and allows for the actions in the new task to
be outputs, as depicted in Figure 1. A policy generally selects the
action which is expected to accumulate the largest expected total
reward and thus the problem of transforming a policy between two
tasks reduces to transforming the value function. In this paper we
will therefore concentrate on transferring the state action values, Q,
from one learner to another. Defining p to do this correctly is the
key technical challenge to enable general behavior transfer.

One measure of success in speeding up learning using this method
is that given a policy 71, the training time for 7 (2, finq1) to Teach
some performance threshold decreases when replacing the initial
policy 7o with p(71). This criterion is relevant when task 1 is given
and is of interest in its own right. A stronger measure of success
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Figure 1: p is a functional which transforms a value function )
from one task so that it is applicable in a second task that has
different state and action spaces.

is that the training time for both tasks using behavior transfer is
shorter than the training time to learn the second task from scratch.
This criterion is relevant when task 1 is created for the sole purpose
of speeding up learning via behavior transfer.

3. TESTBED DOMAIN

To demonstrate the effectiveness and applicability of the behav-
ior transfer method (detailed in section 5) we empirically test it
in the RoboCup simulated soccer keepaway domain using a setup
similar to past research [21]. RoboCup simulated soccer is well un-
derstood as it has been the basis of multiple international competi-
tions and research challenges. The multiagent domain incorporates
noisy sensors and actuators, as well as enforcing a hidden state so
that agents can only have a partial world view at any given time.
While there has been previous work which attempted to use ma-
chine learning to learn the full simulated soccer problem [3, 16],
the complexity and size of the problem have so far proven pro-
hibitive. However, many of the RoboCup subproblems have been
isolated and solved using machine learning techniques, including
the task of playing keepaway.

Keepaway, a subproblem of RoboCup soccer, is the challenge
where one team, the keepers, attempts to maintain possession of
the ball on a field while another team, the fakers, attempts to gain
possession of the ball or force the ball out of bounds, ending an
episode. Keepers that are able to make better decisions about their
actions are able to maintain possession of the ball longer and thus
have a longer average episode length. Figure 2 depicts three keep-
ers playing against two takers. !

As more players are added to the task, keepaway becomes harder
for the keepers because the field becomes more crowded. As more
takers are added there are more players to block passing lanes and
chase down any errant passes. As more keepers are added, the

'Flash-file demonstrations of the task can be found at
http://www.cs.utexas.edu/users/AustinVilla/sim/keepaway!/.



Figure 2: This diagram depicts the 13 state variables used for
learning with 3 keepers and 2 takers. There are 11 distances to
players, the center of the field, and the ball, as well as 2 angles
along passing lanes.

keeper with the ball has more passing options but the average pass
distance is shorter. This forces more passes and will lead to more
errors because of the noisy actuators and imperfect perception. For
this reason keepers in 4 vs. 3 keepaway (meaning 4 keepers and 3
takers) take longer to learn an optimal control policy than in 3 vs.
2. The hold time of the best policy for a constant field size will
also decrease when moving from 3 vs. 2 to 4 vs. 3 due to the added
difficulty. This has been discussed in previous research [21]. The
time it takes to reach a policy which is near the handcoded solution
roughly doubles as each additional keeper and taker is added.

The different keepaway tasks are all situations which may oc-
cur during a real game. Learning on one task and transferring the
behavior to a separate useful task can reduce the training time.
In the keepaway domain, A and S are determined by the current
keepaway task and thus differ from instance to instance. How-
@Ver, Sinitial, K, and T, though formally different, are effectively
constant across tasks. When S and A change, sinitiai, R, and T'
change by definition. But in practice, R is always defined as 1 for
every time step that the keepers maintain possession, and Sinitial
and 7" are always defined by the RoboCup soccer simulation.

4. LEARNING KEEPAWAY

The keepers use episodic SMDP Sarsa(\) [22], a well under-
stood temporal difference algorithm, to learn their task. We use
linear tile-coding function approximation, also known as CMACs,
which has been successfully used in many reinforcement learning
systems [1]. The keepers choose not from primitive actions (turn,
dash, or kick) but higher-level actions first implemented by the
CMUnited-99 team [20]. A keeper without the ball automatically
attempts to move to an open area (the receive action). A keeper in
possession of the ball has the freedom to decide whether to hold the
ball or to pass to a teammate.

Our agents are based on the keepaway benchmark players dis-
tributed by UT-Austin® which are described in [19]. These bench-

mark players are built on the UvA Trilearn team [5] and the CMUnited-

99 team [20], whereas previous publications [21] use players built
on the CMUnited-99 players. The newer benchmark players have
better low-level functionality and are thus able to hold the ball for
longer than the older CMUnited-99 players, both before and after
learning.

Function approximation is often needed in reinforcement learn-
ing so that the learner is capable of generalizing the policy to per-
form well on unvisited states. CMACs allow us to take arbitrary
groups of continuous state variables and lay infinite, axis-parallel
tilings over them (see Figure 3). Using this method we are able to

2Source code, doumentation, and mailing list can be found at
http://www.cs.utexas.edu/users/Austin Villa/sim/keepaway/.
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Figure 3: The tile-coding feature sets are formed from multiple
overlapping tilings. The state variables are used to determine
the activated tile in each of the different tilings. Every activated
tile then contributes a weighted value to the total output of the
CMAC for the given state. Increasing the number of tilings
allows the tile-coding to generalize better while decreasing the
tile size allows more accurate representations of smaller details.
Note that we primarily use one-dimensional tilings but that the
principles apply in the n-dimensional case.

discretize the continuous state space by using tilings while main-
taining the capability to generalize via multiple overlapping tilings.
The number of tiles and width of the tilings are hardcoded and this
dictates which state values will activate which tiles. The function
approximation is learned by changing how much each tile con-
tributes to the output of the function approximator. By default,
all the CMAC’s weights are initialized to zero. This approach to
function approximation in the RoboCup soccer domain is detailed
by Stone and Sutton (2002).

For the purposes of this paper, it is particularly important to note
the state variables and action possibilities used by the learners.
The keepers’ states comprise distances and angles of the keepers
K1 — K, the takers T1 — T}, and the center of the playing region
C (see Figure 2). Keepers and takers are ordered by increasing dis-
tance from the ball. Note that as the number of keepers n and the
number of takers m increase, the number of state variables also in-
crease so that the more complex state can be fully described. S
must change (e.g. there are more distances to players to account
for) and | A| increases as there are more teammates for the keeper
with possession of the ball to pass to. Full details of the keepaway
domain and player implementation are documented elsewhere [21].

4.1 Learning 3 vs. 2

On a 25m x 25m field, three keepers are initially placed in the
three corners of the field and a ball is placed near one of the keepers.
The two takers are placed in the fourth corner. When the episode
starts, the three keepers attempt to keep control of the ball by pass-
ing amongst themselves and moving to open positions. The keeper
with the ball has the option to either pass the ball to one of its
two teammates or to hold the ball. We allow the keepers to learn
to choose between these three choices when in control of the ball.
In this task A = {hold, passToTeammatel, passToTeammate2}. S
is defined by 13 state variables, as shown in Figure 2. When a
taker gains control of the ball or the ball is kicked out of the field’s
bounds the episode is finished. The reward to the Sarsa(\) algo-
rithm for the keeper is the number of time steps the ball remains
in play after an action is taken. The episode is then reset with a
random keeper placed near the ball.

All weights in the CMAC function approximator are initially set
to zero and therefore 7 (3ys2,initial) = Mo. As training progresses,
the weight values are changed by Sarsa(\) so that the average hold
time of the keepers increases. Throughout this process, the tak-
ers use a static hand-coded policy to attempt to capture the ball as
quickly as possible. Due to the large amounts of randomness in the



environment, the evaluation of a policy is very noisy.

4.2 Learning 4 vs.3

Holding the field size constant we now add an additional keeper
and an additional taker. I? and 71" are essentially unchanged from 3

vs. 2 keepaway, but now A = {hold, passToTeammatel, passToTeam-

mate2, passToTeammate3} and S is made up of 19 state variables
due to the added players. The 4 vs. 3 task is harder than the 3 vs.
2 task and the learned average hold times after 20 hours of training
from T;pnitiar = mo decrease from roughly 13.6 seconds for 3 vs. 2
to 9.3 seconds for 4 vs. 3.

In order to quantify how fast an agent in 4 vs. 3 learns, we set a
threshold of 9.0 seconds. When a group of four keepers has learned
to hold the ball from the three takers for an average of 9.0 sec-
onds over 1,000 episodes we say that the keepers have sufficiently
learned the 4 vs. 3 task. By recording this time over many trials we
can measure the effectiveness of the Sarsa(\) algorithm in different
situations.

5. BEHAVIOR TRANSFER IN KEEPAWAY

To define a p which will correctly transfer behavior from
T (3vs2, final) INO T(4vs3,initial) fOr @ TD learner, the value func-
tion utilized by 7 needs to handle the new state and action spaces
reasonably. In the keepaway domain we are able to intuit the map-
pings between actions in the two tasks and states in the two tasks
based on our knowledge of the domain. Our choice for the map-
pings is supported by empirical evidence in Section 6 showing that
using this mapping in behavior transfer does decrease training time.
Other domains will not necessarily have such straightforward trans-
forms between tasks of different complexity. Finding a general
method to specify p is outside the scope of this paper and will be
formulated in future work. One of the main challenges will be iden-
tifying general heuristics for mapping existing states and actions in
the first task to new states and actions in a second task. Creating
a general metric for similarity between state variables and actions
in two tasks would allow us to identify a promising mapping for
p and give an a priori indication of whether behavior transfer will
work in a particular domain. Our primary contribution in this paper
is demonstrating that there exist domains in which p can be con-
structed and then used to successfully increase the learning rate.

The naive approach of directly copying the CMAC’s array of
weights to duplicate the value function from (3,2, finar) into
T (4vs3,initial) Without any adjustment fails because both S and A
have changed. Keeping in mind that 7 : S +— A, we can see
that the new state vectors which describe the learner’s environment
would not necessarily be correctly used, nor would the new actions
be correctly evaluated by (3,52, finat)- In order to use the learned
policy we modify it to handle the new actions and new state values
in the second task so that the CMAC can reasonably evaluate them.

The CMAC function approximator takes a state vector and an
action and returns the expected total reward. The learner can evalu-
ate each potential action for the current S and then use 7 to choose
one. We modify the weights in the tile coding so that when we in-
put a 4 vs. 3 action the weights for the activated tiles are not zero
but instead are initialized by 73ys2, finai. To accomplish this, we
copy weights from the tiles which would be activated for a similar
action in 3 vs. 2 into the tiles activated for every new action. The
weights corresponding to the tiles that are activated for the “pass to
teammate 2" action are copied into the weights for the tiles that are
activated to evaluate the “pass to teammate 3” action. The mod-
ified CMAC will initially be unable to distinguish between these
two actions.

To handle new state variables we follow a similar strategy. The

13 state variables which are present in 3 vs. 2 are already handled
by the CMAC’s weights. The weights for tiles activated by the six
new 4 vs. 3 state variables are initialized to values of weights acti-
vated by similar 3 vs. 2 state variables. For instance, weights which
correspond to “distance to teammate 2” values in the state represen-
tation are copied into the weights for tiles that are used to evaluate
“distance to teammate 3” state values. This is done for all six new
state variables. As a final step, any weights which have not been ini-
tialized are set to the average value of all initialized weights. The 3
vs. 2 training was not exhaustive and therefore some weights which
may be utilized in 4 vs. 3 would otherwise remain uninitialized. In
this way, the tiles which correspond to every value in the new 4 vs.
3 state vector have been initialized to values determined via train-
ing in 3 vs 2 and can therefore be considered in the computation.
See Table 1 for examples of mappings used. Identifying similar
actions and states between two tasks is essential for constructing p
and may prove to be the main limitation when attempting to apply
behavior transfer to different domains.

Having constructed a p which handles the new states and actions,
we can now set p(T(3us2, final)) = T(4vs3,initial)- We do not claim
that these initial CMAC weights are correct (and empirically they
are not), but instead that the constructed CMAC allows the learner
to more quickly discover a near-optimal policy.

6. RESULTS AND DISCUSSION

To test the effect of loading the 3 vs. 2 CMAC weights into 4 vs.
3 keepers, we run a number of 3 vs. 2 episodes, save the CMAC
weights (T(3vs2, finat)) from a random 3 vs. 2 keeper, and load the
CMAC weights into all four keepers® in 4 vs. 3 so that
P(T(3vs2, final)) = T(4vs3,initial). Then we train on the 4 vs. 3
keepaway task until the average hold time for 1,000 episodes is
greater than 9.0 seconds. To overcome the high variance inherent
in the environment and therefore the noise in our evaluation, we run
at least 100 independent trials for each number of 3 vs. 2 training
episodes.

Table 2 reports the average time spent training 4 vs. 3 to achieve
a 9.0 second average hold time for different amounts of 3 vs. 2
training. The middle column reports the time spent training on the
4 vs. 3 task while the third column shows the total time taken to
train 3 vs. 2 and 4 vs. 3. As can be seen from the table, spending
time training in the simpler 3 vs. 2 domain can cause the time spent
in 4 vs. 3 to decrease.

Table 2 shows the potential of behavior transfer. We use a t-test
to determine that the differences in the distributions of 4 vs. 3 train-
ing times when using behavior transfer are statistically significant
(p < 5.7 % 10~ ") when compared to training 4 vs. 3 from scratch.
Not only is the time to train the 4 vs. 3 task decreased when we
first train on 3 vs. 2, but the total training time is less than the time
to train 4 vs. 3 from scratch. We can therefore conclude that in
the keepaway domain training first on a simpler task can increase
the rate of learning enough that the total training time is decreased.
To verify that the 4 vs. 3 players were benefiting from behavior
transfer and not from simply having non-zero initial weights, we
initialized the 4 vs. 3 CMAC weights uniformly to 1.0 in one set of
experiments and then to random numbers from 0.0-0.5 in a second

3We do so under the hypothesis that the policy of a single keeper
represents all of the keepers’ learned knowledge. Though in theory
the keepers could be learning different policies that interact well
with one another, so far there is no evidence that they do. One pres-
sure against such specialization is that the keepers’ start positions
are randomized. In earlier informal experiments, there appeared to
be some specialization when each keeper started in the same loca-
tion every episode.



4 vs. 3 state variable

related 3 vs. 2 state variable

dist(Kl, C) Cl’L‘Sl‘/(I{17 C)
d?st(Kz, C) d’L:St(,sz7 C)
dist(Ks,C) dist(Ks, C)
diSt(I{z;7 O) diSt(Kg, C)

Min(dist KQ,Tl) d’LSt(Kz,Tg), dist(K27T3))
Min(dz’st KS,T1 d’LSt(Kg,Tz), diSt(Kg,Tg))

Min(dist(Kg, T1), dist(KQ, Tz)
Min(dist Kg, T1), d’iSt(Kg, T2)
Min(dist K3, T1), dist(Kg, Tz))

(
(
Min(dist(K4, T1) dZSt(K4, Tg), diSt(K4, Ts))
(
(
(

Min(ang(Kz, K1, T1), ang(K2, K1, T2), ang(K2, K1, T3))
Min(ang K3, Kl, Tl), ang(Kg, Kl, TQ), ang(Kg, Kl, T3))
Min(cmg K4, Kl, Tl), ang(K4, K17T2), ang(K4, K1, T3))

Min(ang Kg, Kl, Tl), (J,’I’Lg([(g7 Kl,TQ))

%
Min(angEK% Ki1,T1), ang(K2, K1, Tz))
Min(ang(Kg, K1, Tl), ang(Kg, Kl,Tg))

Table 1: This table describes part of the p transform from states in 3 vs. 2 keepaway to states in 4 vs. 3 keepaway. We denote the
distance between a and b as dist(a, b) and the angle formed between players a, ¢ with a vertex at b as ang(a, b, c). Relevant points
are the center of the field C, keepers K-K4, and takers 77 -75. Keepers and takers are ordered in increasing distance from the ball

and state values not present in 3 vs. 2 are in bold.

# of Ave. 4 vs. | Ave. total
3vs.2 3 time time
episodes (hours) (hours)
0 15.26 15.26
1 12.29 12.29
10 10.06 10.08
50 4.83 4.93
100 4.02 4.22
250 3.77 4.3
500 3.99 5.05
1000 3.72 5.85
3000 242 11.04
9000 1.38 50.49
18000 1.24 98.01

Table 2: Results from learning keepaway with different
amounts of 3 vs. 2 training time indicate that behavior trans-
fer can reduce training time. The minimum times for learning
4 vs. 3 and for total time are in bold.

set of experiments. In both cases we found that the learning time
was greater than learning from scratch. Haphazardly initializing
CMAC weights may hurt learners, but systematically setting them
through behavior transfer is beneficial.

We would like to be able to determine the optimal amount of
time needed to train on an easier task to speed up a more diffi-
cult task. While it is not critical when considering the 4 vs. 3 task
because many choices produce near optimal results, finding these
values becomes increasingly difficult and increasingly important as
we scale up to larger tasks, such as 5 vs. 4 keepaway. Determining
these training thresholds for tasks in different domains is currently
an open problem and will be the subject of future research.

Interestingly, when the CMACs’ weights are loaded into the keep-
ers in 4 vs. 3, the initial hold times of the keepers do not differ
much from the keepers with uninitialized CMACsS, as shown qual-
itatively in Figure 4. However, the information contained in the
CMACs’ weights prime the 4 vs. 3 keepers to more quickly learn
their task. As the figure suggests, the 4 vs. 3 keepers which have
loaded weights from 3 vs. 2 players learn at a faster rate than those 4
vs. 3 players that are training from scratch. This outcome suggests
that the learned behavior is able to speed up the rate of reinforce-
ment learning on the novel domain even though the knowledge we
transfer is of limited initial value.

The final step of p where we put the average learned weight into
all uninitialized weights is more beneficial at lower numbers of
episodes; it gives initial values to weights in the state/action space
that have never been visited. Over time more of the state space is

105
Learning 4 vs. 3 after
10 1 transferring behavior
95 from 3 vs. 2

9 Target performace......
level

Learning 4 vs. 3 from scratch

Episode Duration (seconds)

0 5 10 15 20
Training Time (hours)

Figure 4: The learning curves for five representative keepers
in the 4 vs. 3 keepaway domain when learning from scratch
(dotted lines) have similar initial hold times when compared to
five representative learning curves generated by transferring
behavior from the 3 vs. 2 task (solid lines). The learners which
have benefited from behavior transfer are able to more quickly
learn the 4 vs. 3 task.

explored and thus the averaging step yields less benefit. While it
may seem surprising that a single episode of 3 vs. 2 can signifi-
cantly effect the total training times, we can see that the averaging
effect has a large impact on the total learning time, even for a small
number of episodes. Note also that the SARSA update is run on av-
erage 23 times times during the initial 3 vs. 2 episode, where each
update affects 416 CMAC weights, suggesting something useful
can be learned.

To test the sensitivity of the p function, we tried modifying it
so that instead of copying the weights for the state variables for
K3 into the new 4 vs. 3 K4 (see Table 1), we instead copy the
K state variable to this location. NOW 74443, initia; Will evaluate
the state variables for the closest and furthest keeper teammates to
the same value instead of the two furthest teammates. Similarly,
instead of copying weights corresponding to 7% into the 73 loca-
tion, we copy weights from 77. Training on 1,000 3 vs. 2 episodes
and using Pmodified to initialize weights in 4 vs. 3, the total train-
ing time increased. Although this pyodifieqd Outperformed training
from scratch, the total training time is 10%-20% longer compared
to using p. Choosing non-optimal mappings between actions and
states when constructing p seems to have a detrimental, but not
necessarily disastrous, effect on the training time.



# of # of Ave. 5 vs. | Ave. total
3vs.2 4vs.3 4 time time
episodes | episodes (hours) (hours)
0 0 24.32 24.32
0 1000 17.06 18.38
500 500 10.19 11.75

Table 3: Results from learning 5 vs. 4 keepaway with behavior
transfer demonstrate that our method scales to more difficult
tasks.

Initial results in Table 3 show that behavior transfer scales to the
5 vs. 4 keepaway task as well. The 5 vs. 4 task is harder than the
4 vs. 3 task for the same reasons that were detailed in Section 4.2
when discussing why 4 vs. 3 is more difficult than 3 vs. 2. In 5 vs. 4
we say that the task has been learned when the 5 keepers are able to
hold the ball for an average of 9.0 seconds over 1,000 episodes. If
behavior transfer from a learned 4 vs. 3 value function is used, the 5
vs. 4 training time can be reduced by roughly 30% and the total time
is reduced by 24% when compared to learning from scratch. An
additional refinement is to use a two-step application of behavior
transfer so that 3 vs. 2 runs first, this learned value function is used
as the initial value function in 4 vs. 3, and after training the final
4 vs. 3 value function is used as the initial value function for 5 vs.
4. Using this procedure we find that the time to learn 5 vs. 4 is
reduced by roughly 58% and the total training time is reduced by
52% when compared to learning from scratch. A t-test confirms
that the differences between 5 vs. 4 hold times are all statistically
significant (p < 1.17 * 10™%). We anticipate that behavior transfer
will further reduce the total training time necessary to learn 5 vs. 4
as we tune the number 3 vs. 2 and 4 vs. 3 episodes.

7. RELATED WORK

The concept of seeding a learned behavior with some initial sim-
ple behavior is not new. There have been approaches to simplify-
ing reinforcement learning by manipulating the transition function,
the agent’s initial state, and/or the reward function. Directed train-
ing [17] is a technique to speed up learning whereby a human is
allowed to change the task by modifying the transition function 7.
Using this method a human supervisor can gradually increase the
difficulty of a task while using the same policy as the initial control
for the learner. For instance, balancing a pole may be made harder
for the learner by decreasing the mass or length of the pole. The
learner will adapt to the new task faster using a policy trained on a
related task than if learning from scratch.

Learning from easy missions [4] allows a human to change the
start state of the learner, sinitiar, making the task incrementally
harder. Starting the learner near the exit of a maze and gradually
allowing the learner to start further and further from the goal is an
example of this. This kind of direction allows the learner to spend
less total time learning to perform the final task.

The “transfer of learning” approach [18] applies specifically to
temporally sequential subtasks. Using this compositional learning
a large task may be broken down into subtasks which are easier
to learn and have distinct beginning and termination conditions.
However the subtasks must all be very similar in that they have
the same state spaces, action spaces, and environment dynamics,
although the reward function R may differ.

Another successful idea, reward shaping [6, 11], also contrasts
with behavior transfer. In shaping, learners are given an artificial
problem which will allow the learner to train faster than on the
actual problem which has different environmental rewards, R. Be-
havior transfer differs in intent in that we aim to transfer behaviors

from existing, relevant tasks which can have different state and ac-
tion spaces rather than creating artificial problems which are easier
for the agent to learn. In the RoboCup soccer domain all the differ-
ent keepaway tasks are directly applicable to the full task of sim-
ulated soccer; in keepaway we are always training the learner on
useful tasks rather than just simpler variations of a real task. Using
behavior transfer, learners are able to take previously learned be-
haviors from related tasks and apply that behavior to harder tasks
which can have different state and action spaces.

While these four methods do allow the learner to spend less total
time training, they rely on a human modifying the transition func-
tion, the initial start state, or the reward function to create artificial
problems to train on. We contrast this with behavior transfer where
we allow the state and/or action spaces to change. This added flex-
ibility permits behavior transfer to be applied to a wider range of
domains and tasks than the other aforementioned methods. Fur-
thermore, behavior transfer does not preclude the modification of
the transition function, the start state, or the reward function and
can therefore be combined with the other methods if desired.

In some problems where subtasks are clearly defined by features,
the subtasks can be automatically identified [7] and leveraged to
increase learning rates. This method is not directly applicable to
tasks which do not have features that clearly define subtasks. Fur-
thermore, if the shape of the various regions in the value function
are too complex, i.e. the smoothness assumption is violated too
often, the algorithm to automatically detect subtasks will fail.

Learned subroutines have been successfully transfered in a hier-
archical reinforcement learning framework [2]. By analyzing two
tasks, subroutines may be identified which can be directly reused in
a second task that has a slightly modified state space. The learning
rate for the second task can be substantially increased by duplicat-
ing the local sub-policy. This work can be thought of as another
example for which p has been successfully constructed, but in a
very different way.

For tasks which can be framed in a relational framework [8],
there is research [12] which suggests ways of speeding up learn-
ing between two relational reinforcement learning tasks. However,
there is no obvious way to apply this technique to reinforcement
learning problems that are not relational.

Imitation is another technique which may transfer knowledge
from one learner to another [14]. However, there is the assump-
tion that “the mentor and observer have similar abilities” and thus
may not be directly applicable when the number of dimensions of
the state space changes or the agents have a qualitatively different
action set. The goal of our research different: behavior transfer
leverages knowledge between tasks to speed up learning whereas
imitation focuses on transferring knowledge from one agent to an-
other.

Other research [9] has shown that it is possible to learn policies
for large-scale planning tasks that generalize across different tasks
in the same domain. Using this method researchers are able to
speed up learning in different tasks without explicitly transferring
any knowledge, as the policy is defined for the planning domain
rather than a specific task.

Another approach [10] uses linear programming to determine
value functions for classes of similar agents. Using the assumption
that T and R are similar among all agents of a class, class-based
value subfunctions are used by agents in a new world that has a
different number of objects (and thus different S and A). Although
no learning is performed in the new world, the previously learned
value functions may still perform better than a baseline handcoded
strategy. However, as the authors themselves state, the technique
will not perform well in heterogeneous environments or domains



with “strong and constant interactions between many objects (e.g.
RoboCup).” Our work is further differentiated as we continue learn-
ing in the second domain after performing p. While the initial per-
formance in the new domain may be increased after loading learned
value functions compared to learning from scratch, we have found
that a main benefit is an increased learning rate.

8. CONCLUSIONS

We have introduced the behavior transfer method of speeding up
reinforcement learning and given empirical evidence for its useful-
ness. We have trained learners using TD reinforcement learning in
related tasks with different state and action spaces and shown that
not only is the time to learn the final task reduced, but that the total
training time is reduced using behavior transfer when compared to
learning the final task from scratch.
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