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ABSTRACT

Reinforcement learning is a popular and successful framework for

many agent-related problems because only limited environmental

feedback is necessary for learning. While many algorithms exist to

learn effective policies in such problems, learning is often used to

solve real world problems, which typically have large state spaces,

and therefore suffer from the “curse of dimensionality.” One effec-

tive method for speeding-up reinforcement learning algorithms is to

leverage expert knowledge. In this paper, we propose a method for

dynamically augmenting the agent’s feature set in order to speed

up value-function-based reinforcement learning. The domain ex-

pert divides the feature set into a series of subsets such that a novel

problem concept can be learned from each successive subset. Do-

main knowledge is also used to order the feature subsets in order

of their importance for learning. Our algorithm uses the ordered

feature subsets to learn tasks significantly faster than if the entire

feature set is used from the start. Incremental Feature-Set Aug-

mentation (IFSA) is fully implemented and tested in three different

domains: Gridworld, Blackjack and RoboCup Soccer Keepaway.

All experiments show that IFSA can significantly speed up learn-

ing and motivates the applicability of this novel RL method.

Keywords

Reinforcement Learning

1. INTRODUCTION
Reinforcement learning [16] is a popular and successful frame-

work for many agent-related problems because only limited envi-

ronmental feedback is necessary for learning. Many algorithms ex-

ist to attempt to learn policies to take optimal sequential decisions

to maximize expected reward and there have been many success-

ful applications of reinforcement learning (e.g. Elevator Schedul-

ing [2], Keepaway [14], and TDGammon [17]). However, as these

methods scale up to more real world problems, which typically

have very large state spaces, learning may be intractably slow.

One popular approach to solving reinforcement learning prob-
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lems is value function approximation, where the agent attempts to

learn the value for each state, i.e. the long term expected reward

from entering a particular state, and then derives a policy from these

values. The state space is the set of all possible states in an agent’s

environment. When the state space is very large, learning a value

for each state can be intractable; if the state space is continuous, it

is impossible. Function approximation techniques have been suc-

cessfully used to speed up learning for problems with large or con-

tinuous state spaces, but solving large problems can be very hard

given the “curse of dimensionality,” and such methods may require

extensive tuning.

We categorize efforts to advance the state of the art in reinforce-

ment learning into three main categories:

• General purpose algorithms: Algorithms that are applica-

ble to all, or a large subset of, the reinforcement learning

problems. These algorithms do not explicitly use any expert

knowledge (e.g. [1, 7]).

• Case studies: Specific problems that are solved with rein-

forcement learning. Domain-specific expert knowledge is

typically utilized to speed up the learning process (e.g. [9,

17]).

• General techniques for using domain knowledge: Domain

knowledge may be used to speed up reinforcement learn-

ing problems in at least two ways via hierarchy and abstrac-

tion [3] and by incorporating advice [8]. Hierarchical re-

inforcement learning (HRL) leverages a domain-dependant

hierarchy designed by an expert to decompose the learning

task. In advice taking agents, algorithms utilize advice from

a domain expert to speed up the base reinforcement learn-

ing algorithm. In both cases it may be difficult to formulate

the domain knowledge correctly, particularly in complex do-

mains.

IFSA falls squarely in the third category as it is a general algo-

rithm that leverages domain knowledge to speed up reinforcement

learning. One of the main differences between IFSA and previous

methods is that the knowledge the domain expert must supply to

IFSA is significantly less detailed and may often be available from

non-technical domain experts.

In a “real world” problem, the state space, by definition, contains

an infinite number of possible state features from the world. The

designer of a particular task must therefore pick the most relevant

features (e.g. if the task is to travel to work in Boston, the weather

report for London is not likely to be relevant) from which to con-

struct a feature-set. In many (if not most) real world problems the

feature-set can be broken into a series of subsets, where each subset



can be used to learn a specific concept of the domain. Some con-

cepts (feature-set subsets) may be more important than others. For

example, consider the general task of navigation, where the goal is

to find the best plan for getting to point B from point A. The agent

must choose a path and a transportation method: walking, taking a

bus, taking a taxi, or driving. The feature-set of the agent’s state

space includes:

1. The positions of A and B

2. Is it raining?

3. The type of shoe the agent is wearing

4. Does the agent have an umbrella?

5. The day of the week

6. The time

The agent can learn the concept of position and basic path plan-

ning when utilizing only the first feature. Features 2-4 can be used

to learn how weather should change its policy. The last two features

can be used to learn how to handle traffic. For the purposes of ex-

position, we assume that the concept of position is more important

to the success of the agent than the rain concept.

A conventional approach to solving this type of reinforcement

learning problem is to learn in a six dimensional state space with

all features. The key insight of IFSA is that if an agent begins

the learning process considering only a subset of features and adds

new features while the learning progresses, the policy will improve

faster than if the agent uses the entire feature-set from the begin-

ning of training. Continuing our example, an agent can first learn a

reasonable plan only using the first feature (position of A and B).

After the agent has learned that basic navigation policy, it can then

start using features about the time and day of the week to refine

its policy, accounting for likely traffic situations. Finally, the agent

can use the weather-related information to learn the optimal policy.

The order of feature-set subsets is important and should be de-

termined by the domain expert based on their importance 1. Re-

sults in the three different domains of Gridworld, Blackjack and

RoboCup Keepaway show that the IFSA significantly speeds-up

reinforcement learning.

The rest of the paper is organized as follows. Related work is

presented in the next section. In Section 3 we briefly review the

concept of value function reinforcement learning and Sarsa, the

base learning algorithm we use. IFSA is specified in Section 4.

Experimental evaluations in the three test domains are presented in

Section 5 and Section 6 concludes.

2. RELATED WORK
Dietterich proposed using MAXQ value-function decomposition

and provided a HRL algorithm which can be applied to the MAXQ

decomposition [3]. However, the MAXQ decomposition must be

performed by hand with expert domain knowledge. Sutton, Precup

and Singh propose using temporal abstraction for reinforcement

learning problems [15]. They define options as closed loop policies

which consist of a series of primitive actions and run until a termi-

nation condition is reached. Options can then be used with different

1Many different orderings of adding the features could result in
speeding up learning. However some ordering will fail to produce
any speed up (see Section 5). For example, if the navigation agent
is given only the current time as its first feature-set subset it could
never hope to successfully navigate between positions A and B.

base learning algorithms, such as Q-learning [15], to speed up rein-

forcement learning. Layered learning [12] assumes that a domain

expert provides a bottom-up, hierarchical task decomposition, and

that learning occurs at each level. The main challenge of using

HRL in real world applications is designing the hierarchy, which

may be difficult or impossible. While there have been attempts to

automatically build the hierarchies, the state of the art methods are

still unable to learn complex hierarchies on very large problems.

For example, Hengst decomposes a model-free MDP into a hierar-

chy of smaller MDPs [5]. However, he uses specific characteris-

tics of state variables and it is not clear if the method is domain-

independent. IFSA is designed so that performing the feature-set

augmentation requires relatively less domain knowledge, though it

still requires the hierarchy to be given.

Maclin and Shavlik use advice to speed up reinforcement learn-

ing [8], where advice is provided in a simple programming lan-

guage and is given by the domain expert. They use a neural net-

work for the utility function and update the neural network based

on the received advice. Some work has been done by using nat-

ural language to provide advice (e.g. [6]) but a significant amount

of domain knowledge is still required to make the advice usable

by a learner. Instead of requiring an expert to know which actions

should be performed in particular situations, our method requires

only knowledge about (1) the concepts that need to be learned, (2)

their relative importance, and (3) how these are related to particular

state features.

3. PRELIMINARIES
This section provides a brief review of value function reinforce-

ment learning and Sarsa [10, 11], a popular reinforcement learning

algorithm. Note that IFSA may be used with any value function

reinforcement learning algorithm but we focus on how it can be in-

stantiated with Sarsa as this is the particular method utilized in our

experiments.

In a typical reinforcement learning setting [16], an agent per-

ceives state s ∈ S, takes some action a ∈ A, and then perceives

the new state s′. Which state the agent arrives in is determined

by the environment’s transition function, T (S × A) 7→ S. Addi-

tionally, the agent receives a reward of r for arriving in state s′,

based on the reward function R(S ×A) 7→ R. The value function,

V π(s), is defined as the average sum of rewards received when an

agent starts in state s and follows policy π. V ∗(s) is the optimal

policy, such that ∀π, s: V ∗(s) ≥ V π(s).

In value function reinforcement learning, the value function is

learned (commonly with a temporal difference method [16]) and

a policy is derived from V π . Over time, V π will approach V ∗

and the policy will improve. Given an optimal value function, the

optimal action in any state can be computed:

π
∗(s) = argmaxa∈A{

X

s′∈S

Pr(s′|a, s)(V ∗(s′) + R(s′))}

where Pr(s′|a, s) is the probability that taking action a in state s

result in the new state s′.

Sarsa is one popular temporal difference method which utilizes

an action-value function to solve reinforcement learning problems.

Qπ(s, a) is defined as the average sum of the rewards when the

agent starts from state s, takes action a, and follows policy π af-

terwards. Action-value functions are often used in lieu of value

functions because determining the optimal policy, given an optimal

action-value function, is easier than if only the value function is

known.

Sarsa’s update is based on its acronym: state, action, reward,

state, action. The agent is in state st, takes action at, receives re-



ward rt+1, transitions to state st+1, and then selects action at+1.

Sarsa then uses the following equation to update the Q function:

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)],

where α is the learning rate and γ is a discount factor used to weight

immediate rewards more heavily than future rewards.

4. IFSA
In reinforcement learning problems, the state space is typically

composed of a set of features without regard for their relative im-

portance. In this work, we take advantage of the fact that many re-

inforcement learning problems have subsets of features that can be

used to learn different concepts about the task. These concepts may

also be relatively more or less important to the overall performance

of the learner. If concept A and B can be learned from feature sets

ΦA and ΦB respectively, we say concept A is more important than

concept B when the performance of the average policy learned us-

ing only ΦA outperforms the average policy learned using ΦB . We

assume that in many cases a domain expert may easily recognize

the more important concepts (as we illustrate in Section 5).

IFSA is a meta-learning method that defines what features the

base learning method should use at any point in the learning pro-

cess. Any value function reinforcement learning algorithm can thus

be used as the base learner for IFSA. Additionally, IFSA can be

used in conjunction with different speed up methods that do not

manipulate the state space or feature set. IFSA is most appropri-

ately applied to reinforcement learning problems and agents with

the following three characteristics:

• Value function reinforcement learning is used as the base

learning method.

• The task’s state space is represented by a set of features and

a conjunction of features is necessary to learn the optimal

policy.

• There are subsets of features which may be used to learn sub-

optimal policies and these subsets may be combined to learn

better policies.

Many (if not most) reinforcement learning problems that are cur-

rently being used do have the above mentioned characteristics. The

state space of almost all the real world complex problems (recall

the navigation agent example) consist of a set of dependent fea-

tures which can be prioritized based on their importance.

Assume that the state space (S) of the problem is represented by

the following n features:

F = {f0, f1, · · · , fn−1}

The goal is to learn an optimal value function, V ∗(s) for each

s ∈ S, which is equivalent to learning V ∗(F ) for all possible val-

ues of features in F .2 In many real world problems it is possible

to find a set F ′ such that F ′ ⊂ F and learning V ∗(F ′) first, and

then using the learned function to initialize V ∗(F ), is faster than

simply learning V ∗(F ) from scratch. If F ′ includes all the most

important features then V ∗(F ) ≈ V ∗(F ′). In that case, a signif-

icant speed up in the learning process can be achieved by starting

the learning process with fewer features (F ′). After the learning

algorithm converges, learning with all features, F , can more eas-

ily find the optimal policy for the all features. IFSA relies on just

this technique: it augments the feature set over time and utilizes the

2We actually attempt to learn Q∗(s, a), but we focus on the closely
related V ∗(s) for the purposes of exposition.

incrementally learned value functions to bootstrap learning until a

value function is learned using the entire feature set.

Let Φ = (φ0, φ2, · · · , φm−1 ⊆ F ) be an ordered partition-

ing of the feature-set of the problem. The feature-sets utilized

by IFSA will be the augmentation set {φ0, (φ0 ∪ φ1), . . . , (φ0 ∪
φ1, . . . , φm−1)}. Each φi consists of a set of features that the agent

can use to learn a specific concept about the problem, where order

is determined by importance. If i > j then φi is more impor-

tant than φj and should be considered first. Constructing Φ is thus

where domain knowledge is directly leveraged.

Continuing the navigation example from the Introduction, Φ could

be constructed as:

• Basic set: φ0 = {feature1}. Using the current and goal

locations the agent can learn a basic travel plan.

• Traffic factors: φ1 = {feature5, feature6}. The agent

can use the time and the day of the week to refine its basic

travel plan to consider the traffic delays.

• Rain factor: φ2 = {feature2, feature3, feature4}. The

agent can use these weather-related features to learn a better

policy in inclement weather.

Once Φ is determined, the agent first attempts to learn a pol-

icy only using the features in φ0. When the algorithm is reason-

ably converged, 3 the agent adds the features in φ1 to the feature

set is considering, augmenting its feature space. If the agent has

learned value Vφ0
for a set of features φ0, it initializes Vφ0,φ1

with

Vφ0
for all φ0, φ1s. Note that the effect of adding new features

is essentially a splitting of old states into multiple new states that

are all initialized identically, but can now learn different values.

In this way, although the dimensionality of the feature space has

changed, and therefore the domain of the value function is differ-

ent, the learned value function is able to initialize Vφ0,φ1
. Like-

wise, when the learning has reasonably converged using features

{φ0 · · ·φi−1}, the agent starts using φi, and initializes Vφ0···φi

with Vφ0···φi−1
for all φ0 · · ·φi. The agent continues to add all

feature sets in Φ until all the features are added. An overview of

IFSA independent of domain or base learning method, is presented

in Algorithm 1.

Algorithm 1 Pseudocode for IFSA algorithm

1: Let Φ = (φ0, φ2, · · · , φm−1 ⊆ F ) be an ordered augmenta-

tion of the feature-set of the problem.

2: for i=0 to m-1 do

3: Learn V ∗(φ0 · · ·φi) until reasonably converged.

4: for all φ0 · · ·φi+1 do

5: V ∗(φ0 · · ·φi+1) = V ∗(φ0 · · ·φi)
6: end for

7: end for

In the navigation agent example, the agent first learns the path

between two points, then by adding features φ1 it learns different

travel plans for different traffic situations. If the agent’s goal is to

travel from Austin to Houston, using φ0 it quickly learns that just

two paths (US-71 and US-290) are reasonable, and all other paths

have low values. Also it learns that walking and taking a taxi are not

reasonable. When the traffic feature is added, it can quickly learn

the better path from the two in a specific traffic situation. Finally

using φ2 the agent adapts its policy for inclement weather so that it

3A learning trial is considered reasonably converged when the
change in the value of the optimal policy approaches zero (i.e. the
slope of the learning curve is close to zero).
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Figure 1: A diagram of the gridworld problem considered.

Numbers on the arrows denote the reward for executing the

associated move action.

learns not to attempt to walk across the city if it is raining and it is

wearing expensive suede shoes.

5. EXPERIMENTAL RESULTS
Three different domains are used to evaluate IFSA to both demon-

strate its applicability in multiple domains and to emphasize how Φ
may be easily constructed in different domains. In all experiments

IFSA is used to speed up learning when using Sarsa as a base learn-

ing algorithm. First we utilize a version of the gridworld problem.

Second, a simplified version of Blackjack [16] is studied. Lastly,

we examine a variant of Keepaway, a complex multiagent task that

simulates robot soccer.

5.1 Gridworld
The first task we consider is situated in the gridworld domain.

The grid is of size 20 × 40, the agent starts in the bottom-left grid

cell, and the agent can move in the four cardinal directions. There

is a reward of −1 for each attempted action. Additionally, moving

right from any cell in the right most column results in a reward

of +100, and moving right from a cell in the second most right

column results in a reward equal to 5 times the row number that the

agent is in (see Figure 1). In order to prevent infinite rewards, the

“move left” action is disabled in the right most column. If the agent

attempts a move that would take it off the top, bottom, or left sides

of the grid, the action has no effect. An episode terminates when

the agent exits the grid to the right.

The state space is composed of two features: the x-coordinate

and y-coordinate of the agent. Since exiting the right side of the

grid has the reward of +100, one could say that the x-coordinate is

more important than the y-coordinate. However, our experiments

show that constructing Φ with either ordering result in better per-

formance than the unmodified Sarsa algorithm.

We run Sarsa with ǫ-greedy action selection. ǫ = 0.02 and

α = 0.5 were chosen after initial experiments utilizing Sarsa in

this domain (different values of ǫ in the range of [0.01, 0.1] have

been tested); the same parameter settings are used by Sarsa when

it is used in conjunction with IFSA. Note that since the parameters

have been selected to increase the learning speed of Sarsa, it may

be a disadvantage for IFSA to use the same parameters.

We define reasonably converged in this domain to mean that

there is no improvement to the policy in 4 consecutive episodes;

when using IFSA with φ0, after 4 consecutive episodes of no im-

provement, φ1 is added to the agent’s feature set. When the x-

coordinate is used first the second feature is added after 29.9± 3.1
episodes on average. When the first feature is the y-coordinate, the

second feature is added after 11.5± 3.5 episodes on average.

Three different Φ’s are evaluated.

1. φ0 = {x−coordinate, y−coordinate} (i.e. Sarsa without

IFSA)

2. φ0 = {x− coordinate}, φ1 = {y − coordinate} (IFSA)

3. φ0 = {y − coordinate}, φ1 = {x − coordinate} (IFSA-

rev, as it the reverse ordering from our initial intuition)

Experiments show that both IFSA and IFSA-rev significantly

improve the speed of learning relative to Sarsa without IFSA. We

show the learning curves for two levels of detail: episodes 0− 100
and episodes 0 − 1, 000, 000. Even though the second feature is

added quite early in the learning (before episode 30, on average),

we find that the speed up has effects lasting over the length of the

entire learning curve, each of which is an average of 100 indepen-

dent trials.

In the graph of Figure 2, IFSA, IFSA-rev and unmodified-Sarsa

are compared in the first 100 episodes. IFSA quickly learns a basic

policy of taking only right actions, which yields a positive reward,

while it takes roughly 100 episodes for the Sarsa algorithm to reach

the same performance. Note that the inclusion of φ1 does not result

in any drop in the performance. On the other hand, although IFSA-

rev eventually learns a policy with φ0 and φ1 that is superior to only

using φ0, there is a significant performance drop immediately after

φ1 is added around episode 9. However, IFSA-rev does eventually

significantly outperform Sarsa, as shown on the next graph.

In the graph of Figure 3, the performance of the algorithms is

compared for 100, 000 episodes where IFSA reaches the optimal

policy. IFSA and IFSA-rev are each better based on different met-

rics (IFSA learns the optimal policy faster, but the total reward ac-

crued by IFSA-rev in 100, 000 episodes is larger), but both are

significantly better than Sarsa. A Student’s t-test shows that the

difference in performance between IFSA and Sarsa is statistically

significant after episode 10, 000 (p < 6×10−5) and the difference

between IFSA-rev and Sarsa is also statistically significant after

episode 1000 (p < 3 × 10−8). Beyond the graph horizon, Sarsa

converges to the optimal policy after about 1, 100, 000 episodes,

and IFSA-rev converges to the optimal after about 170, 000 episodes.

5.2 Blackjack
The Blackjack problem considered in this section is adopted from

Sutton and Barto [16]. Blackjack is a popular card game played

between a player and the dealer where the goal for the player is to

have cards with the higher sum than the dealer without exceeding

21. All face cards count as 10 and aces can be counted as 11 or 1,

whichever is more desirable. The game starts with the dealer and

the player each dealt two cards, one of the dealer’s cards is face up

and the other is face down. If either the dealer or player has a sum

of 21, they instantly win. Otherwise the player has two choices: ask

for another card (hit) or stop (stick). The player can ask for more

cards until he chooses to stop or the sum goes over 21 (a bust). If

the player busts, he loses; if he stops then it is the dealer’s turn.

The dealer has a fixed strategy. The dealer must hit with a total

less than 17 and must stick with 17 or more. If the dealer busts,

the player wins. If both the dealer and player stop, the winner is

determined by who has the higher total (if the total is equal, it is a

draw). Note that some actions available in regular casino Blackjack
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Figure 2: The initial performance of IFSA on the first 100

episodes in the Gridworld domain depends on the ordering of

the state features.

such as split, double down, and insurance are not available in this

task.

The agent’s actions are therefore hit and stick. Rewards are −1
for loss, 0 for a draw and +1 for a win. The states consist of the face

up card of the dealer and the player’s current hand. It is assumed

that the dealt cards do not affect the distribution of future cards (i.e.

cards are dealt from an infinite deck). The state space consists of

three features:

1. feature 0: The player’s current sum (12-21). Note that when

the player has sum of less than 12 the optimal actions is al-

ways to hit.

2. feature 1: The value of the dealer’s face-up card (1-10).

3. feature 2: A binary value which is true if the player holds an

ace that can be counted as either 11 or 1 without exceeding a

total of 21.

For the IFSA algorithm, φ0 = {feature0}, φ1 = {feature1},
and φ2 = {feature2}. The agent first learns a basic policy only

using its own cards, it refines that policy considering what the dealer

has, and then finally considers whether it has a usable ace. We

again compare IFSA with unaugmented Sarsa learning. For both

Sarsa and IFSA we use ǫ = 0.01 and α = 0.01, again chosen af-

ter initial experiments with unaugmented Sarsa showed these to be

reasonable values.

In the experiments, φ1 is added in episode 1000, and φ2 is added

at episode 3, 000. The two thresholds (1000 and 3000) are se-

lected after informal experiments showed that the learning algo-

rithms converged at approximately these two episode counts. To

reduce the variance in performance due to chance, we pair learning

trials of Sarsa and IFSA so that both trials in a pair have the same

random seed.

For sake of clarity, the comparison between IFSA and unaug-

mented Sarsa are shown with two different levels of details: 10, 000
and 1, 000, 000 episodes. Although the addition of features all oc-

cur within the first time-frame (at 1000 and 3000 episodes) the ef-

fects of IFSA are visible even after 1, 000, 000 episodes.

In figure 4, the two algorithms are compared for the first 10, 000
episodes. The results are averaged over 10, 000 runs, and each
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Figure 3: IFSA outperforms the base learning algorithm in

Gridworld significantly, regardless of the ordering of the state

features in Φ.

point of the graph is the average reward from the 50 previous episodes.

IFSA learns much faster only with φ0 and continues to speed up

learning with the addition of φ1. Note that the addition of φ1 does

not result in any drop in the learning performance.

In Figure 5, the result of comparison between IFSA and Sarsa is

shown for the first 1, 000, 000 episodes. The learning curves are

averaged over 100 runs and each data point is averaged in a 5, 000
episode sliding window. As shown in the graph, the advantage from

IFSA is visible even after 1, 000, 000 episodes. Beyond the graph

horizon Sarsa and IFSA converge after about 5, 000, 000 episodes.

However they do not converge to the optimal policy because Sarsa

does not achieve the optimal performance in this task.4 (Recall

that IFSA is a speed up method and is not expected to result in

a better asymptotic policy). A Student’s t-test shows the statistical

significance of the advantage of IFSA compared to Sarsa in the first

75,000 episodes. After 75,000 episodes some of the differences are

not statistically significant, although the mean for IFSA is always

higher than that for Sarsa.

The above experiments show that IFSA significantly speeds-up

learning compared to conventional Sarsa. We also experimented

with different orders of adding features to the system. The order

(φ0, φ1, φ2) = (0−2−1) is slightly better than the more intuitive

ordering (φ0, φ1, φ2) = (0 − 1 − 2). Other orderings do not per-

form as well (see Figure 6). Four orderings of the features in IFSA

outperform Sarsa. For both of the two orderings that underperform

Sarsa, φ0 = feature2: the first feature considered is whether or

not the player has an ace. A domain expert would easily identify

this feature as less important, but if you play Blackjack only using

information about whether you have an ace, the optimal policy per-

formance is close to that of a random policy. On the other hand, if

you only use information about the sum of the cards you hold or

the dealer’s card, it is possible to play much better than randomly.

5.3 Keepaway
As a 3rd test of the efficacy of IFSA, we consider the episodic

multi-agent task of Keepaway in the RoboCup simulated soccer

domain. In this work, we utilize agents based on version 0.6 of

4Even the policy that is considered optimal in [16] is shown to be
sub-optimal [4].
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Figure 4: IFSA outperforms Sarsa for the first 10,000 episodes

in the Blackjack domain because it is able to learn better poli-

cies much faster.
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Figure 6: Comparing different orders of adding features for

IFSA in the Blackjack domain.

Figure 7: The 13 state variables used for learning with 3 keep-

ers and 2 takers are made of 11 distances and 2 angles.

the benchmark players distributed by UT-Austin [13]. This section

describes our task within the Keepaway domain and demonstrates

how IFSA can be used to increase performance significantly.

Keepaway is a multiagent domain with noise in both sensors

and actuators. It is considerably more complex than Gridworld or

Blackjack in part due to its many continuous features, thus requir-

ing function approximation. A set of keepers act to maintain pos-

session of a ball while a second set of takers attempt to stop them.

When the takers succeed in capturing the ball or kicking it out of

bounds, the episode ends. Three keepers play against two takers in

Figure 7. A keeper without the ball follows a fixed strategy, while a

keeper in possession may choose between three macro actions. As

keepers learn, they are able to maintain control of the ball within

the specified area, increasing the average length of an episode. Tak-

ers follow a fixed strategy. Full details of the Keepaway domain can

be found elsewhere [14].

In this work, we are concerned with tasks where different state

features have different relative importance. We therefore modify

the Keepaway task to that of XOR Keepaway, where one state fea-



ture is of lesser importance, but is necessary to achieve optimal per-

formance. In doing so, we make the canonical 3 vs. 2 Keepaway

task more difficult and show that IFSA is able to improve learning

speeds on a more complex task.

The canonical 3 vs. 2 Keepaway formulation defines the state

as being comprised of 13 state features and learning can succeed

by simply treating all features independently [14]. Agents in the

XOR Keepaway task use the same 13 state features but the task is

modified so that optimal performance is only achieved when two

of the state variables are used conjunctively. The two state features

utilized are dist(K1, T1) (the distance from keeper with ball to

closest taker) and dist(K2, T ) (the distance from closest teammate

to any taker). Thus agents which do not represent dist(K1, T1) and

dist(K2, T ) conjunctively are able to learn, but only to suboptimal

performance levels.

The XOR Keepaway agents select from three actions: Hold ball,

Pass to closest teammate, Pass to furthest teammate. However the

task is defined to have four actions:

1. Hold ball: The keeper attempts to maintains possession of

the ball.

2. Good pass: The keeper passes to its closest teammate and

the takers do not move for one second.

3. Bad pass: The keeper passes directly to the closest taker,

ending the episode.

4. Pass to furthest teammate: The keeper passes to the furthest

teammate.

The details of the actions in the XOR Keepaway task are detailed

below:
if Keeper attempts pass to closest teammate then

if (4m < d(K1, T1) < 6m) XOR (10m < d(K2, T ) < 12m)
then

Execute Good pass

else
Execute Bad pass

end if
else if Keeper attempts pass to furthest teammate then

if (7m < d(K1, T1) < 12m) OR (13m < d(K2, T ) < 16m)
then

Execute Bad pass

else
Execute Pass to furthest teammate

end if
else

Execute Hold ball

end if

Thus Keepers must learn a policy based on both dist(K1, T1)
and dist(K2, T ) conjunctively in order to avoid the Bad pass ac-

tion.

To test IFSA, we run three sets of experiments in the XOR Keep-

away domain with different representations:

1. Independent Tiling: 12 state features are tiled independently

and dist(K2, T ) is unused. We expect that agents using

this representation will learn better policies initially but have

lower asymptotic performance. Keepers will learn to keep

the ball for longer periods of time but will not be able to dif-

ferentiate between Good pass and Bad pass.

2. Partially Conjunctive Tiling: 11 state features are tiled in-

dependently, while dist(K1, T1) and dist(K2, T ) are tiled

conjunctively. We expect that this representation will ini-

tially learn slower than the independent tiling representation

because of the larger state space, but will be able to attain
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Figure 8: IFSA outperforms learning with just φ0 (independent

tiling) and learning with φ0 and φ1 (partially conjunctive tiling)

from the start. 10 independent learning curves for each of the

three setups are averaged and error bars show the standard

deviation.

higher performance eventually because it is able to learn the

XOR.

3. IFSA Tiling: Agents use the independent tiling representa-

tion for the first 25 simulated hours (φ0 = 12 state features,

excluding dist(K2, T )). At 25 simulated hours, the rep-

resentation is changed to partially conjunctive tiling(φ1 =

dist(K2, T )) and weights are initialized via IFSA. We ex-

pect that this will yield the initial learning performance of the

first representation while allowing us to learn a final policy

equivalent to the second representation.

Figure 8 shows that IFSA can be effectively used in the XOR

Keepaway task. Each of the three tests above are executed for

10 independent trials and their resulting learning curves are aver-

aged. We use a Student’s t-test to determine that agents using IFSA

outperform the players using an independent tiling after 48 hours

and outperform the players using the partially conjunctive tiling be-

tween 46 and 156 hours. Note that the final performance of players

using IFSA and the partially conjunctive players is the same in the

limit, as expected.

6. CONCLUSION AND FUTURE WORK
In this paper a general method for using domain knowledge to

speed up value function reinforcement learning is presented. The

proposed method (IFSA) is independent of the learning method

used and utilizes a domain-dependant ordering of features to speed

up learning. Each subset of features allow the learner to discover

a concept and the subsets are ordered so that more important con-

cepts are learned first. IFSA is implemented and evaluated in three

different domains: Gridworld, Blackjack, and Keepaway. IFSA

significantly speeds-up the learning by achieving higher perfor-

mance with less training in all experiments.

In the future we intend to explore the possibility of automatically

augmenting the feature-set by autonomously determining relevant

feature subsets and their ordering for maximal speed up. IFSA

could also be tested in additional environments, with different RL

learning methods, and possibly in combination with other speed up



methods listed in Section 2. Lastly, the idea that dividing a fea-

ture set appropriately into subsets could be used with policy search

reinforcement learning methods that do not explicitly learn value

functions.
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