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ABSTRACT

As learning agents move from research labs to the real world,
it is increasingly important that human users, including
those without programming skills, be able to teach agents
desired behaviors. Recently, the TAMER framework was in-
troduced for designing agents that can be interactively
shaped by human trainers who give only positive and neg-
ative feedback signals. Past work on TAMER showed that
shaping can greatly reduce the sample complexity required
to learn a good policy, can enable lay users to teach agents
the behaviors they desire, and can allow agents to learn
within a Markov Decision Process (MDP) in the absence
of a coded reward function. However, TAMER does not al-
low this human training to be combined with autonomous
learning based on such a coded reward function. This pa-
per leverages the fast learning exhibited within the TAMER
framework to hasten a reinforcement learning (RL) algo-
rithm’s climb up the learning curve, effectively demonstrat-
ing that human reinforcement and MDP reward can be used
in conjunction with one another by an autonomous agent.
We tested eight plausible TAMER+RL methods for combin-
ing a previously learned human reinforcement function, H ,
with MDP reward in a reinforcement learning algorithm.
This paper identifies which of these methods are most effec-
tive and analyzes their strengths and weaknesses. Results
from these TAMER-+RL algorithms indicate better final per-
formance and better cumulative performance than either a
TAMER agent or an RL agent alone.
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1. INTRODUCTION

As learning agents move from research labs to the real
world, it is increasingly important that (1) human users,
including those without programming skills, be able to teach
agents desired behaviors and that (2) training samples made
costly by poor performance (e.g. involving property damage,
financial loss, or human injury) be reduced or eliminated.
If methods are developed which allow humans to transfer
their knowledge via forms of natural communication, both
of these critical needs can be addressed.

Recently, the TAMER framework® was introduced for de-
signing agents that can be interactively shaped by human
trainers who give only positive and negative feedback signals
[8, 9, 10]. TAMER creates a model, H, of the human trainer’s
hypothetical internal reinforcement function, H : SxA — R,
and directly exploits its model to choose actions. Past work
on TAMER showed that shaping can greatly reduce the sam-
ple complexity required to learn a good policy, can enable lay
users to teach agents the behaviors they desire, and can al-
low agents to learn within a Markov Decision Process (MDP)
in the absence of a coded reward function. In addition, the
work also suggested that human reinforcement — informa-
tionally rich yet flawed — and MDP reward — poor yet flaw-
less — are complementary signals that could be used together
when a reward function is available.

TAMER, however, does not allow human training to be
combined with autonomous learning based on such a coded
reward function. This paper examines how to best com-
bine shaping (via the TAMER framework) with reinforcement
learning. Specifically, we focus on the scenario in which a
human trainer has already trained a TAMER agent, and the
learned human reinforcement function, H, is available to
guide a reinforcement learning agent.

In this paper, we test eight plausible methods for com-
bining H with MDP reward in a reinforcement learning al-
gorithm, SARSA()) [14]. We deem a TAMER+RL technique
successful if, after a large, predetermined number of runs,
either the cumulative MDP reward received by the learning
agent or its final performance level is greater than it would
be by using the RL algorithm alone or by greedily choosing
argmaxe[H (s,a)], as a TAMER agent would.

By these criteria for success, several methods achieved
positive results. We discuss which of these methods are
most effective and analyze why some worked and others did
not help. Additionally, we identify general patterns among
TAMER4RL algorithms from the results.

LrAMER is short for Teaching Agents Manually via Evalua-
tive Reinforcement.



The rest of this paper begins with an introduction to
TAMER and reinforcement learning in Section 2. We then in-
troduce the candidate TAMER+RL techniques for combining
a model of human reinforcement with reinforcement learn-
ing in Section 3. We subsequently describe the experimental
setup, report our results, and discuss them in Sections 4, 5,
and 6, respectively. We situate this research within related
work in Section 7 and then conclude.

2. TAMER AND
REINFORCEMENT LEARNING

Here we introduce reinforcement learning and the TAMER
Framework. We especially focus on the nature of MDP re-
ward versus that of human reinforcement.

2.1 Markov Decision Processes and
Reinforcement Learning

We assume that the task environment is a Markov Deci-
sion Process specified by the tuple (S, A, T, v, D, R). S and
A are respectively the sets of possible states and actions. T’
is a transition function, T': S x A x S — R, which gives
the probability, given a state and an action, of transition-
ing to another state on the next time step. -, the discount
factor, exponentially decreases the value of a future reward.
D is the distribution of start states. R is a reward function,
R:Sx Ax S — R, where the reward is a function of s¢, a,
and S¢41-

Reinforcement learning algorithms (see Sutton and Barto
[14]), seek to learn policies (w : S — A) for an MDP that
maximize return from each state-action pair, where return =
Si_o E[Y'R(s¢,a:)]. Within reinforcement learning, there
are two general approaches to this problem. Policy-search
algorithms fix the values of some set of parameters, observe
the mean return received for the fixed policy over some num-
ber of episodes, and then use a rule to determine what pa-
rameter values to try next. The other reinforcement learning
approach models the expected return, or value, of a state or
state-action pair when following a certain policy. When an
action is expected to get the highest return given the current
state, that action is typically taken (depending on the exact
algorithm), possibly changing the previous policy.

A full survey of RL algorithms is beyond the scope of this
paper. In this paper, we focus on using value-function-based
methods, such as SARSA()) [14], to augment the TAMER-
based learning that can be done directly from a human’s
reinforcement signal.

2.1.1 The MDP Reward Signal

The reward signal within an MDP is often characterized
as sparse and delayed. To illustrate, consider a Markov De-
cision Process that describes a chess game. Within a typical
formulation, the reward function would yield zero reward for
any state-action pair that does not terminate the game. A
state-action pair that transitions to a win might receive a +1
reward, a loss would receive a —1 reward, and a stalemate
would receive a 0 reward. This reward signal is sparse be-
cause discriminating reward is rarely received. It is delayed
because any non-terminating state-action pair, regardless of
its quality, receives 0 reward, and so the agent must wait
until the end of the game to receive any information from
the environment that helps it determine the quality of that
state-action pair. From this impoverished informational sig-

nal, many reinforcement learning agents learn estimates of
return to combat the signal’s sparse and delayed character.
However, MDP reward can be described as flawless by
definition; along with the transition function, it determines
optimal behavior — the set of optimal polices that, for each
state, choose the action with the highest possible return.

2.2 The TAMER Framework for Interactive
Shaping

TAMER circumvents the sparse and delayed nature of the
MDP reward signal by replacing it with a human reward
signal. Though conceptually not flawless, it can be exploited
to more efficiently learn good, if not optimal, behavior [10].

The TAMER Framework is an approach to the Shaping
Problem [10], which is: given a human trainer observing
an agent’s behavior and delivering evaluative reinforcement
signals, how should the agent be designed to make it leverage
the human reinforcement signals to learn good behavior?
Put formally:

The Shaping Problem Within a sequential decision-
making task, an agent receives a sequence of state
descriptions (s1, s2,... where s;€S) and action oppor-
tunities (choosing a;eA at each s;). From a human
trainer who observes the agent and understands a pre-
defined performance metric, the agent also receives oc-
casional positive and negative scalar reinforcement sig-
nals (hi, he,...) that are correlated with the trainer’s
assessment of recent state-action pairs. How can an
agent learn the best possible task policy (7 : S — A),
as measured by the performance metric, given the in-
formation contained in the input?

The Shaping Problem is restricted to domains with a pre-
defined performance metric to allow experimental evalua-
tion. However, shaping will also be helpful when no metric
is defined, as would likely be the case with an end-user train-
ing a service robot.

2.2.1 The Human Reinforcement Signal

To motivate TAMER’s approach to shaping, we first con-
sider what information is contained in the human reinforce-
ment signal and how it differs from an MDP reward signal.
When a human trainer is observing an agent’s behavior, he
has a model of the long-term effect of that behavior. Con-
sequently, a human reinforcement signal is rich, containing
information about whether the targeted behavior is good
or bad in the long term. Further, human reinforcement is
delayed only by two things: how long it takes the trainer
to evaluate the targeted behavior and how long it takes to
manually deliver the evaluation within a reinforcement sig-
nal. Considering that the trainer has a long-term model of
any behavior’s effects and can deliver reinforcement with a
consistently small delay, we come to the motivating insight
behind TAMER. Unlike MDP reward, human reinforcement
is not sparse® — each reinforcement fully discriminates be-
tween approved and disapproved behavior — and it is only
trivially delayed.

We note, though, that human reinforcement is, in general,
fundamentally flawed. Humans make mistakes, often have
low standards, get bored, and have many other imperfec-
tions, so their evaluations will likewise be imperfect.

2However, human reinforcement can be sparsely delivered.



2.2.2 The TAMER Approach

Following the insight above, TAMER dismisses the credit
assignment problem inherent in reinforcement learning. It
instead assumes human reinforcement to be fully informa-
tive about the quality of an action given the current state.
TAMER uses established supervised learning techniques to
model a hypothetical human reinforcement function, H :
S x A — R, treating the scalar human reinforcement value
as a label for a state-action sample.®> The TAMER frame-
work is agnostic to the specific model and supervised learner
used, leaving such decisions to the agent’s designer. How-
ever, we conjecture that the models should generalize well to
unseen state-action pairs and weight recent training samples
more highly, as the human’s internal reinforcement function
is thought to change as the training session progresses.

To choose actions within some state s, a TAMER agent
directly exploits the learned model H and its predictions
of expected reinforcement. When acting greedily, a TAMER
agent chooses actions by a = argmazq[H (s, a)].

2.2.3  Previous Results and Conclusions

We previously [10] implemented TAMER agents for two
contrasting domains: Tetris and Mountain Car (see Fig-
ure 1 for a plot of their Mountain Car results). We com-
pared the learning curves of the TAMER agents with vari-
ous autonomous agents (i.e., reinforcement learning agents).
In short, we found that the shaped agents strongly outper-
form autonomous agents in early training sessions, quickly
exhibiting qualitatively good behavior. As the number of
training episodes increases, however, many of the autonomous
agents surpass the performance of TAMER agents.

This paper aims to combine TAMER’s strong early learning
with the often superior long-term learning of autonomous
agents.

2.3 TAMER+RL

In Sections 2.1.1 and 2.2.1, we concluded that MDP re-
ward is informationally poor yet flawless and human rein-
forcement is rich in information yet flawed. This observa-
tion fits the aforementioned experimental results well. With
a richer feedback signal, TAMER agents were able to learn
much more quickly. But the signal was flawed and TAMER
agents, in some cases, plateaued at lower performance levels
than autonomous learning agents.

The TAMER framework does not use MDP reward. This
characteristic can be a strength. It allows lay users to fully
determine the goal behavior without defining and program-
ming a reward function. However, it can also be a weakness.
When the goal behavior is previously agreed upon and a re-
ward function is available, a TAMER agent is ignoring valu-
able information in the reward signal — information which
complements that found in the human reinforcement signal.

In this paper, we ask how one could use the knowledge of
a previously trained TAMER agent to aid the learning of a
reinforcement learning agent. From previous results, we ex-
pect that the gains in performance will be most pronounced

3In domains with frequent time steps (an approximate rule
for “frequent” is more than one time step per second), the
reinforcement is weighted and then used as a label for mul-
tiple samples, each with one state-action pair from a small
temporal window of recent time steps. In previous work
[10], we describe this credit assignment method, including
how each sample’s weight is calculated.
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Figure 1: Error bars show a 95% confidence interval
(assuming a normal distribution). The mean MDP
reward (-1 per time step) received for the Mountain
Car task by TAMER agents trained by 19 subjects
over two training runs and by autonomous agents
using SARSA()), using parameters tuned for best
cumulative reward after 3 and 20 episodes.

in early learning.

3. CANDIDATE TECHNIQUES FOR COM-
BINING TAMER AND RL

Here we list and briefly describe the eight techniques for
combining TAMER and RL. We assume that the RL algo-
rithm learns a Q-function, where Q(s,a) is an estimate of
return from (s,a) under the current policy. Thus our exper-
imental analysis will not apply to policy search algorithms.

One goal of this paper is to create tools that allow hu-
man knowledge to be added to reinforcement learning algo-
rithms. For these tools to be practical, they should be gen-
erally and easily applicable to any RL algorithm that learns
a Q-function. With that in mind, we placed the following
restrictions on our methods for combining TAMER with RL:

1. The combination techniques should be independent of
the model representations used for H and Q.

2. The influence of H needs to recede with time or with
repeated visits to the same or similar states to keep
the set of optimal policies unchanged.

3. We restrict the RL parameters to those which were
found (through parameter tuning, described later) to
yield the best cumulative performance over 500 episodes.
We do not tune parameters for each technique, but
rather keep them constant across all techniques.

We list below the eight TAMER+RL methods we tested
for combining TAMER with reinforcement learning. Symbols
with a prime character (') signify that they are replacing
the already existing analogous symbols in either the MDP
definition or in the agent’s feature vector or Q function.

1. R'(s,a) = R(s,a) + (weight x H(s,a)). Here, the
MDP reward is replaced with the sum of itself and
the weighted prediction of human reinforcement. The
initial weight is an algorithmic parameter and is de-
cayed by a constant factor at some recurring point. In
our experiments, the weight is decayed by a factor of
0.98 at the end of each episode.



2. 7 = ?.append(ﬁ(s, a)). This technique assumes that
the Q-function is learned over a feature vector that is
drawn from some state-action pair. To the original fea-
ture vector, it adds H(s, a) as one additional feature,
aiming to embed the knowledge contained in Ifl(s, a) in
the feature vector such that the RL algorithm can use
it as much or as little as is needed. For linear models
over the features, to bias initial action towards choos-
ing as the TAMER agent would in early learning, this
technique has an input parameter that sets the ini-
tial weights corresponding to the added feature (one
weight per action).*

3. Initially train Q(s,a) to approzimate (constant *
H(s,a)). Treat H as the Q function. For our experi-
ments, we randomly created 100,000 state-action pair
samples for the ) function to train on.

4. Q'(s,a) = Q(s,a) + constant  H(s,a). This method
adds a weighted prediction of human reinforcement to
Q(s,a) for any occasion that it is used, including for
action selection and for updating Q). The unchanging
constant is an input parameter.

5. A" = AU argmaz.|[H(s,a)]. To the set of possible
actions, add the action that the greedy TAMER agent
would choose. An input parameter sets the Q value of
the new action uniformly across states.

6. a = argmaz,.[Q(s, a)+weightH(s,a)]. The weighted
prediction of human reinforcement is added to Q(s,a)
only during action selection. This technique differs
from the fifth technique by not affecting updates to
the @ function. The weight is an input parameter, and
it is annealed periodically by some factor. That factor
was 0.98 in our experiments and annealing occurred at
the end of each episode.

7. P(a = argmaxzq[H(s,a)]) = p. Otherwise original
RL agent’s action selection mechanism is used. This
method effectively either lets the RL agent choose its
action normally or has the TAMER agent choose while
the RL agent observes and updates as if it were making
the choice. The action is chosen by H with probability
p, where p is annealed periodically. In our experiments,
p = 1 at start and is annealed by a factor of 0.98 at
the end of each episode.

8. R/(st,a) = R(s,a)+constant* (¢(st) — p(st—1), where
#(s) = maz,H(s,a). This technique converts H into
a potential function ¢ to determine supplemental re-
ward.

Note that the first technique treats H(s,a) as MDP re-
ward or a component of it, and the eighth technique similarly
uses H to change the reward signal, but only uses state-
specific (and not action-specific) information from H. The
second technique seeks to add the information contained in
H. The third and fourth techniques interpret human rein-
forcement as estimates of expected return from (s,a). The
fifth technique simply gives an extra action and biases the

4This reliance on a linear function is our only violation of
the three restrictions above (violating the first restriction).
If the input parameter is zero, it does not violate the restric-
tion.

learner towards choosing that action early on. The last two
combination techniques either take actions directly from H
or push action selection towards exploiting H without af-
fecting the updates to (). This approach can be interpreted
as using H to perform demonstrations (in a sense) for the
SARSA()) algorithm, creating something akin to imitation
learning [1].

4. EXPERIMENTS

To test the eight techniques for combining TAMER and
reinforcement learning, we use SARSA(A) as our reinforce-
ment learning algorithm and test it within the Mountain
Car domain. Mountain Car® involves a car, starting at a
random location near the the bottom of two adjacent hills,
trying to get up one hill to a destination point on top. To
gain enough momentum to climb the hill, the car must go
back and forth on the hills. Mountain car has a continuous,
two-dimensional state space; its variables are position and
velocity. Three actions are available: +c acceleration, —c
acceleration, and no acceleration. At each time step (other
than the final step at the goal), the MDP reward is -1. To
approximate Q(s,a), the SARSA()) algorithm maintains a
linear model over features generated by three (one for each
action) two-dimensional grids of Gaussian radial basis func-
tions. At each time step, the linear function approximator
updates via gradient descent.

We chose Mountain Car because it is currently the only
domain shown to both have positive TAMER results and work
well with RL algorithms that incrementally learn value func-
tions. SARSA(X) with Gaussian RBF's is known to perform
well in Mountain Car, though more effective algorithms do
exist. However, our goal for this paper is not to study the
interaction between TAMER and different RL algorithms but
rather to establish that they can be combined effectively
and to study the different ways for doing transfer. We have
no reason to expect qualitatively different results with other
value-function based RL algorithms, but we will investigate
possible differences in future work.

We use two sets of parameters for SARSA()\), each of
which has six tuned parameters used by SARSA()\) or for
generating state-action features. We will refer to the two pa-
rameter sets as the optimistic set and the pessimistic set. For
one set, Q-values are optimistically initialized at 0. For the
other set, Q-values are pessimistically initialized, starting
at approximately -120 (we had observed that a good policy
can reach the goal in roughly 120 seconds or less from any
state). Each set was tuned® to receive the highest amount of
cumulative reward over 500 learning episodes (i.e., to take
the least total time getting to the goal 500 times).

Two training sessions by different trainers provided two
static, previously learned human reinforcement functions H ,
each outputting within the range [-1.0, 1.0]. One session
was chosen because it yielded a function, which we will call

®We use an adapted version of Mountain Car from the RL-
Library [15].

SParameters were tuned via a hill climbing algorithm that
selected one of the features, tested out many different val-
ues for that feature, and then repeated. Tuning was stopped
when there was no noticeable improvement over a few iter-
ations. The six tuned parameters are the internal discount
factor, the step size for updates, A\ for eligibility traces, €
for e-greedy action selection, the variance of the Gaussian
RBFs, and the number of RBF features.
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Figure 2: The mean reward received per episode under
all eight techniques over the last 100 episodes of 30 or
more runs of 500 episodes. Each bar graph describes
experiments using different trained H functions. The
two H functions display the effect of two different levels
training quality. The performance of SARSA()\) under
optimistic and pessimistic initialization and the mean re-
ward received by the static TAMER policy exploiting a
are given for comparison. Error bars show 95% confi-
dence intervals, assuming that mean reward over a run
is normally distributed.

H,, that performed near the middle — in terms of total
MDP reward — of the functions created by 19 participants,
making it representative of a typical trained TAMER agent.
The other was chosen because it yielded the best function
(called H3) of the 19.

For each technique that requires an input parameter, we
test four to six different parameters, all powers of ten. In
the following section, we report the results using the best
parameter for each technique, as determined by mean cu-
mulative reward.

5. RESULTS

Success of a TAMER-+RL combination technique can be de-
fined in two different ways. One is to achieve a higher fi-
nal performance than either SARSA(A) alone or by exploit-
ing the static, previously learned H directly (like a TAMER
agent). The second definition of success is to receive more
reward over 500 episodes than either SARSA(A) or TAMER
alone. Since SARSA()) alone performs best with optimistic
initialization, we will compare the combination methods to
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Figure 3: These bar graphs are identical to those in Fig-
ure 2, except that the statistics are calculated over all
500 episodes, allowing us to assess cumulative agent per-
formance under each combination method. (Also note
the difference in the range of the y-axes.)

optimistic SARSA () exclusively.

5.1 End performance

To evaluate the end performance level achieved under each
combination, we look at the mean reward received over the
last 100 episodes, shown in Figure 2. (Looking at many
episodes removes some of the effects of the stochastic initial
start state for each episode.) Compared to SARSA()), the
combination techniques are quite effective at improving fi-
nal performance. With pessimistic initialization, all of the
techniques improve performance except Methods 2 and 5,
which are the worst two methods with respect to cumula-
tive reward as well. Also, Method 8 only marginally im-
proves performance with one H. However, under optimistic
initialization, the combination techniques’ final performance
improves on that of SARSA(A)’s less often and to a lesser
extent than the corresponding pessimistic techniques. Un-
der optimistic initialization, only Method 1 consistently has
better final performance than SARSA()). Consequently, un-
less we explicitly state which initialization method we are
discussing, the reader should assume that we speak of the
pessimistic set, as it yields greater positive results.

5.2 Cumulative reward

From Figure 3, we can evaluate the second condition for
success — the mean reward received across all 500 episodes
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Figure 4: Learning curves using H; and pessimistic ini-
tialization. The first plot focuses on the early learn-
ing trials. The plot that shows the full run has been
smoothed for readability.

during all runs. For the most part, each combination tech-
nique performs similarly with both Hy, and H,. Nearly
every technique performs better with pessimistic initializa-
tion than with optimistic initialization, which we discuss in
Section 6.2. The best technique for both Hs is pessimistic
Method 6, a = argmaz.|Q(s, a)+weight+ H (s, a)], followed
by the similar Method 7, P(a = argmaz.[H(s,a)]) = p.
Methods 1, r' = r + (weight * f[(s,a)); 6; and 7 are the
only techniques which perform better under both initializa-
tion types than optimistic SARSA()). Method 4, where
Q' (s,a) = Q(s,a) + constant * ﬁ(s, a), also outperforms op-
timistic SARSA()) across both Hs.

Method 3, training Q(s,a) to approximate (constant *
H(s,a)), improves SARSA()) a small amount under pes-
simistic initialization, but does not consistently outperform
optimistic SARSA()). Method 8 exhibits small improve-
ment under Ho, but overall is the least influential method.
Method 5 is the only one that differs greatly between H s,
showing significant improvement with Hs and much worse
performance with Hi. Method 2, adding H (s,a) as an addi-
tional state-action feature, consistently performs worse than
SARSA()) alone.

Figure 4 shows learning curves for each technique with 0
and pessimistic initialization. The two plots display perfor-
mance early in the run and across the entire run.

6. DISCUSSION

In this section we discuss which combination methods ef-
fectively transfer knowledge from H to SARSA()\). We iden-
tify patterns among the results, give explanations for the
failures of certain methods, and the impact of using opti-
mistic versus pessimistic initializations.

6.1 Comparing the combination techniques

The relative performance of the TAMER-+RL techniques
is qualitatively similar across the two Hs. For the “typi-
cal” human reinforcement function, H;, several of the pes-
simistic combination techniques improve both cumulative re-
ward and final performance compared to running SARSA ()
alone or merely acting as a static TAMER agent, satisfying
all of our standards for success (Section 4). The same tech-
niques also perform well for the “best” available human rein-
forcement function, Hs, outperforming SARSA()) for both
success criteria and achieving better final performance than
the static TAMER agent. However, only Methods 6 and 7
achieve better cumulative reward than the high performance
TAMER agent.

To determine whether the SARSA(A) agents would, if
given more time, reach the final performance level of the
successful methods, we ran 10 runs of SARSA(\) over 1000
episodes. The optimistic and pessimistic initializations re-
spectively average -102.809 and -98.842 reward per episode
during the last 100 episodes (starting after the 900th). Al-
most all of the pessimistic combination methods that out-
perform SARSA(]) in final performance in the 500 episodes
experiments also outperform SARSA()) when given 1000
episodes. Therefore combining SARSA(X) with TAMER ac-
tually achieves performance levels that are otherwise un-
reachable in twice the training time (and possibly ever).

From the results, we notice two patterns:

e [nitially manipulating the model of Q) correlates with
poor performance. Three of the worst four combina-
tion methods — 2, 3, and 5 — each involve an initial
manipulation of the learning model. Method 3 changes
the initial parameters of the model. Methods 2 and 5,
the two worst performing methods, each change the
input space of the model. If this pattern is a factor in
performance, a plausible explanation is that the tuned
parameters are specific to the model under which they
were tuned.

o Gently pushing the behavior of the learning agent to-
ward what the TAMER agent would do and removing
the influence of H slowly and smoothly correlates with
good performance. Three of the four methods that out-
perform SARSA(A) in both cumulative reward and fi-
nal performance — Methods 1, 6, and 7 — exert influ-
ence on the agent through a weight that decays expo-
nentially. The worst four methods do not use a de-
caying weight. Further, the two methods that create
a form of demonstration (affecting action choice and
nothing else) differ in the subtlety of their influence.
Method 6 increases the Q-value during action selec-
tion by the weight times the predicted human rein-
forcement. Contrastingly, Method 7 is all-or-nothing
in its influence. Either it chooses the action via H
or frees the SARSA(\) algorithm choose based on the
current Q-function. The gentler Method 6 achieves
significantly better cumulative performance (though
it performs roughly equivalently during the last 100



episodes).

Aside from the possible influence of the above patterns,
there is another plausible reason for the consistent failure of
Method 2 (adding H(s,a) as an extra state-action feature)
across Hs7 initialization types, and success criteria (i.e., fi-
nal performance or cumulative reward). Temporal difference
learning algorithms such as SARSA(A) often learn poorly
when using function approximators over features that gen-
eralize any learning across large areas of the state-action
space [3]. Within the linear model we created over state-
action features, changing the weight for the H feature during
a single update affects every state-action pair.

The impotence of Method 8, which uses a potential func-
tion over states, ¢(s) to augment reward, suggests that the
human reinforcement signal more or less only carries in-
formation about the relative desirability of actions given
a state, rather than information about the relative value
of states. It is possible, though, that the human trainers
adapted their reinforcement to the TAMER system, which
would not use such state information.

Taking into account both final performance and cumula-
tive reward, Method 6 appears to be most effective. Under
both Hs, it yields the best cumulative reward and essentially
ties for the best final performance.

6.2 Optimistic versus Pessimistic Initialization

Despite SARSA()N) performing best with optimistic ini-
tialization, once it is combined with these eight methods, it
almost uniformly performs best with pessimistic initializa-
tion. Upon examining the step-by-step changes in Q-values
during the first few episodes for several optimistically ini-
tialized methods, we noticed that any method which biases
early behavior towards a certain action (given the state)
is actually making the other actions have relatively higher
Q-values. This effect occurs because when Q-values are op-
timistically initialized, they can only go down. So by biasing
early behavior, we are making the desired behavior look less
desirable (from a Q-value perspective). Further, the only
way that the agent can learn that the undesired state-action
pairs are not as good as their optimistic initial values is by
choosing those actions (which are all those actions that the
TAMER agent would not make!) and learning that they are
overvalued.

Observing that the techniques were not performing espe-
cially well under optimistic initialization, we instead tried
pessimistic initialization. We set our model weights so that
the initial Q-values were all approximately -120. Note that
such an initialization is only pessimistic with regards to a
good policy. It is actually optimistic for a low-performing
policy. With such an initialization, biasing early behavior
increases the Q-value for taken actions within a generally
good policy and decreases their Q-values within a generally
bad policy. We believe that this initialization effect explains
why the combination methods improve learning more with
pessimistic initialization.

7. RELATED WORK

In this section, interactive shaping and transferring from
a learned model of human reinforcement are situated within
previous work.

7.1 Interactively Learning from Human Re-
inforcement (Shaping)

Within the context of human-teachable agents, a human
trainer shapes an agent by reinforcing successively improv-
ing approximations of the target behavior. When the trainer
can only give positive reinforcements, this method is some-
times called clicker training, which comes from a form of
animal training in which an audible clicking device is pre-
viously associated with reinforcement and then used as a
reinforcement signal itself to train the animal.

Previous work on clicker training has involved teaching
tricks to entertainment agents. Kaplan et al. [7] and Blum-
berg et al. [2] implement clicker training on robotic and
simulated dogs, respectively. Blumberg et al.’s system is es-
pecially interesting, allowing the dog to learn multi-action
sequences and associate them with verbal cues. Though sig-
nificant in that they are novel techniques of teaching pose
sequences to their respective platforms, neither is evaluated
using an explicit performance metric, and it remains unclear
if and how these methods can be generalized to other, pos-
sibly more complex MDP settings.

Thomaz & Breazeal [19] interfaced a human trainer with
a table-based Q-learning agent in a virtual kitchen environ-
ment. Their agent seeks to maximize its discounted total
reward, which for any time step is the sum of human rein-
forcement and environmental reward. This approach is sim-
ilar to our Method 1, R'(s,a) = R(s,a)+ (weight« H(s,a)),
differing in that Thomaz & Breazeal directly apply the hu-
man reinforcement value to the current reward (instead of
modeling reinforcement and using the output of the model
as supplemental reward).

In another example of mixing human reinforcement with
on-going reinforcement learning, Isbell et al. [6] enable a so-
cial software agent, Cobot, to learn to model human prefer-
ences in LambdaMOO. The agent “uses reinforcement learn-
ing to proactively take action in this complex social environ-
ment, and adapts his behavior based on multiple sources of
human [reinforcement].” Like Thomaz and Breazeal’s agent,
Cobot does not explicitly learn to model the human rein-
forcement function, but rather uses the human reinforce-
ment as a reward signal in a standard RL framework.

The TAMER framework is distinct from previous work on
human-delivered reinforcement in that it is designed both
for a human-agent team and to work in complex domains
through function approximation, generalizing to states un-
seen. It also uniquely forms a model of the human trainer’s
intentional reinforcement, which it exploits for action selec-
tion in the presence or absence of the human trainer.

7.2 Transfer Learning for RL

Transfer learning for reinforcement learning typically fo-
cuses on how to use information learned in a source task
to improve learning in a different target task. Our type of
transfer differs: the task stays constant and we transfer from
one type of task knowledge (an H function) to a different
type (a @ function).

Some approaches create inter-task mappings from a source
MDP to a target one. Such mappings have been used in the
target task to initialize the @ function [18], as we did in
Method 3, and to use recorded (s,a,r,s’) experience tuples
from the source task to estimate the transition and reward
functions for model-based RL [16]. Other approaches derive
a policy from the source task and use that policy to guide
learning in the target task. For example, Fernandez and



Veloso [5] created an agent that uses a policy from a previ-
ous task to aid learning in a task that differed only in its re-
ward function. The agent learns whether to choose from the
old policy, choose from the policy it was currently learning,
or explore. This approach is also similar to our Method 5.
From a policy s derived from a learned source task, Tay-
lor and Stone [17] add 7s(s) as an extra action (similar to
Method 5), increase the Q-value of the Q(s,ms(s)) (similar
to Method 4), and add a state value that takes the value
7s(s) (similar to Method 2), comparing the results of these
three techniques [17].

Other forms of transfer can occur within the same task.
Shaping rewards [4, 11] is changing the output of the reward
function to learn the same task, as we did in Method 1. The
difference of the shaped reward function and the original
one can be seen as the output of a shaping function. With
a few assumptions, Ng et al. [12] prove that such a function
f, if static, must be defined as f = ¢(s’) — ¢(s), where ¢ :
S — R, to guarantee that shaping the reward function will
not change the set of optimal policies. Method 8 is a good-
faith attempt to convert Hto a potential function for reward
shaping. Additionally, Method 1 anneals the output of its
shaping function, avoiding Ng et al.’s theoretical constraint.”

Imitation learning, or programming by demonstration, has
also been used to improve reinforcement learning [13]. In
this form of transfer, another agent provides demonstra-
tions from its policy while the agent of concern observes
and learns, a technique similar to Method 7.

The combination methods which are not mentioned in this
section are novel, as is transferring from a model of human
reinforcement to a reinforcement learning algorithm.

8. CONCLUSION

In this paper, we introduce, test, and analyze results from
eight TAMER+RL methods for combining a model of hu-
man reinforcement H , learned within the TAMER Frame-
work, with a reinforcement learning algorithm, SARSA ().
We obtain positive results for a number of the techniques.
Several combination methods outperform SARSA(\) alone
in both cumulative reward and final performance level for
two different Hs. These methods also outperform both Hs
in final performance and the more typical H in cumulative
reward.

One goal of this paper is to provide tools that will allow
an agent designer to capture task knowledge from a human
trainer — who may not know how to program — and use
that knowledge to improve the performance of reinforcement
learning algorithms. When using reinforcement learning, we
expect that adding TAMER will be most useful for the fol-
lowing types of tasks:

1. Tasks which require much exploration before discrim-
inatory reward is received. This class especially in-
cludes tasks in which the path to the goal is complex
and zero reward is received until the goal is reached.

2. Tasks in which local maximums make the best solution
difficult to find.

3. When the task has a noisy MDP reward signal.

"However, Mountain Car violates one of their assumptions,
as there are Mountain Car policies that never reach the ab-
sorbing goal state.

As a part of our ongoing research agenda, we plan to follow
up on the patterns identified in Section 6, testing whether
they hold when the task or RL algorithm changes. Lastly,
we intend to extend the results in this paper to create meth-
ods to simultaneously learn from both a human trainer via
TAMER and from RL.
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