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Ad Hoc Teamwork

Only in control of a single
agent
Unknown teammates
Shared goals
No pre-coordination

Examples:
Pick up soccer
Search and rescue
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Motivation

Agents are becoming more common and lasting longer
Both robots and software agents

Pre-coordination may not be possible
Most previous work on ad hoc teams was theoretical

Research Question:
How can an ad hoc agent help its team in the pursuit domain?
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Ad Hoc Agent Evaluation

Evaluate(a, A, D):
Initialize performance (reward) counter r = 0.
Repeat:

Sample a task d from D.
Randomly draw a subset of agents B, from A such that
E [s(B,d)] ≥ smin.
Randomly select one agent b ∈ B to remove from the team
to create the team B−.
Increment r by s({a} ∪ B−,d)

If Evaluate(a0,A,D) > Evaluate(a1,A,D) and the
difference is significant,then we conclude that a0 is a better
ad hoc team player than a1 in domain D over the set of
possible teammates A.
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Pursuit Domain

Grid world - Torus
4 Predators and 1 Prey
Predators’ goal is to
surround the prey as
quickly as possible
Act simultaneously
Collisions randomly
decided - loser stays still
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Agent Control

Observe positions of all agents
Cannot explicitly communicate
5 actions: Stay still, up, down, left, and right
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Agent Types

Agent Types:

Greedy - moves to nearest open cell neighboring the prey

Teammate-aware - lets the farthest predator have the
closest cell
Greedy Probabilistic - greedy, but with chance of taking a
longer path
Probabilistic Destinations - moves towards a random cell
that is closer to the prey
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Approach

If the ad hoc agent has:
Knows dynamics of world
Knows prey’s behavior
Knows teammates’ behavior

Then it can plan about the effects of actions and their values
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Value Iteration

If the teammates’ types are known
Calculates the optimal action values
Slow for large worlds
Impractical because of the size of the state space
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Monte Carlo Tree Search

Sample playouts
Focus on relevant state
actions
UCT balances exploration
vs. exploitation
Efficient
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Model probabilities

Set of known models
Start with prior belief
Update using the probability that a model would have taken
the observed action

P(model|actions) =
P(actions|model) ∗ P(model)

P(actions)
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Evaluation

Can the ad hoc agent do better than copying its
teammates’ behaviors?
Number of steps the team takes to capture the prey

1,000 episodes
No information carried between episodes
Random start positions per episode, but same across
evaluations
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Known deterministic teammates

Ad hoc agent knows the its teammates’ type
Planning outperforms copying teammates’ behavior
Performance of MCTS is close to that of VI
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Teammates of Unknown Types

Known deterministic teammates

5x5 World
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Known teammates
Known set of teammates
Teammates of Unknown Types

Known deterministic teammates

20x20 World
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Incorrect type

Ad hoc agent is incorrect about its teammates’ type
All methods perform poorly
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Known set of teammates

Set of possible agent types is known
Ad hoc agent tracks probabilities of types
Low loss compared to knowing correct model
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Teammates of Unknown Types

Ad hoc agent does not know behavior of teammates
Set of known types
True ad hoc scenario
Planning should outperform copying
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Related Work

[?], [?], [?], [?]
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Conclusions

Ad hoc agents can help their teams
Can do better than copying teammates
MCTS is effective and efficient for planning
Can differentiate teammate types
Models still help when incorrect
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Future Work

Can we learn a model on the fly?
Can we learn to correct an existing model?
Will other domains get similar results?
How can the ad hoc agent reason about the value of
information?
How can an ad hoc agent deal with incomplete
communication?
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Thank You!

Ad hoc team agents can
learn to help their teams
on the fly
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