
In the Proceedings of the 12th International Conference on Autonomous Agents and Multiagent Systems,
Saint Paul, Minnesota, USA, 2013.

Cooperating with a Markovian Ad Hoc Teammate

Doran Chakraborty
Microsoft

Sunnyvale, CA 94089, USA
dochakra@microsoft.com

Peter Stone
The University of Texas at Austin

Austin, TX 78712, USA
pstone@cs.utexas.edu

ABSTRACT
This paper focuses on learning in the presence of a Marko-
vian teammate in Ad hoc teams. A Markovian teammate’s
policy is a function of a set of discrete feature values derived
from the joint history of interaction, where the feature val-
ues transition in a Markovian fashion on each time step. We
introduce a novel algorithm “Learning to Cooperate with a
Markovian teammate”, or Lcm, that converges to optimal
cooperation with any Markovian teammate, and achieves
safety with any arbitrary teammate. The novel aspect of
Lcm is the manner in which it satisfies the above two goals
via efficient exploration and exploitation. The main con-
tribution of this paper is a full specification and a detailed
analysis of Lcm’s theoretical properties. 1

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Learning

General Terms
Algorithms, Theory

Keywords
Ad hoc teamwork, Learning, Sample complexity analysis

1. INTRODUCTION
Prior research on autonomous agent teams has predom-

inantly been based on the premise that all agents are cre-
ated by the same developer(s) and/or have homogeneous
capabilities, thus enabling hard-coded coordination proto-
cols based on shared algorithms (such as in [21, 12]). How-
ever, as agents get to the point of being widely deployable
for extended periods of time, it becomes essential for large
groups of independently created heterogeneous agents to
form teams towards a common objective, with little or no
advance coordination. This leads us to the relatively new
field of “Ad hoc teamwork” [19, 3, 4, 22]. In this field of
research, the goal is to create successful team members, as

1This research was performed when the first author was still
a graduate student at The University of Texas, Austin.

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May,
6–10, 2013, Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

opposed to successful full teams (because we may not have
control over creating the full team). A strong team member
must be able to coordinate with its cohorts irrespective of
whether the commonality of their algorithms, or behaviors,
is substantial or limited.

Our goal in this research is to study the Ad hoc teamwork
problem from a game theoretic perspective [20, 1]. Partic-
ularly, we focus on two-agent teams. The task is to play
a repeated cooperative matrix game where we control only
one of the agents. In practice, the other teammate may have
any unknown policy and may itself be adapting. Ideally, we
would like to develop algorithms that are guaranteed to per-
form optimally for any possible teammate behavior. How-
ever we can only do so if we make some limiting (yet general
enough to be realistic) assumption about the teammate’s
policy. In this research we focus on achieving optimality
when cooperating with a Markovian teammate. We believe
we are the first to propose such a type of teammate behavior.

A Markovian teammate j’s policy πj (strategy of choosing
actions on each time step) is a function of a set of features
F , i.e., πj : F 7→ ∆A. A feature f ∈ F is a discrete valued
statistic computed from the joint history of play. The values
for F transition in a fashion such that their values at time
t+1 depend only on their collective values at time t and the
joint action taken at time t (Markov property [18]).

The concept of a Markovian teammate is novel and pow-
erful as it encapsulates a wide class of teammate behaviors.
For example, the popular memory-bounded teammate [20, 1,
16, 6, 7] is a special case of a Markovian teammate. Consider
a memory-bounded teammate which decides on its next step
action based on the past K joint-actions. Such a teammate
can be easily modeled with K features, namely the past K

joint-actions. These features obey the Markovian property
as their values at time t+1 depend only upon their collective
values and the joint action taken, at time t.

However the concept of a Markovian teammate is not just
limited to a memory-bounded teammate. Its policy may
also be based on features that depend on the entire history
of play. For example, consider the coordination game in
Fig 1(a). Assume j follows a coordination policy which is as
follows: if the number of times the other teammate i played
action H over the entire history of play is even, then play H,
else play T. Here πj can be modeled with just one boolean
feature, namely whether the number of times i played H
over the entire play is even. πj is Markovian as the next
step value of this feature depends only on its current value
and the current action taken by i.

To provide us with a chance to model a Markovian j, we

assume prior knowledge of a possible set of features F , some
of which determine πj , but not the exact set F . That is
F ⊆ F , but F is unknown. Let n be the cardinality of F .
Without loss of generality, we assume that F is an ordered
set and the first K (K ≤ n) features from F comprise all
of the features from F (the relevant features). Note that
we can always model πj by assuming that it is Markovian
based on the entire F . But that may involve learning over a
much larger state space than is necessary. Our main goal is
to model πj with a shorter yet fully descriptive model: one
that spans at most the first K features from F , K being
unknown.

This paper proposes an algorithm“Learning to Cooperate
with a Markovian teammate” (or Lcm for short) that pre-
cisely achieves this objective. Lcm provides two crucial
guarantees (first to do so for a 2-agent Ad hoc team):

1. Targeted Optimality [17] for a Markovian j: if j is
Markovian with features drawn from F , then Lcm suc-
ceeds in converging to optimal cooperation with j, in
provably efficient sample complexity;

2. Safety [10] with any arbitrary j: if j is non-Markovian,
then it ensures at least the security value of the matrix
game for the team.

The results pertaining to Lcm in this paper are all of a
theoretical nature. In particular, Lcm ensures that coop-
eration with a Markovian teammate is achieved in a sam-
ple efficient manner. A key contribution of this paper is a
thorough sample complexity analysis of how Lcm does so.
However we acknowledge that in the worst case the sample
complexity of Lcm may depend polynomially on the size of
the state space from the entire F (if K = n, i.e., the last
feature in the ordering happens to be a relevant feature).

We do believe that in many scenarios it is possible to guess
a decent ordering of features for πj (where K is significantly
less than n). It is in these cases that the sample complexity
bound of Lcm is truly relevant and interesting. For example
consider a memory-bounded teammate with memory size K.
Assume that we are unaware of the exact value of K, but
aware of a conservative upper-bound n > K. The features
in F are the past n joint-actions arranged in the order of
recency, but only the first K joint-actions in the ordering
truly matter.

Lcm is a significant improvement over its peers from the
Ad hoc teamwork literature (see citations above) as it tack-
les a significantly more complex class of teammate behavior
than that has been modeled to date. Prior research in this
area mostly focuses on interactions with a memory-bounded
teammate [20, 1], which is a special case of a Markovian
teammate. Furthermore none of these works provide a for-
mal sample complexity analysis like we do.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the background and concepts necessary for
understanding all the technical details of Lcm, Sections 3
to 4 present all the algorithmic and theoretical aspects of
Lcm, Section 5 cites some related work pertaining to this
line of research and Section 6 concludes by citing some fu-
ture avenues of research.

2. BACKGROUND AND CONCEPTS
This section serves two purposes. First, its presents the

background and concepts necessary for fully understanding

H

H T

T

H − Heads, T− Tails

(H,T)

H0.5

0.5 (H,H) (H,T)T

1

1

0

0

j’s policy
Partial Transition Function

(H,T)

for state (H,T) and action H

0.5 0.5

Coordination game

Figure 1: Example of the partial transition function
for state (H,T) in the Coordination game

the technical details of Lcm. Second, it establishes the no-
tation that we use for the rest of the paper.

Our setting of interest is cooperative bimatrix games [15].
A cooperative bimatrix game represents a scenario in which
2 agents are interacting with each other by simultaneously
selecting actions. Assume without loss of generality that
the set of actions available to both the agents are the same,
and denoted by A. Then the payoff received by the team
during each step of the interaction is determined by a com-
mon shared utility function over the agents’ joint action,
u : A2 7→ ℜ. A repeated cooperative bimatrix game is a
setting in which the 2 agents play the bimatrix game re-
peatedly. Henceforth whenever we refer to a matrix game
or a repeated game, we mean a cooperative bimatrix game
and a repeated cooperative bimatrix game respectively.

While playing a repeated game an agent i follows a policy
to choose its action on each time step. The general notion
of a policy for an agent is a function mapping each possible
history of play to a distribution over its actions (a.k.a mixed
action). A policy is called stationary if the agent plays the
same mixed action on every time step. In a repeated game,
when both the agents follow their own individual policy for
T time steps, the team achieves an expected return given by
PT

t=1 rt

T
over those T steps. rt denotes the expected payoff

received by the team at time t. On a similar note, we refer
to the real time return (the actual average payoff achieved
in online play) of the team as simply return.

Let the Lcm agent be i, and its teammate be j. Assume j

to be a Markovian teammate. The key insight enabling our
research is that in cases where j is Markovian, the dynamics
of interacting with it can be modeled as a Markov Decision
Process (MDP) [18]. The state space and transition func-
tion of this MDP originate from the unknown feature space
and the unknown policy of j. The action space is the set
of actions available to i (that is A) while the team reward
pertaining to a joint action comes from the specification of
the matrix game.

For example again consider the coordination game from
Fig. 1. Assume j is a memory-bounded teammate with
K = 1. Though we explain the dynamics of the MDP as-
suming j is memory-bounded, similar analogy can be drawn
for any Markovian j. Let the current state of the MDP
be (H,T), meaning that on the previous step, i selected H
and j selected T. Assume that from that state, j’s policy
(πj) is to play actions H and T equi-probably (Fig. 1(b)).
When i chooses action H in state (H,T), the probabilities
of transitioning to states (H,H) and (H,T) are then 0.5 and
0.5 respectively (Fig. 1(c)). Transitions to states that have
a different action for i, such as (T,H), have a probability
0. The team reward for the transitions to states (H,H) and

(H,T) are 1 and 0 respectively. Thus, both the transition and
the reward functions follow the Markovian property and are
determined by πj .

By modeling the interaction dynamics as a MDP, we can
find the optimal policy for interacting with j by solving for
the optimal policy of the MDP [14] induced by j. Note a
policy of this induced MDP is actually a policy for i and we
often use these terms interchangeably. If πj were known be-
forehand, then we could compute the optimal policy of the
underlying MDP via Dynamic Programming (using tech-
niques from [14]). Since it is unknown, we need to solve for
it using online Reinforcement Learning (RL) methods. The
approach we take is a model based RL approach. We next
delve deep into the concept of a model of πj , and associated
technicalities pertaining to a model.

Since Lcm is unaware of the exact K that characterizes
πj , it maintains a model of πj for every 0 ≤ k ≤ n. Recall
that n is the cardinality of F . Thus it maintains n+1 models
in total. Let the model that is based on the first k features
from F be π̂k. Internally each π̂k maintains a value Pk(bk)
which is the maximum likelihood distribution of j’s play for
every feasible value bk of the first k features. Whenever the
first k features from F assume a value bk in online play, we
say a visit to bk has occurred. π̂k(bk) is then defined as
follows,

π̂k(bk) =

(

Pk(bk) once visit(bk) = mk

⊥ when visit(bk) < mk

(1)

where visit(bk) is the number of times bk has been vis-
ited and mk is a parameter unique to each k. In other
words, once a bk is visited mk times, we consider the esti-
mate Pk(bk) reliable and freeze it. We discuss later (Equa-
tion 7) how mk is chosen for each k. If a reliable estimate
of Pk(bk) is unavailable, then π̂k(bk) is set to ⊥ (meaning
“I don’t know”). Henceforth, we call a model π̂k to be of
size k. . Furthermore, we also denote the size of the feature
space from the first k features from F as Nk.

We call a model π̂ an ǫ-approx model of πj when it ap-
proximates πj with an error of at most ǫ for every feasible
instantiation of the features from F . That is it predicts πj

with an error of at most ǫ.
Also as our approach would involve comparing models of

incremental sizes, we need some way of measuring how much
they differ in their predictions. To that end we use a metric
∆k. ∆k is the maximum difference in prediction between
consecutive models of size k and k + 1. ∆k is defined as
follows.

Let Aug(bk) be the set of all k + 1 length vectors which
have bk as the value of their first k features, and a feasible
value of the k + 1’th feature from F as its k + 1’th value.
Then,

∆k = max
bk,bk+1∈Aug(bk))

||π̂k(bk) − π̂k+1(bk+1)||∞ (2)

such that π̂k+1(bk+1) 6=⊥.
We will choose mk’s such that π̂k+1(bk+1) 6=⊥ will always

imply π̂k(bk) 6=⊥. If for all bk+1’s, π̂k+1(bk+1) =⊥, then
by default ∆k is set to -1.

Throughout this paper, we assume that the MDP induced
by a Markovian teammate j is an unichain MDP. For an
unichain MDP, the induced Markov chain [18] from any pol-
icy for the MDP has a fixed stationary distribution. This
implies that the infinite-horizon expected return from fol-

lowing any policy in the induced MDP is the same from
every start state.

More formally, let U
η
T (s) and Uη(s) be the T -step expected

return and the infinite-horizon expected return respectively
accrued by i, from following a policy η when starting in state
s in the MDP, i.e.,

U
η
T (s) =

PT

t=0 rt

T
and U

η(s) = lim
T→∞

U
η
T (s) (3)

Since the infinite-horizon return from all the states for a
unichain MDP is the same for a fixed policy η, we denote it
by a unique value Uη. That is for all states s the limit in
Equation 3 exists and ∀s : Uη(s) = Uη.

Restricting our attention to just unichain MDPs simpli-
fies our analysis while trying to compute an optimal policy
for the MDP, as we do not need to worry about different
returns originating from different start states. Note this is
not a limitation of our approach, but just a simplifying as-
sumption for the sake of analysis.2 Our result naturally ex-
tends to a Markovian j that induces a multichain MDP with
just a small and necessary change to the definition of best
performance we can expect from Lcm (analogous to how the
approaches presented in [13, 5] extend to multichain MDPs).

Henceforth we denote the optimal infinite-horizon expected
return achievable in the MDP induced by the Markovian
teammate j as U∗ (the infinite-horizon return from following
the optimal policy). Thus Lcm’s goal is to ensure a team
return as close to U∗ as possible while interacting with j.

Furthermore, while seeking theoretical guarantees about
the quality of the time averaged return of a learning algo-
rithm in a MDP after a finite number of steps, we need to
take into account some notion of the mixing of the policies
in the MDP. More formally, we need to understand the con-
cept of the ǫ-return mixing time [13] of a policy in a MDP.
The concept of the ǫ-return mixing time is a very crucial
one as it plays a key part in the derivation of the sample
complexity bound for Lcm.

The standard notion of the ǫ-mixing time for a policy in
a MDP quantifies the smallest number T of steps required
to ensure that the distribution of visited states after T steps
when following the policy is within ǫ of the stationary dis-
tribution induced by that policy where the distance between
the distributions is measured by max norm or some standard
measure. In contrast to the ǫ-mixing time, the ǫ-return mix-
ing time only requires the expected return after T steps to
be within ǫ of the infinite-horizon expected return.

More formally, for an 0 < ǫ < 1, the ǫ-return mixing time
T of a policy η in a MDP is the smallest T such that ∀T ′ ≥ T

and ∀s, ||Uη

T ′(s) − Uη||∞ ≤ ǫ.
In other words, once we have executed a policy η for at

least T steps where T is the ǫ-return mixing time of η, the
expected return is always within a bound ǫ of Uη, irrespec-
tive of the start state.

We call a teammate non-Markovian if either of the fol-
lowing holds:

1. its policy is based on features that does not satisfy the
Markovian property;

2. it is Markovian but F does not contain all of its fea-
tures;

2A very common assumption in RL literature while dealing
with MDPs in average reward setting [13, 5, 14]

In scenarios where i fails to model j (because j is non-
Markovian), we are concerned with what i can achieve for
the team on its own as the best of all worst case outcomes.
This leads us to the concept of the security value. Let Πi

and Πj be the set of all possible stationary policies for i

and j respectively. Then the security value SV is the ex-
pected payoff i can guarantee unilaterally for the team on
every time step regardless of the policy j uses. Formally it
is defined as follows,

SV = max
πi∈Πi

min
πj∈Πj

E
ai∼πi,aj∼πj

(u(ai, aj)) (4)

A stationary policy for i that guarantees the security value is
called a safety policy. It can be computed through a simple
linear program by solving Equation 4 [15].

Having presented the relevant background and concepts,
we next proceed to present Lcm.

3. LCM
Lcm is introduced in Algorithm 1. For the sake of clar-

ity, we break the algorithmic analysis of Lcm into three
parts. First, we describe how Lcm operates from a high
level (Section 3.1). Second and third, we focus on Lcm’s
two main algorithmic components: the Model-Select al-
gorithm (Section 3.2) and its action selection mechanism
(Section 3.3). In all of these sections we assume that j is
Markovian with features drawn from F . We address the
case of a non-Markovian j at the very end of Section 4.

3.1 High level idea behind LCM
The inputs to Lcm are ǫ, δ, T and F . Both ǫ and δ are

small probability values. T is the planning horizon. Lcm

operates by planning for T time steps at a time. In each
such planning iteration, it uses the best model of πj at hand
and plans its actions for the next T time steps based on it.

In our initial analysis, to facilitate our claim that Lcm

eventually achieves a return very close to U∗ by requiring
sufficient exploration to only the feature space spanning at
most the first K features from F , we assume that the (ǫ, T)
pair taken as input always satisfies the following condition:

Assumption 1. The planning horizon T is sufficiently
large and the ǫ sufficiently small to ensure that

1. T suffices to be the ǫ-return mixing time of the optimal
policy for the induced MDP;

2. for any sub-optimal policy η and for any start state s of
the induced MDP, the expected return accrued over T

steps is always less than U∗−2ǫ, i.e., U
η
T (s) < U∗−2ǫ;

Another way of thinking of Assumption 1 is that if we
achieve a T -step expected return as high as U∗ − 2ǫ in the
underlying MDP from any start state, then we must be fol-
lowing the optimal policy for the MDP.

A pertinent question is whether for any Markovian j such
an (ǫ, T) pair exists or not. Let Û be the expected return in
the MDP from the best sub-optimal policy. Lets choose an

ǫ smaller than U∗−Û
3

. Let T be the maximum of all ǫ-return
mixing times from all policies. Clearly this choice of an
(ǫ, T) pair satisfies Assumption 1. Hence for any Markovian
j, there exists an (ǫ, T) pair that satisfies Assumption 1.

Our initial analysis caters to the special case where we
assume that Lcm chooses an (ǫ, T) pair that satisfies As-
sumption 1 (the entire Section 3). Later in Section 4, we

Algorithm 1: Lcm

input: ǫ, δ, T, F
repeat1

Compute π̂best;2

Compute a policy using π̂best (for next T steps);3

t ← 04

repeat5

Execute the policy;6

t ← t + 1;7

until t > T8

Update all models based on the past T joint-actions;9

until forever10

show how a simple extension of our solution for this special
case solves the general case without this assumption.

Lcm operates by planning for T steps at a time. The
operations performed by Lcm are as follows:

M1. Determine π̂best (Line 2). Almost in every planning
iteration assign the predictive model that best describes
πj as π̂best by making a call to Model-Select. How-
ever once in every ⌈ 1−3ǫ

ǫ
⌉ planning iterations, assign

π̂best by selecting randomly amongst the n+1 models.
The need of this exploratory iteration would become
obvious once we specify our action selection mecha-
nism in Section 3.3.

M2. Compute a policy based on π̂best and execute it for
the next T steps (Lines 3 - 8).

M3. Update all models based on the past T joint-actions
(Line 9).

Note the better the model returned in Step M1, the higher
is the return accrued in Step M2. In that respect, Step M1
relies on Model-Select to return an ǫ

T
-approx model of

πj .
An ǫ

T
-approx model of πj is desired because the expected

return from following the optimal policy pertaining to the
MDP induced by such a model is within a bound ǫ of the
expected return from following the optimal policy pertaining
to the MDP induced by πj , over T steps.

We next present Model-Select, a key component of
Lcm.

3.2 MODEL-SELECT algorithm
Model-Select is the model selection algorithm running

at the heart of Lcm. Its objective is to output the best
predictive model for πj from all possible n + 1 models, in a
sample efficient manner.

Intuitively, all models of size ≥ K can represent πj near
accurately to any reasonable approximation (as they consist
of all of the relevant features) with the bigger models requir-
ing more samples to do so. But K is unknown. On the other
hand models of size < K cannot fully represent πj . From
a high-level, Model-Select operates by comparing models
of increasing size incrementally to determine the shortest
most descriptive model that represents πj near accurately
(based on the samples seen so far). Model-Select is fully
specified in Algorithm 2. Its key steps are as follows:

1. On every planning iteration, for all 0 ≤ k < n, com-
pute ∆k and σk. ∆k is computed using Equation 2. If
∆k = −1, then by default we assign σk = 1.

If ∆k 6= −1, then we assign σk as the tightest estimate
satisfying the following condition:

∀K ≤ k < n: Pr(σk > ∆k) > 1 −
δ

n + 1
(5)

By tightest we mean an estimate as close to ∆k as
possible. In such a case the σk is assigned as follows:

σk =

r

1

2mk

log(
2(n + 1)|A|Nk

δ
) + (6)

s

1

2mk+1
log(

2(n + 1)|A|Nk+1

δ
)

Recall Nk is the size of the feature space {f1, . . . , fk}.
It can be shown through a series of applications of Ho-
effding bound [11] and union bound, that if we assign
σk using Equation 6, then the condition from Equa-
tion 5 remains satisfied. We relegate the details on
how we arrived at this value for σk to the Appendix at
the end of the paper. Why we require the error prob-
ability from Equation 5 to be δ

n+1
becomes apparent

in the following step.

2. Model-Select then searches for the smallest k such
that all the subsequent ∆k’s are less than their cor-
responding σk’s. It then concludes that this k is the
true value of K and returns π̂k as π̂best. Since for each
k ≥ K, there is an error probability of at most δ

n+1
with which the condition from Equation 5 may fail, the
total error probability with which we select a model of
size ≥ K remains upper-bounded by

Pn

i=0
δ

n+1
= δ.

Hence Model-Select always selects a model of size
at most K with a high probability of at least 1 − δ.

It is important to note that although we compute a σk for
every 0 ≤ k < n, Equation 5 is only guaranteed to hold for
K ≤ k < n. However, in the early learning stages, Equa-
tion 5 may also start to hold from a k much smaller than
K. This is generally true when the exploration is restricted
to a part of the state space where only some amongst all of
the relevant features are truly active. In such cases, there
is not enough statistical evidence for Model-Select to de-
duce all of the relevant features. So there remains a chance
that initially Model-Select may return sub-optimal mod-
els. However once sufficient exploration has occurred (as
quantified in the upcoming Lemma 3.1), irrespective of its
size, the model returned by Model-Select has to be an
ǫ
T

-approx of πj with a high probability.
We now state our main theoretical result concerning Model-

Select, namely Lemma 3.1. It states the sufficient condi-
tion on the exploration required to ensure that the π̂best

returned by Model-Select is an ǫ
T

-approx of πj , with a
high likelihood. Due to space constraints, complete details
of the proof behind the Lemma have been relegated to the
supplementary material. Recall that bK denotes a feasible
value of the feature set {f1, · · · , fK}.

Lemma 3.1. For any 0 < ǫ < 1 and 0 < δ < 1 and

mK = O(n2T2

ǫ2
log(nNK |A|

δ
)), once all the bK’s have been

visited mK times, the π̂best returned by Model-Select is
based on at most K features and an ǫ

T
-approx of πj with a

high probability of at least 1 − 2δ.

Algorithm 2: Model-Select

π̂best ← π̂n

for all 0 ≤ k < n, compute ∆k and σk1

for 0 ≤ k < n do2

flag ← true3

for k ≤ k′ < n do4

if ∆k′ ≥ σk′ then5

flag ← false6

break7

if flag then8

π̂best ← π̂k9

break10

return π̂best11

Thus for any arbitrary 0 ≤ k ≤ n, it suffices to set mk as
follows,

mk = O(
n2T 2

ǫ2
log(

nNk|A|

δ
)) (7)

Lemma 3.1 gives us the condition that needs to be satisfied
to ensure that the π̂best from Model-Select is an ǫ

T
-approx

of πj . However, it says nothing about how Lcm should select
its actions to ensure that this condition is satisfied. Next we
address the action selection mechanism of Lcm.

3.3 Action selection
In order to ensure that the condition of visits specified

in Lemma 3.1 is met quickly, Lcm uses the model-based
RL algorithm RMax [5]. There are two reasons why we
choose RMax as the RL algorithm for Lcm’s action selection
mechanism. First, its propensity to visit less visited states
early in its learning stage is in line with our goal of achieving
the necessary visits to all the bK’s (from Lemma 3.1) as early
as possible. Second, it comes with a formal guarantee on the
number of samples required to satisfy this exploration, which
in turn facilitates our sample complexity bound.

Lcm maintains a separate instance of RMax for each of
the possible n+1 MDPs corresponding to the n+1 possible
models of πj . At any planning iteration of Lcm, let the π̂best

returned by Step M1 be π̂k and the MDP associated with
it be Mk. Lcm then picks the policy computed from the
RMax instance associated with Mk to decide on the next T

step actions. Lcm believes that k is the true value of K and
hence attempts to explore all bk’s mk times to satisfy the
condition of visits from Lemma 3.1. The policy computed
from the RMax instance associated with Mk precisely helps
it to achieve that. However if Lcm keeps planning greedily
as above in every planning iteration, there is a possiblity
that it might get stuck at a local optimum and converge to
exploiting based on a sub-optimal model. The return may
then be far below U∗.

In order to avoid that, once in every ⌈ 1−3ǫ
ǫ

⌉ such T -step
planning iterations, Lcm computes the policy slightly differ-
ently (it explores). First, it chooses a k randomly from 0 to
n. The goal is then to visit at least one new bk which has
not been visited mk times. If such a visit is unlikely (maybe
because all such bk’s have already been visited mk times or
they are reachable with a very low probability), then exploit
based on the current π̂best. The RMax policy computation
for this planning iteration then goes as follows.

Assume that the state space comprises all n features from
F . Then for all states of this MDP that has a k feature
value (k chosen randomly) not visited mk times, provide
them the exploratory bonus. For every other state use π̂best

to perform the Bellman back up. We call such a planning
iteration an exploratory iteration while the former a greedy
iteration.

Now due to these exploratory iterations, π̂K is chosen pe-
riodically as the random model in these exploratory itera-
tions. Eventually by the implicit explore or exploit property
of RMax, it can be shown that at some exploratory iteration
where Lcm chooses π̂K as the random model, it must also
achieve an expected return as high as U∗ − 2ǫ, with a high
probability (since there are only finitely many entries to ex-
plore). Then from Assumption 1, we know that Lcm must
be following the optimal policy (otherwise such a high re-
turn would not have been possible). Thus Lcm has learned
a decent enough model of πj that yields the optimal pol-
icy. Henceforth in every greedy iteration, it keeps exploiting
based on this model and follows the optimal policy which
eventually leads to a near optimal return. Complete details
of how the above happens is presented in the supplementary
material as the proof of the upcoming Lemma, our main
theoretical result concerning Lcm.

Lemma 3.2. For any 0 < ǫ < 1 and 0 < δ < 1, with
a high probability of at least 1 − 4δ, Lcm ensures an return
> U∗ − 5ǫ for the team in a number of time steps given by

O(
NKn3T 3

ǫ7
log(

nNK |A|

δ
)log2(

1

δ
)), a quantity polynomial in

1
ǫ
, 1

δ
, n, NK , |A| and T .

Note that the sample complexity bound depends polyno-
mially on NK (not on Nn). Thus if we have a decent ordering
of features in F with K being much smaller than n, then
Lcm is significantly more sample efficient than an approach
that models j based on the entire F .

This concludes our discussion of Lcm for the case where
we assumed that the input (ǫ, T) pair satisfies Assumption 1.
Next we show how Lcm can be improved to solve the gen-
eral case where it is unaware of such an (ǫ, T) pair a-priori,
and also how it achieves safety while dealing with a non-
Markovian teammate.

4. REMOVING DEPENDENCE ON ASSUMP-
TION 1

Our methodology follows the line of reasoning used by
E3 [13] and RMax when they attempt to achieve a near op-
timal return in a MDP in polynomial sample complexity in
cases where they are unaware of their desired planning hori-
zon T . On a similar note, our modified version of Lcm runs
in restarts with incremental values of T and decremental
values of ǫ and δ.

Let the values for δ, ǫ and T on run i (i’th restart) be δi,
ǫi and Ti respectively. On the i’th run let them be assigned
as follows:

δi =
δinit

2i
, ǫi =

ǫinit

2i
and Ti = 2i

where δinit and ǫinit are small initial probability values.
We restart whenever Lcm has converged to a model and

the number of time steps elapsed since it has converged to
that model is equal to the sample complexity bound pro-
vided in Lemma 3.2. Note the latter requires a value of K

which we get from our converged model. In each such run
i, Lcm always converges to a model of size at most K with
an error probability of at most δi (from Lemma 3.1). Thus
the total probability of ever selecting a model of size > K is
upper-bounded by

P∞
1 δi =

P∞
1

δinit

2i = δinit. So we have
ensured that Lcm never plans based on a model that is of
size > K, with a high probability of at least 1−δinit. That is
we have ensured that the state space of the underlying MDP
over the entire play is at most NK , with a high probability.

Furthermore, the number of runs needed to reach the de-
sired (ǫ, T) pair is at most max(⌈log2(T)⌉, ⌈log2(

1
ǫ
)⌉) + 1.

Suppose we reach our desired T earlier than our desired ǫ.
Then the values of δi and Ti at the run when we reach our
desired ǫ are,

δi =
δinit

2⌈log2(1
ǫ
)⌉+1

= O(ǫδinit) and Ti = 2⌈log2(1
ǫ
)⌉+1 = O(

1

ǫ
)

On the contrary if the reverse is true, then the values of δi

and ǫi when we reach our desired T are,

δi =
δinit

2⌈log2(T)⌉+1
= O(

δinit

T
) and ǫi =

ǫinit

2⌈log2(T)⌉+1
= O(

ǫinit

T
)

Thus for each run until we reach the desired value of (ǫ, T)
the sample complexity is polynomially dependent on the
quantities listed in Lemma 3.2. From this run onwards, in
every run Lcm always achieves a near optimal return. Thus
the total number of time steps until Lcm starts accruing a
near optimal return is polynomially bounded by the same
quantities.

Achieving safety
Now all that remains to be shown is how this modified ver-
sion of Lcm can be further improved to achieve safety. This
can be achieved as follows. We always require that Lcm

(the modified version) checks its actual return before every
restart. If the actual return is below SV − ǫ, it plays its
safety policy a sufficient number of time steps following it to
compensate for the loss and bring the return back to within
ǫ of SV , with a high probability of 1 − δ. The number of
time steps it requires to play its safety policy to compensate
for this loss is polynomial in the number of time steps for
which that run lasted, 1

ǫ
and 1

δ
. Hence before every restart,

Lcm always achieves an actual return ≥ SV − ǫ with a high
probability of 1 − δ.

However by the definition of safety from [10], we require
Lcm to ensure that there exists a T > 0 such that the ex-
pected return from any T ′ ≥ T steps of learning is provably
within a desired bound of SV . What we show over here is
that only at the beginning of any restart, Lcm achieves an
actual return ≥ SV − ǫ with a high certainty. What if the
actual return falls below SV − ǫ in every run following a
restart? Then we have not achieved safety.

In this regard it can shown that after a certain number
of restarts this never happens. In other words once we have
ensured that the actual return remains ≥ SV −ǫ for a certain
number of restarts, then we have compensated enough to
ensure that even if the learner achieves an actual return
of zero in the next run, the overall actual return never falls
below SV −2ǫ. Hence there exists a T such that Lcm always
achieves an actual return ≥ SV −2ǫ with a high certainty, for
any T ′ > T time steps of learning. Hence safety is achieved
by this modified version of Lcm.

This completes our complete analysis of Lcm. Next we

situate Lcm in the context of literature on Ad hoc team-
work and cooperative Multiagent Learning. We also present
relevant related work pertaining to the PAC MDP literature
that achieve similar style sample complexity bounds.

5. RELATED WORK
Stone et. al. [19] were the first to formalize the Ad hoc

teamwork problem: teamwork without prior coordination.
This paper focuses on one aspect of the challenge raised
there, namely leading a Markovian teammate, with no a-
priori coordination and explicit communication, in a repeated
game setting. Some of the earlier work in this field goes
under the name of “impromptu teamwork”. Bowling and
McCracken [4] suggested two techniques for incorporating a
single agent into an impromptu team of existing agents. In
their work, they were mostly concerned with the task allo-
cation of the Ad hoc agent (which role should it choose, and
how to update beliefs of the other teammates’ behaviors). In
contrast, our focus is mostly on leading a Markovian team-
mate as efficiently as possible through efficient exploration
and exploitation.

In more recent work, Stone and Kraus [20] considered the
problem of Ad hoc teamwork with two agents, agent A (also
known as the teacher), and a memory-bounded agent B in
a k-armed bandit problem. The question they asked was:
assuming agent B observes the actions of agent A and its
consequences, what actions should agent A choose (which
arm to pull) in order to maximize utility. In subsequent
work, Agmon et. al. [1] extended the approach presented
by Stone and Kraus to the n-agent teamwork problem. Our
setting is an improvement over the original setting proposed
by Stone and Kraus as we consider a far more complex other
agent (agent B) behavior (namely Markovian behavior) and
also provide a formal sample complexity analysis. Further-
more we also provide safety for any arbitrary agent B. As
part of future research, we are focusing on extending Lcm

to n-agent teamwork problems.
There has been some research that studies the Ad hoc

teamwork problem from an empirical stand point. For ex-
ample Barrett et. al. [3] study the problem in the predator
prey domain and propose a technique of incorporating an Ad
hoc predator in a team of predefined predators to catch a
random prey. However unlike the rigorous theoretical analy-
sis presented in this paper, such research provides no formal
guarantees of convergence to a decent behavior. Their re-
sults mostly rely on empirical testing.

There has also been some research [22] that treats the
Ad hoc teamwork problem as planning (not “learning”) in a
multiagent MDP and uses biased adaptive play as the action
selection mechanism of the Ad hoc agent. But such work
assumes prior knowledge of a generative model of the team-
mate’s policy which generates sample trajectories of their
behavior. Clearly our work makes different assumptions:
we focus on the learning aspect of the problem and instead
of assuming a generative model of the teammate’s policy, as-
sume prior knowledge of a set of features for the Markovian
teammate, some of which determine its unknown policy.

Finally, since a crucial contribution of the paper is the
sample complexity analysis pertaining to modeling a Marko-
vian teammate, we cite some relevant research pertaining
to such style of analysis. Recall that we frame the learn-
ing problem for a Markovian teammate as learning in a
MDP and use a model selection technique (namely Model-

Select) coupled with a RMax based action selection mecha-
nism to achieve our desired goal. The scope of such research
and analysis falls in the paradigm of PAC MDP RL, a related
field of single agent RL that strives to achieve the optimal
policy of the underlying MDP through efficient PAC style
sample complexity analysis [9, 8].

In this regard it would be worthwhile to mention that
our assumptions are significantly different than those made
in the above cited works. All of these works assume prior
knowledge of the in-degree K of the factored transition func-
tion, which in our case boils down to knowing the exact num-
ber of features that determine the Markovian teammate’s
policy. Instead we make a different assumption: we assume
that we have an a-priori decent ordering of features and the
first K features (from amongst n) completely determine the
Markovian agent’s policy. This leads us to a better sam-
ple complexity bound than that provided in [2, 9], as our
approach does not scale exponentially with K.

6. CONCLUSION AND FUTURE WORK
In this paper, we study the two-agent Ad hoc teamwork

problem as learning in a two-agent cooperative matrix game.
In this regard, we propose an algorithm Lcm that is tai-
lored to model and cooperate with a Markovian teammate.
Our analysis involves a rigorous theoretical study of all of
Lcm’s properties, namely how it achieves optimal coopera-
tion with a Markovian teammate and safety with any other
arbitrary teammate. Lcm is a significant improvement over
its peers from the Ad hoc teamwork as it tackles a signifi-
cantly more complex class of teammate behavior than that
has been modeled to date.

As part of our ongoing research, we are focusing on im-
proving Lcm to incorporate “sub-linear regret bound” for an
arbitrary teammate (as a substitute for safety), keeping the
targeted optimality guarantee for a Markovian teammate
intact. We are also looking at avenues to improve the sam-
ple complexity bound by using bandit based model selection
techniques.

This work has taken place in the Learning Agents Research

Group (LARG) at the Artificial Intelligence Laboratory, The Uni-

versity of Texas at Austin. LARG research is supported in part

by grants from the National Science Foundation (IIS-0917122),

ONR (N00014-09-1-0658), and the Federal Highway Administra-

tion (DTFH61-07-H-00030).

7. REFERENCES
[1] Noa Agmon and Peter Stone. Leading ad hoc agents

in joint action settings with multiple teammates. In
Proc. of 11th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2012), June 2012.

[2] Carlos Diuk Alexander L. Strehl and Michael L.
Littman. Efficient structure learning in factored-state
mdps. In AAAI, pages 645–650, 2007.

[3] Samuel Barrett, Peter Stone, and Sarit Kraus.
Empirical evaluation of ad hoc teamwork in the
pursuit domain. In Proc. of 11th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS
2011), May 2011.

[4] Michael Bowling and Peter McCracken. Coordination
and adaptation in impromptu teams. In Proceedings of
the Twentieth National Conference on Artificial
Intelligence (AAAI), pages 53–58, 2005.

[5] Ronen I. Brafman and Moshe Tennenholtz. R-max - a
general polynomial time algorithm for near-optimal
reinforcement learning. J. Mach. Learn. Res.,
3:213–231, 2003.

[6] Doran Chakraborty and Peter Stone. Online
multiagent learning against memory bounded
adversaries. In European Conference on Machine
Learning, pages 211–226, Antwerp,Belgium, 2008.

[7] Doran Chakraborty and Peter Stone. Convergence,
Targeted Optimality and Safety in Multiagent
Learning. In Proceedings of the Twenty-seventh
International Conference on Machine Learning (ICML
2010), June 2010.

[8] Doran Chakraborty and Peter Stone. Structure
learning in ergodic factored mdps without knowledge
of the transition function’s in-degree. In Proceedings of
the Twenty-eighth International Conference on
Machine Learning (ICML 2011), June 2011.

[9] Carlos Diuk, Lihong Li, and Bethany R. Leffler. The
adaptive k-meteorologists problem and its application
to structure learning and feature selection in
reinforcement learning. In ICML ’09: Proceedings of
the 26th Annual International Conference on Machine
Learning, pages 249–256, New York, NY, USA, 2009.
ACM.

[10] Drew Fudenberg and David K. Levine. Universal
consistency and cautious fictitious play. In Journal of
Economic Dynamics and Control, 1995.

[11] Wassily Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association, pages 13–30, 1963.

[12] Gal A. Kaminka and Milind Tambe. Robust
multi-agent teams via socially-attentive monitoring.
Journal of Artificial Intelligence Research (JAIR),
12:105–147, 2000.

[13] Michael Kearns and Satinder Singh. Near-optimal
reinforcement learning in polynomial time. In Proc.
15th International Conf. on Machine Learning, pages
260–268. Morgan Kaufmann, San Francisco, CA, 1998.

[14] Sridhar Mahadevan. Average reward reinforcement
learning: Foundations, algorithms, and empirical
results. Machine Learning, 22, 1996.

[15] Martin J. Osborne and Ariel Rubinstein. A Course in
Game Theory. The MIT Press., Massachusetts,USA,
1994.

[16] Rob Powers and Yoav Shoham. Learning against
opponents with bounded memory. In IJCAI, pages
817–822, 2005.

[17] Rob Powers, Yoav Shoham, and Thuc Vu. A general
criterion and an algorithmic framework for learning in
multi-agent systems. Mach. Learn., 67(1-2):45–76,
2007.

[18] Martin L. Puterman. Markov Decision Processes:
Discrete Stochastic Dynamic Programming.
Wiley-Interscience, 1994.

[19] Peter Stone, Gal A. Kaminka, Sarit Kraus, and
Jeffrey S. Rosenschein. Ad hoc autonomous agent
teams: Collaboration without pre-coordination. In
Proceedings of the Twenty-Fourth Conference on
Artificial Intelligence, July 2010.

[20] Peter Stone and Sarit Kraus. To teach or not to teach?
decision making under uncertainty in ad hoc teams. In

The Ninth International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), May 2010.

[21] Milind Tambe and Weixiong Zhang. Towards flexible
teamwork in persistent teams: Extended report.
Autonomous Agents and Multi-Agent Systems,
3(2):159–183, June 2000.

[22] Feng Wu, Shlomo Zilberstein, and Xiaoping Chen.
Online planning for ad hoc autonomous agent teams.
In Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence, pages
439–445, Barcelona, Spain, 2011.

APPENDIX
For each k, the goal is to select a value for σk s.t. Equation. 5
is satisfied.

In the computation of ∆k, Model-Select chooses a spe-
cific bk, a bk+1 ∈ Aug(bk) and an action a for which the
models Pk and Pk+1 differ maximally on that particular
time step. Let Pk(bk, a) be the probability value assigned
to action j by Pk(bk). Without loss of generality, assume
Pk(bk, j) ≥ Pk+1(bk+1, a). Then ∆k < σk implies satisfy-
ing Pk(bk, a) − Pk+1(bk+1, a) < σk. For k ≥ K, we can
then rewrite the above inequality as,

Pk(bk, a) − E(Pk(bk, a)) + (8)

E(Pk+1(bk+1, a)) − Pk+1(bk+1, a) < σk

Equation 8 follows from the reasoning that
∀k ≥ K, E(Pk(bk, a)) = E(Pk+1(bk+1, a)).

One way to satisfy Inequality 8 is by ensuring that,

Pk(bk, a) − E(Pk(bk, a)) < σ1

E(Pk+1(bk+1, a)) − Pk+1(bk+1, a) < σ2 (9)

and subsequently setting σk = σ1 + σ2.
Now, since we are unsure which pair of bk and bk+1, or

action may get selected, we need to ensure that the inequal-
ities presented in 9 are satisfied for all possible choices of
bk, bk+1’s and actions. Thus we need to ensure that the
following inequalities are satisfied:

Pr((Pk(bk, a) − E(Pk(bk, a)) ≥ σ1) ≤
δ

2(n + 1)|A|Nk

Pr(E(Pk+1(bk+1, a)) − Pk+1(bk+1, a) ≥ σ2) ≤
δ

2(n + 1)|A|Nk+1

If the above inequalities are satisfied, then by union bound,
we know that that for any pair of bk and bk+1, and an ac-
tion j, both the inequalities presented in 9 are satisfied with
an error probability of at most δ

n+1
. By Hoeffding bound,

the above inequalities are always satisfied if we choose

σ1 =

r

1

2mk

log(
2(n + 1)|A|Nk

δ
)

σ2 =

s

1

2mk+1
log(

2(n + 1)|A|Nk+1

δ
)

Then by subsequently assigning σk = σ1 + σ2, we have
our desired result Pr(∆k < σk) > 1 − δ

n+1
.

	Introduction
	Background and Concepts
	LCM
	High level idea behind LCM
	MODEL-SELECT algorithm
	Action selection

	Removing dependence on Assumption 1
	Related Work
	Conclusion and Future Work
	References

