
To appear in Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
Paris, France, May 2014.

SCRAM: Scalable Collision-avoiding Role Assignment with
Minimal-makespan for Formational Positioning

(Extended Abstract)

Patrick MacAlpine
Univ. of Texas at Austin

Austin, TX , USA
patmac@cs.utexas.edu

Eric Price
MIT

Cambridge, MA, USA

ecprice@mit.edu

Peter Stone
Univ. of Texas at Austin

Austin, TX, USA
pstone@cs.utexas.edu

ABSTRACT

Teams of mobile robots often need to divide up subtasks
efficiently. In spatial domains, a key criterion for doing so
may depend on distances between robots and the subtasks’
locations. This research considers a specific such criterion,
namely how to assign interchangeable robots to a set of tar-
get locations such that the makespan (time for all robots
to reach their target locations) is minimized while also pre-
venting collisions among robots. We provide an overview
of a scalable multiagent dynamic role assignment system
known as SCRAM (Scalable Collision-avoiding Role Assign-
ment with Minimal-makespan). SCRAM uses a graph the-
oretic approach to map agents to target locations such that
our objectives for both minimizing the makespan and avoid-
ing agent collisions are met. SCRAM scales to thousands
of agents as role assignment algorithms run in polynomial
time.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Graph and tree search strategies;
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems
Keywords

Coordination; Formations; Positioning; Mobile Robots

1. INTRODUCTION
Previous work on assigning agents to target positions has

focused on minimizing the sum of distances agents travel
which is the assignment problem [4]. Our work differs as
we instead minimize the makespan (time for all agents to
reach goal positions) Minimizing the makespan is a decisive
factor in performance when agents are moving to target po-
sitions to complete a shared task where all agents must be in
place before the task can be completed and/or started. Such
tasks include those requiring agents be synchronized when
they start jobs at their target positions (e.g. mobile robots
assuming necessary positions on an assembly line) and sce-
narios for which the bottleneck is the time it takes for the
last agent to get to its target position (e.g. warehouse robots
fetching items for an order to be shipped).

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

We refer to our role assignment and positioning system as
SCRAM (Scalable Collision-avoiding Role Assignment with
Minimal-makespan).1 It provides a collision free mapping
of agents to target positions, minimizes the makespan, and
scales to thousands of agents. This abstract provides an
overview of SCRAM, and summarizes our initial theoreti-
cal and empirical analysis of the role assignment problem.
Our deeper analysis of SCRAM, including its application to
the RoboCup2 robot soccer domain, is reserved for future
publications.

2. ROLE ASSIGNMENT PROBLEM
Let there be n homogeneous mobile agents with current

positions A := {a1, ..., an}, and we want to assign them to
move to n specified target positions or roles P := {p1, ..., pn}
such that the time for agents to have reached every goal
position is minimized under the constraint that no agents
collide with each other. This problem can be thought of
as finding a perfect matching M∗ of a weighted bipartite
graph G := (A, P, E) that meets the above criteria with
the weight for each edge in E being the Euclidean distance
between associated agent and target positions.

For theoretical analysis we model agents as point masses
with zero width. Additionally, we assume no two agents
and no two target positions occupy the same position, and
that all agents move toward fixed target positions along a
straight line at the same constant speed.

We call a role assignment CM valid (Collision-avoiding
with Minimal-makespan) if it satisfies two properties:

1. Minimizing longest distance - M∗ minimizes the
longest distance from an agent to target, with respect
to all possible mappings.

2. Avoiding collisions - agents do not collide as they move
to their assigned positions.

A third desirable property, although not necessary for a role
assignment function f to be CM valid, is the following:

3. Dynamically consistent - Given a fixed set of target
positions, if f outputs a mapping M of agents to tar-
gets at time T , then f outputs M for every time t > T

as agents move to the targets specified by M .
Dynamic consistency is desirable as otherwise agents might
unduly thrash between roles thus impeding progress.
1Videos of SCRAM in action, as well as C++ im-
plementations of the role assignment algorithms
and an online appendix, can be found at http:
//www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/
AustinVilla3DSimulationFiles/2013/html/scram.html
2http://www.robocup.org/

3. ROLE ASSIGNMENT FUNCTIONS
We present two CM valid assignment functions. Polyno-

mial time implementations of the functions with analysis of
their time and space complexities are also given.

Minimum Maximal Distance Recursive (MMDR)

One potential role assignment function is to find a mapping
of agents to target positions which recursively minimizes the
maximum distance that any agent travels. We refer to this
as this the Minimum Maximal Distance Recursive (MMDR)
function. It is also known as the lexicographic bottleneck
assignment problem [4]. In previous work we introduced
MMDR and presented an exponential time dynamic pro-
gramming implementation of MMDR [3]. We provide evi-
dence that MMDR is both CM valid and dynamically con-
sistent in an online appendix.1

We can compute the MMDR role assignment function in
polynomial time by transforming MMDR into the assign-
ment problem (finding a perfect matching in a bipartite
graph that minimizes the sum of edge weights) which is solv-
able by the Hungarian algorithm [2] in O(n3) time.

Lemma 1. Denote Wn := {w0, ..., wn} where wi := 2i.
Then ∀W ∈ P (Wn−1) : wn >

P

W .

To transform MMDR into the assignment problem we
modify the weights of the edges of our bipartite graph to be
a set of values such that the weight of any edge e is greater
than the sum of weights of all edges with weight values less
than that of e. A key insight into this transformation is ex-
pressed in Lemma 1. By sorting all edges in ascending order
by distance, and then relabeling edge weights to be the value
2i where i is the index of an edge in this sorted list, the sum
of all edge weights of shorter distance edges will be less than
any sum of edge weights with a longer edge. Solutions to the
assignment problem return lowest cost MMDR mappings as
the sum of modified weights of any mapping with a higher
cost is greater than lower cost mappings.

Algorithm 1 gives a polynomial time solution for comput-
ing MMDR. Time complexity is dominated by the O(n3)
Hungarian algorithm. Note that our transformed edge
weights, represented as bit vectors with the ith bit of a 2i

value turned on, are of size n2. The Hungarian algorithm
must do comparisons of these weights and thus the time
complexity of Algorithm 1 is O(n5). As our implementation
of the Hungarian algorithm stores length n lists of size n2

transformed weights, Algorithm 1 has a O(n3) space com-
plexity.

Algorithm 1 MMDR O(n5) Polynomial Time Impl.

Input:

Agents := {a1, ..., an}; Positions := {p1, ..., pn}
Edges := {a1p1, a1p2, ..., anpn}; |aipj | := euclideanDist(ai,pj)

1: edgesSorted := sortAscendingDist(Edges)
2: lastDistance := −1
3: rank, currentIndex := 0
4: for each e ∈ edgesSorted do

5: if |e| > lastDistance then

6: rank := currentIndex
7: lastDistance := |e|

8: |e| := 2rank

9: currentIndex := currentIndex + 1

10: return hungarianAlg(edgesSorted)

Another algorithm for computing MMDR with an O(n4)
time complexity was discovered by Sokkalingam and
Aneja [5]. We implemented this algorithm and analyze its
performance with other algorithms in Section 4.

Min. Max. Dist. + Min. Sum Dist2 (MMD+MSD2)

The Minimum Maximal Distance + Minimum Sum
Distance2 (MMD+MSD2) role assignment function mini-
mizes the maximum distance any agent has to travel (but
not recursively as done by MMDR), after which it mini-
mizes the sum of distances squared that all agents travel.
We show MMD+MSD2 is a CM valid assignment, but not
dynamically consistent, in an online appendix.1

Algorithm 2 implements MMD+MSD2 by first finding a
perfect matching with the smallest maximum edge (line 1)
which is computed by adding edges to the graph in increas-
ing order of length until a perfect matching is found through
a breadth-first search of augmenting paths using the Ford-
Fulkerson algorithm [1]. Then the set of all edges with length
less than or equal to the longest edge in our perfect match-
ing (line 2), and with edge weights equal to their distances
squared, is used as input to the Hungarian algorithm (line 3).

Algorithm 2 MMD+MSD2 O(n3) Polynomial Time Impl.

Input:

Agents := {a1, ..., an}; Positions := {p1, ..., pn}
Edges := {−−→a1p1,

−−→
a1p2, ...,

−−−→
anpn}; |−−→aipj | := euclideanDist(ai,pj)

2

1: longestEdge := getMinimalMaxEdgeInPerfectMatching(Edges)
2: minimalEdges := e ∈ Edges, s.t. |e| ≤ |longestEdge|
3: return hungarianAlg(minimalEdges)

The O(n3) time complexities of both the Hungarian and
Ford-Fulkerson algorithms dominate Algorithm 2 and thus
its time complexity is O(n3). The breadth-first search of
Ford-Fulkerson gives a space complexity of O(n2).

4. ALGORITHM ANALYSIS & SUMMARY
Table 1: Time and space complexities of role assignment algorithms
and average running time in milliseconds for different values of n as
measured on an Intel(R) Xeon(R) CPU E31270 @ 3.40GHz.

Complexity Value of n

Algorithm Time Space 10 20 100 300 1000 10000

MMD+MSD2 n3 n2 0.016 0.062 1.82 21.2 351.3 115006

MMDR O(n4) n4 n2 0.049 0.262 17.95 403.0 14483 —

MMDR O(n5) n5 n3 0.022 0.214 306.4 40502 — —

MMDR dyna n22(n−1) n
“

n
n/2

”

0.555 2040 — — — —

brute force n!n n 317.5 — — — — —

This abstract discusses SCRAM, a dynamic role assign-
ment system for mobile agents. SCRAM minimizes the
makespan for agents to reach target positions while avoiding
collisions among agents.

To evaluate role assignment algorithms, we generated map-
ping scenarios for n agents and targets. Both agents and tar-
gets were assigned random integer value positions on a 2D
grid with sides of length n2. Table 1 shows the average run-
time of the algorithms. As role assignment algorithms run
in polynomial time, SCRAM scales to thousands of agents.

5. REFERENCES
[1] D. Ford and D. R. Fulkerson. Flows in networks.

Princeton university press, 2010.
[2] H. W. Kuhn. The hungarian method for the assignment

problem. Naval Research Logistics Quarterly,
2(1-2):83–97, 1955.

[3] P. MacAlpine, F. Barrera, and P. Stone. Positioning to
win: A dynamic role assignment and formation
positioning system. In RoboCup-2012: Robot Soccer
World Cup XVI, Lec. Notes in Artificial Intel. 2013.

[4] D. W. Pentico. Assignment problems: A golden
anniversary survey. European Journal of Operational
Research, 176(2):774 – 793, 2007.

[5] P. Sokkalingam and Y. P. Aneja. Lexicographic
bottleneck combinatorial problems. Operations
Research Letters, 23(1):27–33, 1998.

