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ABSTRACT
Connected and autonomous vehicle technology has advanced rapidly
in recent years. These technologies create possibilities for advanced
AI-based traffic management techniques. Developing such tech-
niques is an important challenge and opportunity for the AI com-
munity as it requires synergy between experts in game theory, mul-
tiagent systems, behavioral science, and flow optimization. This
paper takes a step in this direction by considering traffic flow opti-
mization through setting and broadcasting of dynamic and adaptive
tolls. Previous tolling schemes either were not adaptive in real-
time, not scalable to large networks, or did not optimize traffic
flow over an entire network. Moreover, previous schemes made
strong assumptions on observable demands, road capacities and
users homogeneity. This paper introduces ∆-tolling, a novel tolling
scheme that is adaptive in real-time and able to scale to large net-
works. We provide theoretical evidence showing that under certain
assumptions ∆-tolling is equal to Marginal-Cost Tolling, which
provably leads to system-optimal, and empirical evidence showing
that ∆-tolling increases social welfare (by up to 33%) in two traffic
simulators with markedly different modeling assumptions.

CCS Concepts
•Computing methodologies→ Multi-agent planning;

Keywords
Autonomous Intersection Management, Autonomous vehicles, Mul-
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INTRODUCTION
Communication and computation capabilities are becoming in-

creasingly common on board vehicles. Such capabilities present
opportunities for developing safer, cleaner and more efficient road
networks. One way of increasing road efficiency is to incentivize
vehicles to travel via less congested routes.

It has been known for nearly a century that drivers seeking to
minimize their private travel times need not minimize the total level
of congestion. In other words, self-interested drivers may reach a
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user equilibrium that is not optimal from a system perspective. On
the other hand, disincentivizing vehicles to traverse certain links
(using tolls for instance) can lead to system optimum [34, 5, 11].

This paper discusses the concept of micro-tolling, defined as the
ability to set individualized and dynamic toll values for each link
within a road network. Specifically, this paper defines the micro-
toll traffic optimization (MTTO) problem where, given current, ob-
servable traffic conditions (traffic volume, travel speed, travel time
etc.), the goal is to set a dynamic toll value to each link such that the
user equilibrium aligns with the system optimum. The focus of this
paper is on the optimization problem associated with toll-setting,
and not on technical or policy issues associated with implementing
micro-tolling. Our aim is merely to evaluate the potential perfor-
mance benefits should the policy and human factors issues that are
outside the scope of this paper be overcome.

This paper introduces a novel micro-tolling scheme denoted ∆-tolling.
∆-tolling assigns a toll to each link proportional to the difference
between its current travel time and its free-flow travel time (denoted
∆). The constant of proportionality (denoted β) requires tuning.
Since ∆ changes according to observed traffic, ∆-tolling is adap-
tive to traffic changes in real-time. Since computing the toll value is
done locally for each link, ∆-tolling is tractable for large networks.

This paper conjectures that ∆-tolling leads to optimal system
performance. Two types of supporting evidence are provided for
this claim. From a theoretical standpoint, we show that under addi-
tional assumptions ∆-tolling is equivalent to marginal-cost tolling,
which provably yields optimal system performance. From an em-
pirical standpoint, using two different traffic simulation models, we
show that ∆-tolling leads to a significant improvement in system
performance, up to 33% and 32% improvement in social welfare
and average travel time respectively. As the annual cost of traf-
fic congestion in the United States alone is $160 billion [30], even
small reductions in travel time can have dramatic benefits.

To the best of our knowledge ∆-tolling is the first tolling scheme
that is adaptive in real-time, able to scale to large networks, does
not assume users homogeneity, and enhances system performance.
Moreover, given appropriate communication capabilities ∆-tolling
is practical to implement in real-life.

MOTIVATION
Self-interested agents (For the rest of this paper we relate to ve-

hicles as agents) choose routes that maximize their own utility, re-
gardless of their impact on social welfare (the total utility over all
agents). This section presents examples of such scenarios which
provide motivation for this work.



Figure 1: An example road network. One origin (O), two desti-
nations (D1, D2), a low capacity link (dotted line) and an infinite
capacity link (solid line).

For the rest of this paper we assume that an agent’s utility is
the negative of travel cost, defined as the sum of travel time (con-
verted to cost units through an agent-specific value of time, VOT)
and money spent (tolls). Each agent seeks a route leading from its
current location to its desired destination. In the user equilibrium
(UE) state, agents’ route choices are such that no single agent can
improve his or her utility from a unilateral change in route, and
in the system optimum (SO) state, agents’ route choices are such
that social welfare is maximized. Note that if VOT is homogeneous
over all agents, maximizing social welfare is equivalent to mini-
mizing average travel time. For the following example we assume
homogeneous VOT.

Figure 1 contrasts the UE and SO states (this example was first
presented by Pigou ([34])). The example problem consists of: one
origin (O), one destination (D1) (for now ignore destination D2),
a low capacity link representing a side-road shortcut (dotted line)
and an infinite-capacity link representing a highway (solid line). In
contrast to the highway, the shortcut is susceptible to congestion
due to its low capacity.

A fixed number of agents are heading from O to D1. Assume
that units are chosen so that the travel time on the shortcut equals
the fraction of the overall traffic using that road (e.g., if half of the
agents travel via the shortcut, the travel time on it will be 0.5), and
so that all drivers have a VOT of 1. Since the highway has infinite
capacity, its travel time is 1 regardless of the amount of agents using
it.

Define vs (and vh = 1 − vs) as the fraction of the overall traf-
fic traveling via the shortcut (highway). The travel time (t) on the
shortcut (highway) is a function of vs (or vh for the highway) and
is defined by t(vs) = vs (and tD1(vh) = 1 for the highway). The
proportional travel time (travel time multiplied by the fraction of
traffic) on the shortcut is v2s (and 1 · vh = 1− vs for the highway).

In the SO state, the average travel time (the negative of social
welfare here), f(vs) = v2s + (1 − vs), is minimized. Using the
derivative of the travel time function, f ′(vs) = 2vs − 1, we find
the system optimum to be at 2vs − 1 = 0 ⇒ vs = 0.5. In the
UE state, agents will choose to go via the shortcut (traveling for vs
hours) as long as it is faster than traveling via the highway (until its
travel time reaches 1). As a result, in this example, vs = 1 in the
UE while vs = 0.5 in the SO. Setting a toll of 0.5 on the shortcut
will shift the UE state to one where vs + 0.5 = 1 ⇒ vs = 0.5 ⇒
UE=SO.

Adaptive Tolling
Building on Pigou’s ([34]) example, we give an example where

aligning the UE with the SO requires tolls that dynamically change
with traffic demands. Consider a second destination (D2) in our
example road network (Figure 1). Similar to destination D1, the
travel time form O to D2 via the shortcut (dotted line) is equal to
the fraction of the overall traffic traveling via the shortcut (heading

both toD1 andD2). In contrast to destinationD1, the travel time on
the highway (solid line) to destination D2 is only 0.5 (tD2(vh) =
0.5).

Let z be the fraction of agents heading to destination D1 (1 −
z heading to D2). In this example, aligning SO and UE requires
assigning the shortcut a dynamic toll that is a function of z. A full
proof and analysis of this scenario is provided in the Appendix.

With the need for adaptive tolling in mind, the next section de-
fines the micro-toll traffic optimization problem.

PROBLEM DEFINITION
We define the micro-toll traffic optimization (MTTO) problem

as follows:

Input:

• Road network as a directed graph: G(V,E).

• Free flow travel time on each link.

• Mean VOT across all agents traversing the network.1 The
VOT distribution is not assumed to be known.

• Time-varying traffic conditions on each link e, which are as-
sumed to be visible at any time, including the number of
agents on the link, traffic flow speed, and travel time.

Output: For each link in the network at any given time, a non-
negative toll value.
Objective: Optimize social welfare.

Assumptions and Desiderata
A tolling scheme for solving MTTO should satisfy the following

requirements:

• Adapt to traffic conditions in real-time. Traffic demands and
road capacities are dynamically changing throughout the day.
The system should adapt and react to such changes.

• Scale to large, city size networks. The system should require
computational effort that is linear in the network’s size.

• Robust to heterogeneous VOT. The system should not as-
sume that all agents have uniform VOT.

Based on today’s communication capabilities on board connected
vehicles2 we make the following assumptions:

• The location (traveled links) of each agent is visible to the
toll manager, for billing purposes.

• Toll values are visible to the agents.

• Knowing the toll values and their own VOT, agents are able
to optimize their route.

Note that the above assumptions are intended for connected ve-
hicles, but may still hold even for traditional vehicles. In fact, the
technology on today’s smart-phones can satisfy these assumptions.
Current micro-tolling implementations are based on Electronic road
pricing (ERP) systems that use an array of sensors and electronic
signage for billing and reporting toll values. There are several ERP
1Many approaches exist for estimating mean VOT [6, 20, 26] with-
out requiring individual drivers to truthfully report this information.
2Connected vehicles are vehicles that can communicate with the
following entities: other vehicles (vehicle-to-vehicle), roadside in-
frastructure (vehicle-to-infrastructure), and the internet.



implementations currently being used (e.g., in Hong Kong [18] and
Singapore [37]). The main drawback of ERP systems is that they
are expensive to implement and thus usually cover a relatively small
area within a city. Currently the toll assignment scheme of such
systems is fixed according to time-of-day and is not adaptive. As a
result, current ERP systems might benefit from the work presented
in this paper.

PREVIOUS WORK
Road pricing has received considerable attention due to its po-

tential to reduce congestion, and the economic fairness of charging
users for the delays they cause to other travelers. It has long been
established that in a static equilibrium setting, marginal tolls can
eliminate the inefficiency associated with selfish routing [35, 5]. A
detailed history along with practical aspects of congestion pricing
can be found in [2]. However, such steady state conditions rarely
exist in practice. Changes in supply, demand and other driver char-
acteristics such as bounded rationality and value of time result in
traffic that is dynamic both day-to-day and within-day. To control
congestion in the presence of these factors, researchers have pro-
posed a wide range of tolling models, based on different represen-
tations of traffic flow and different assumptions on the source of
variability.

To the best of our knowledge, no previously suggested tolling
scheme is equipped to solve the MTTO problem, due to one or
more of the following reasons:

• Assumption that demand is known or fixed:3 [43, 19, 31]

• Assumption that road capacity is known or fixed:4 [19,
28, 44]

• Assumption that VOT is homogeneous:5 [45, 48]

• Assumption that traffic follows a specific model6: [43, 19,
28, 15]

• Intractability for large networks: [42, 28]

• Not adaptive in real time: [5, 41]

• Optimization of a single corridor, not the full network:
[47, 16]

Next, we present ∆-tolling, a novel tolling scheme that satisfies
all the MTTO desiderata without making any of the above assump-
tions.

DELTA-TOLLING
3Knowing the demands require all users to report their origin, des-
tination, and departure time. Even though there is a technological
capability for doing so, it is not reasonable to assume that users will
cooperatively share this information.
4It is still not possible to accurately estimate the capacity due to
heterogenitey in driver behavior and vehicle composition (see Fig-
ure 1 in [13]). Furthermore, capacity of a roadway is not always
fixed. Incidents, weather, moving bottlenecks etc. can dynamically
change the capacity.
5Different drivers and vehicles differ from each other on many as-
pects [1] assuming otherwise is not realistic.
6Given demands, capacities and toll values, a traffic model returns
the expected travel times. Examples of two traffic models (meso-
scopic and macroscopic) can be found in the “Empirical Study"
section. Since real traffic does not accurately follow any known
model, a model dependent scheme is not practical for real-life.

Algorithm 1: Updating tolls according to ∆-tolling.
1 for each link e ∈ E do
2 ∆-tollinge = β(te − Te)
3 τe = R(∆-tollinge) + (1−R)τe

Given a MTTO problem instance, we use te to denote the current
travel time on link e ∈ E, the constant Te to denote its free flow
travel time, and τe to denote its current toll value. For each link,
∆-tolling assigns τe to be the difference between the current flow
time (te) and the free flow time (Te) multiplied by a parameter
(β), that is, τe = β(te − Te). The ∆-tolling procedure is given in
Algorithm 1. The parameter R is described later; for now, assume
R = 1.

Since τe, as calculated by ∆-tolling, depends on te, ∆-tolling is
adaptive to traffic conditions in real-time; as the travel time on the
link grows so does the toll value for that link. Calculating τe us-
ing ∆-tolling requires a constant amount of time and can be done
independently for each link. As a result, the complexity of comput-
ing tolls for an entire network is Θ(|E|) in a centralized manner
or Θ(1) when distributed. Hence ∆-tolling can easily scale to large
networks. Moreover, ∆-tolling assumes full knowledge of only one
variable (current travel time te) and one constant (free flow travel
time Te), and both measurements are assumed feasible according
to our problem definition. Finally, we present two propositions:

1. Under certain assumptions on the demand and traffic model,
∆-tolling optimizes social welfare.

2. Even without these assumptions, applying ∆-tolling results
in a significant improvement in social welfare.

It is important to note that ∆-tolling does not requires or assumes
that agents commit to an initially chosen route. Agents may re-
optimize and change their route at any point.

The rest of this paper elaborates on and proves Proposition 1,
and provides an empirical argument in support of Proposition 2.

MARGINAL COST TOLLING
It is known that charging each agent an amount equivalent to

the cost it inflicts on all other agents, also known as marginal-cost
tolling (MCT), results in optimal social welfare [34, 5, 11] (assum-
ing nonatomic flows). For instance, if an agent increases the travel
time of v agents by two minutes, that agent should be charged a toll
equal to the sum of the v agents’ value of a two-minute delay.

Applying a MCT scheme is not feasible in practice since it re-
quires knowing in advance the marginal delay that each agent will
impose on all others. This, in turn, requires exact knowledge of
future demand and roadway capacity conditions, as well as coun-
terfactual knowledge of the network states without each driver.

Given the infeasibility of applying MCT, models for approximat-
ing MCT were suggested along the years. Such models commonly
assume a volume delay function [39]. Given the volume (ve) on a
link, e, this function returns the travel time (te). Assuming that the
volume delay function is accurate, the derivative of the function at
ve = i returns the marginal impact of an additional vehicle using
that link. Since this delay affects all i agents that are traveling the
link, the MCT for the ith agent equals dte

dve=i
(i).

∆-tolling Equals MCT
Any proof regarding ∆-tolling requires assuming a flow model.

For our analysis we assume the following commonly accepted flow
model:



ASSUMPTION 1. The delay on each link is expressed by the
BPR volume delay function, te(ve) = Te(1 + α( ve

ce
)β) where ce

is a scale parameter related to the capacity of link e and α, β are
constants (this is the same β used by ∆-tolling). The values of α, β
is identical across all edges.

The BPR volume delay function is widely accepted in the literature
and has been validated in field tests [39, 21].

LEMMA 1. Under the above assumption, the tolls computed by
∆-tolling are equal to MCT.

Proof: We express the BPR volume delay function as:
(1) te(ve) = Te + ave

β where a = Te
α
ce β

.

MCT is defined as the derivative of the delay function ( dte(ve)
dve

)
multiplied by the traffic volume (ve). So we get:
(2) MCTe = ve

dte(ve)
dve

= ve(βave
β−1) = βave

β = β(Te +

ave
β − Te).

Combining (1) and (2) we get:MCTe = β(te−Te) = ∆-tollinge.
2

OSCILLATION EFFECT AND TOLL SPIKES
Under Assumption 1, ∆-tolling calculates the marginal impact

of an agent according to current traffic conditions. In other words,
∆-tolling as calculated at a given time step, i, and for a given
link, e, equals MCT for an agent entering e at time i. By contrast,
∆-tolling (as calculated at time step i) might be different than MCT
for an agent entering the link at a later time step (> i). In a road
network, agents often plan a full origin to destination route prior to
embarking. The route chosen by an agent is optimized according to
current traffic conditions and tolls. This might lead to an oscillation
effect as demonstrated in the following example.

Time Shortcut Highway
step v t τ v t τ

0 0 0 0 0 1 0
1 1 1 1 0 1 0
2 0 0 0 1 1 0
3 1 1 1 0 1 0

Assume that time is discretized into time steps and that an agent
planing its route at time step i will traverse the system at time step
i+ 1. Reconsider our example network from Figure 1 with a single
destination, D1 (disregard D2). Assume that ∆-tolling is used and
that at i = 0 the network is empty and tolls are 0 for both links.
Table 3 specifies the flow volume (v), travel time (t) and toll value
(τ ) for both the highway and shortcut at each time step. At i = 0
the travel time equals 0 on the shortcut and 1 on the highway. As a
result, all agents planning at i = 0 will choose the shortcut causing
it to congest, travel time would increase to 1 and so will the toll
affiliated with it. All agents planning at i = 1 would thus choose to
travel via the highway. As a result, the shortcut will remain empty at
i = 2 and its travel time and toll will reduce to 0. This phenomenon,
where all agents choose to go via the shortcut in one time step and
the highway in the next, will repeat itself, resulting in sub optimal
system performance.

Moreover, if the BPR function isn’t assumed, tolls may unpre-
dictably spike due to traffic irregularities. For instance, whenever
a traffic light turns red, traffic stops and the toll set by ∆-tolling
spikes. On the other hand, when the light turns green traffic flow
resumes and the toll drops.

Avoiding Oscillation and Spikes
Given an oracle that can predict future traffic conditions oscil-

lation could easily be avoided. In such a scenario the anticipated
toll for a future time step i would be calculated according to the
predicted conditions at step i and a stable UE would be reached.
Unfortunately, predicting traffic congestion is currently infeasible
[29], let alone predicting congestion when factoring in tolls.

To deal with oscillation and spikes, under the assumption that
predicting congestion is not possible, we introduce the responsive-
ness parameter R. This parameter defines an exponential smooth-
ing of the toll values over time, where τe(i) = R ·∆-tollinge(i) +
(1 − R)τe(i − 1) (Line 3 in Algorithm 1), τe(i) is the toll value
assigned to link e at time step i, and ∆-tollinge(i) is ∆-tolling as
calculated for link e at time step i. Define τe(−1) = 0 for all links.
Note that this variant (∆-tolling with R) requires no extra com-
munication or computation capabilities. When R = 1 the system
responds immediately to changes in traffic but is susceptible to os-
cillation and spikes. On the other hand, as R → 0 the tolls are sta-
ble, but also are unresponsive to changes in traffic conditions. For
any extreme case a low enough R value would eliminate oscillation
and spikes but at the cost of responsiveness.

EMPIRICAL STUDY
Assumption 1 is amenable to mathematical analysis, but abstracts

many details of traffic behavior which can be significant in practice,
including the effects of travel time variations due to traffic lights (as
mentioned above). Therefore, we complement our theoretical anal-
ysis by evaluating ∆-tolling using established traffic simulators.7

Existing traffic simulators can be divided into three main classes:
Macroscopic models — These models use volume delay func-

tions to model congestion, as described above. On the one hand,
macroscopic models do not model the evolution of traffic over time.
On the other hand, they have nice mathematical properties that ad-
mit efficient algorithms and provable convergence for large net-
works. Such models are still used by many planning organizations
[7].

Mesoscopic models — These model the evolution of traffic ac-
cording to the kinematic wave theory of traffic flow [36, 27], and
are tractable for solving dynamic traffic assignment on large net-
works yet improve on macroscopic models by including dynamic
travel times and queue spillback. They are well-established [7] and
have been calibrated to match observed travel times and link counts
for city networks.

Microscopic models — These are the most detailed models [14,
4, 12]. They simulate the exact state of each vehicle (position, head-
ing, speed) and system (traffic lights, dynamic obstacles, road con-
ditions) in real-time. The computational requirements of these mod-
els typically limit them to detailed study of relatively small road
networks. Moreover, calibrating these models is challenging and
requires distributional knowledge of vehicle characteristics (accel-
eration and braking rates), driver characteristics (reaction time, ag-
gression), and system infrastructure (details of signal timing, in-
cluding actuation).

This section presents results from implementing ∆-tolling on
both macroscopic (demonstrating convergence to SO, cf. Propo-
sition 1), and mesoscopic models demonstrating effectiveness on
city networks (Proposition 2).

As part of this study ∆-tolling was also implemented and tested
on the AIM micro-simulator [12]. Smaller road networks were con-
sidered due to the simulator’s limitations. Nevertheless, general

7Field testing ∆-tolling with real-life traffic is infeasible at this
stage due to technological and regulatory limitations.



trends similar to those obtained by the mesoscopic model were ob-
served. We omit these results as they give no further insights. A
detailed report on the experimental setting and results obtained by
the AIM simulator can be found in [38].

Note that traffic-related studies in engineering venues commonly
present experimental results using only a single traffic model. Our
empirical study covering three different models (macroscopic, meso-
scopic, and microscopic) demonstrates that ∆-tolling is effective
regardless of the underlying traffic model.

Scenarios
Each traffic scenario is defined by the following inputs:

1. Road network, specifying: links’ length, links’ capacity, traf-
fic lights timing and speed limits.

2. Trips table with each trip specifying: origin, destination, de-
parture time, type of vehicle.

For this study two scenarios were used:
Sioux Falls scenario [23] — this scenario is widely used in the

transportation research literature [3], and consists of 76 directed
links, 24 nodes (intersections) and 360,600 trips spanning 24 hours.
The full scenario is accessible online
(https://github.com/bstabler/TransportationNetworks)

Downtown Austin scenario [25] — this network consists of
1247 directed links, 546 nodes and 62,836 trips spanning 2 hours
during the morning peak. The exact trips and signals timing were
measured and provided by capital area metropolitan area (CAMPO)
in respond to our request.

The road networks of both scenarios are depicted in Figure 2
(I). All models used in our empirical study assume that the depar-
ture times and origin-destination pairs are strict. Developing new
models to study the effect of tolls on delaying departure times or
changing the destinations is left for future work.

Macroscopic Model
The macroscopic models calculate the UE in a given scenario

using Algorithm B [10]. At each time step the UE is calculated ac-
cording to given demands, link capacities, network topology and
toll values. For both scenarios the model assumed that travel times
follow the BPR function with the commonly used parameters βm =
4, α = 0.15. We use βm to denote the β value used by the model
which may be different the the value used by ∆-tolling. Toll val-
ues for a given time step are updated according to traffic patterns
observed in the previous time step. In the experiments presented in
this paper, the algorithm was terminated when the difference be-
tween total system travel time over successive iterations was less
than 0.1 minutes. Homogeneous VOT was assumed thus we report
average travel time instead of social welfare for these experiments.

As was mentioned above, macro-models are useful for proving
theoretical attributes regarding UE and SO (under simplified as-
sumptions8 ). We use such a model to give supporting evidence for
the following conjecture (supporting Proposition 1):

CONJECTURE 1. Under static traffic conditions (demands, link
capacities, network topology) and assuming UE emerges at each
iteration (i), ∆-tolling would converge to SO when setting R =
1/i (equivalent to setting the average ∆-tolling observed over all
iterations so far).

8Macroscopic models assume that the link delay function truly re-
flects all delays imposed on traffic including inter-link effects (in-
tersections).

Note that conjecture 1 differs from Lemma 1 by taking into ac-
count the time leg between planning and acting. According to the
macroscopic model, for instance, an agent that plans its route at
time step i (according to tolls and travel times observed at time i)
will traverse the system at time step i+1. This conjecture resembles
the Method of Successive Averages (MSA) for MCT convergence
[46], however, the MSA algorithm modifies link volumes in each
iteration. In Delta-toll, link volumes are a function of tolls and the
updated link volumes don’t necessarily fit the MSA update rule.

Table 1 presents average travel times for our two scenarios (for
now ignore the "Meso" lines). In line with conjecture 1, we ob-
served that for β = 4, ∆-tolling converged to the provable system
optimum after 11 and 27 iterations for the Sioux Falls and Austin
scenarios respectively.9

Mesoscopic Simulator
Mesoscopic flow models are typically used in dynamic traffic

assignment [7]. Dynamic traffic assignment iterates between find-
ing shortest paths, assigning vehicles, and evaluating travel times
through simulation, to find a route assignment near dynamic user
equilibrium [25]. Mesoscopic models can be used to perform many
simulations of city network traffic in a reasonable time. Most meso-
scopic models use the kinematic wave theory of traffic flow, which
models traffic as a compressible fluid [27, 36]. The kinematic wave
theory models several important aspects of traffic behavior includ-
ing the formation and dissipation of congestion waves over time
due to bottlenecks. The kinematic wave model involves a system
of partial differential equations which are solved numerically given
initial and boundary conditions. One common solution method is
the cell transmission model (CTM) [8, 9], which is a Godunov
scheme [17] for the kinematic wave theory. The CTM can be used
with a variety of intersection models [40], including traffic signals
and autonomous reservation schemes [24]. Using such intersection
models, CTM, unlike the macro model, takes into account inter-link
effects, making CTM more realistic on the one hand but intractable
to compute the SO on the other. We use such a model (CTM) to
give supporting evidence for Proposition 2.

Our experiments required two adaptations to the CTM model:

• Allowing agents to change routes adaptively in response to
dynamic travel times and tolls. When arriving to a node (in-
tersection) each agent calculates and follows its optimal route
according to currently observed traffic conditions (tolls and
travel times).

• When running CTM, agents seeking to enter a link might be
blocked if that link is fully occupied and no free space exists.
To avoid traffic gridlock (agents are blocking each other in

9No statistical significance tests are provided for the Macroscopic
results since this model is deterministic.

Scenario No tolls β = 1 β = 2 β = 4 β = 8
Sioux Falls

Macro 20.74 20.09 19.98 19.95 19.96
Meso 24.74 20.28 20.08 19.92 20.26

Downtown Austin
Macro 21.92 21.81 21.79 21.78 21.79
Meso 20.67 16.06 15.64 15.82 17.39

Table 1: Average travel time (Minutes) for different β values (as
defined for ∆-tolling) using Macroscopic and Mesoscopic (R =
10−4) models.



Figure 2: Mesoscopic results for the Sioux Falls (top row) and Austin (bottom row) scenarios. I: Sioux Falls network (all intersections are
traffic lights), Austin network (traffic lights are marked with a red square, unmarked intersections use stop/yield signs). II: Heatmap presenting
social welfare for β vs R. Darker color represents worse social welfare. β = 0 represents no tolls. III: R vs social welfare (constant β value
= 4) each data point is an average over 10 full scenario runs. IV: Time vs social welfare (β = 4) each data point is an average over the past
500 simulated seconds.

a cycle), if an agent is blocked for more than 96 seconds it
is assigned a different path to its destination while avoiding
the blocked link (value of 96 seconds resulted in the best
performance, with regards to social welfare, when no tolls
are considered). If no such path exists its current path is not
changed.

• Due to the dynamic nature of traffic and toll values, agents
are required to constantly re-optimize their route and ad-
just towards the lowest cost path leading to their destination,
where the cost of the path equals the travel time times VOT
plus tolls.

For running the Sioux Falls scenario under CTM we used an
adapted version suitable for a dynamic traffic assignment [24]. The
adapted scenario consist of 28,835 trips over 3 hours and traffic
signal timing based on Webster’s formula [22]. The Austin sce-
nario, on the other hand, is originally suitable for a dynamic traffic
assignment and also includes real traffic light timing. The meso-
scopic model for both Sioux Falls and downtown Austin use dy-
namic network loading and demands meaning that travel times and
congestion vary with time.

Results are provided in Figure 2 as three plots for each of the
two scenarios. Each data point represents an average of 10 full sce-
narios.10 95% confidence intervals are provided when applicable.
Social welfare is reported as average utility instead of total utility

10In each scenario the VOT assigned to each agent was ran-
domly chosen using a Dagum distribution with parameters â =

for ease of presentation. For the purpose of social welfare analysis
we assume that collected tolls are redistributed (as tax reductions
for instance).

In general we observe that similar trends arise from both sce-
narios as we specify next. The first plot (II) is a heatmap showing
how different combinations of the β and R parameters affect sys-
tem performance (with regards to social welfare). We can observe
that for any fixed value for one parameter there is a value for the
second parameter that achieves near optimal performance. Hence,
for the following experiments we set a constant β = 4 value. The
second plot (III) shows the average social welfare over all agents
for a given R value. High R values (close to 1) hurt overall per-
formance (due to oscillation, as was explained above). Very low R
values (close to 0) make no difference (tolls remain insignificant).
An R value of about 10−4 yielded the best performance of 26%
and 33% increase in social welfare for the Sioux Falls and Austin
scenarios respectively. The third plot (IV) presents a breakdown of
the average social welfare into time intervals. The demands (num-
ber of agents embarking on each time step) are also presented as a
function of time. Results are presented for three representative R
values (10−3, 10−4, 10−5) as well as no tolls. We can see, again,
that a R = 10−4 yields best performance during peak hour as well
as helping to delay the formation of congestion.

Table 1 also presents average travel times for the Meso-model.
We observe a 24% and 32% reduction in average travel time for

22, 020.6, b̂ = 2.7926, ĉ = 0.2977, which models personal in-
comes in USA [32].



Sioux Falls and Austin respectively when ∆-tolling is applied. The
observed reduction in travel time is proportionally smaller com-
pared to the increase in social welfare due to heterogeneous VOT.

Note that the benefits of ∆-tolling observed under the macro-
model are significantly lower compared to those observed by the
meso-model. This is because the volume delay functions in the
macro-model do not explicitly enforce capacities. The meso-model
strictly prohibits flows from exceeding capacity which results in
spillbacks. Spillbacks can dramatically increase travel time during
periods when demand exceeds capacity.

CONCLUSIONS
This paper discusses the micro-toll traffic optimization (MTTO)

problem where tolls should be assigned to every link in a road net-
work. The objective in MTTO is that self-interested agents would
reach a user equilibrium that is optimal from a system perspective.

A novel tolling scheme denoted ∆-tolling is presented and an-
alyzed. We show that under simplifying assumptions, ∆-tolling is
equivalent to marginal-cost tolling, which is known to yield optimal
system performance. Empirical results are provided, supporting the
claim that ∆-tolling results in system optimum under the simplify-
ing assumptions of a macroscopic-model. Next, the effectiveness
of ∆-tolling is presented when using a more realistic mesoscopic
traffic simulator showing a 33% increase in social welfare when
∆-tolling is applied in downtown Austin during rush hour.

This paper looks into the future and assumes that all agents are
connected and have full knowledge of tolls and travel times while
acting fully rationally. Future work will deal with nowadays prac-
tical implementation issues such as partial compliance and ratio-
nality (mainly based on [33]) and solving MTTO using positive
incentives (instead of tolls, for political reasons).
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APPENDIX:

Example Where Adaptive Tolling Is Required
Building on Pigou’s ([34]) example, we give an example where

aligning the UE with the SO requires tolls that dynamically change
with traffic demands. Consider a second destination (D2) in our
example road network (Figure 1). Similar to destination D1, the
travel time form O to D2 via the shortcut (dotted line) is equal to
the fraction of the overall traffic traveling via the shortcut (heading
both toD1 andD2). In contrast to destinationD1, the travel time on
the highway (solid line) to destination D2 is only 0.5 (tD2(vh) =
0.5).

Let z be the fraction of agents heading to destination D1 (1 −
z heading to D2). Next we prove that, in this example, aligning

SO and UE requires assigning the shortcut a dynamic toll that is a
function of z. We begin with a supporting Lemma.

LEMMA 2. At equilibrium, there cannot both be agents head-
ing to D1 via the highway and heading to D2 via the shortcut.

Proof: At equilibrium, a vehicle heading to D1 will consider
traversing the highway only if traveling the shortcut takes at least
one unit of time. On the other hand, a vehicle heading to D2 will
consider traversing the shortcut only if traveling the shortcut takes
no more than 0.5. 2

Given Lemma 2, there are three complementary cases that may
apply:

1. All agents taking the highway are heading toD2 (vh in total)
and some agents taking the shortcut are also heading to D2.
This case requires that the fraction of agents heading to D1

is smaller than the fraction taking the shortcut (z < vs).

2. All agents heading toD2 are taking the highway (1−z in to-
tal) and some agents heading to D1 are also taking the high-
way ((vh) − (1 − z) = z − vs in total). This case requires
that the fraction of agents heading to D1 is greater than the
fraction taking the shortcut (z > vs).

3. All agents heading to D2 are taking the highway and all
agents heading to D1 are taking the shortcut. This case re-
quires z = vs.

The proportional travel time (travel time multiplied by the frac-
tion of traffic) for case 1 is v2s for the shortcut and 0.5(vh) for the
highway. The average travel time in this case is f1(vs) = v2s +
0.5(1− vs). As a result, f ′1(vs) = 2vs − 0.5 and vs = 0.25 in the
SO. In order for the SO and UE to align, a toll of 0.25 should be ap-
plied on the shortcut. This case applies when z < vs ⇒ z < 0.25.

The proportional travel time for case 2 is v2s for the shortcut and
0.5(1 − z) + 1(z − vs) for the highway. The average travel time
is f2(vs) = v2s + 0.5(1− z) + 1(z − vs). f ′2(vs) = 2vs − 1 and
vs = 0.5 in the SO. This case applies when z > vs ⇒ z > 0.5.
Finally, the proportional travel time for case 3 (where z = vs) is z2

for the shortcut and 0.5(1− z) for the highway. The average travel
time is f3(z) = z2 + 0.5(1− z).

LEMMA 3. For 0.25 ≤ z ≤ 0.5 case 3 represents the SO.

Proof: If case 3 is not the SO than directing some of the flow
heading toD1 via the highway xor directing some of the flow head-
ing to D2 via the shortcut can decrease average travel time.11 We
treat each of these two cases separately:

1. Directing δ > 0 flow heading to D1 via the highway: In
this case, the average travel time equals (z − δ)2 + 0.5(1−
z) + 1(δ) = z2 + 0.5(1 − z) − 2δz + δ2 + δ = f3(z) −
2δz + δ2 + δ. Reducing average travel time (compared to
f3(z)) requires−2δz+ δ2 + δ < 0⇒ δ < 2z− 1. There is
no δ > 0 that satisfies this requirement when z < 0.5.

2. Directing δ > 0 flow heading to D2 via the shortcut: In
this case, the average travel time equals (z + δ)2 + 0.5(1−
z − δ) = z2 + 0.5(1 − z) + 2δz + δ2 − 0.5δ = f3(z) +
2δz+ δ2− 0.5δ. Reducing average travel time (compared to
f3(z)) requires 2δz+δ2−0.5δ < 0⇒ δ < 0.5−2z. There
is no δ > 0 that satisfies this requirement when z > 0.25.

11It is never beneficial to direct vehicles heading toD1 via the high-
way while simultaneously directing vehicles heading to D2 via the
shortcut as proven in Lemma 2.
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According to Lemma 3, case 3 is SO for 0.25 ≤ z ≤ 0.5. For
case 3 to apply, traveling the shortcut should cost more than 0.5 and
less than 1 (travel time and toll combined). Since the travel time on
the shortcut equals p = z and 0.25 ≤ z ≤ 0.5, any toll from the
range (0.25, 0.5) would lead to the SO and UE to align.

In this example problem, achieving SO=UE requires assigning
the shortcut a dynamic toll that is a function of z: For z < 0.25 the
toll should be 0.25, for 0.25 ≤ z ≤ 0.5, any toll value from the
range (0.25, 0.5) and for z > 0.5 the toll should be 0.5.
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D. Van Amelsfort. DriversâĂŹ willingness-to-pay to reduce
travel time: evidence from the san diego i-15 congestion
pricing project. Transportation Research Part A: Policy and
Practice, 37(4):373–387, 2003.

[7] Y. Chiu, J. Bottom, M. Mahut, A. Paz, R. Balakrishna,
T. Waller, and J. Hicks. Dynamic traffic assignment: A
primer. Transportation Research E-Circular, (E-C153),
2011.

[8] C. F. Daganzo. The cell transmission model: A dynamic
representation of highway traffic consistent with the
hydrodynamic theory. Transportation Research Part B:
Methodological, 28(4):269–287, 1994.

[9] C. F. Daganzo. The cell transmission model, part ii: network
traffic. Transportation Research Part B: Methodological,
29(2):79–93, 1995.

[10] R. B. Dial. A path-based user-equilibrium traffic assignment
algorithm that obviates path storage and enumeration.
Transportation Research Part B: Methodological,
40(10):917–936, 2006.

[11] B. Dietrich. Über ein Paradoxon aus der Verkehrsplanung.
Unternehmensforschung, 12:258–268, 1969.

[12] K. Dresner and P. Stone. A multiagent approach to
autonomous intersection management. Journal of artificial
intelligence research, pages 591–656, 2008.

[13] S. Fan and B. Seibold. A comparison of data-fitted first order
traffic models and their second order generalizations via
trajectory and sensor data. arXiv preprint arXiv:1208.0382,
2012.

[14] M. Fellendorf and P. Vortisch. Microscopic traffic flow
simulator vissim. In Fundamentals of traffic simulation,
pages 63–93. Springer, 2010.

[15] T. L. Friesz, D. Bernstein, and N. Kydes. Dynamic

congestion pricing in disequilibrium. Networks and Spatial
Economics, 4(2):181–202, 2004.

[16] L. Gardner, H. Bar-Gera, and S. D. Boyles. Development and
comparison of choice models and tolling schemes for
high-occupancy/toll (HOT) facilities. Transportation
Research Part B, 55:142–153, 2013.

[17] S. K. Godunov. A difference method for numerical
calculation of discontinuous solutions of the equations of
hydrodynamics. Matematicheskii Sbornik, 89(3):271–306,
1959.

[18] W. J. Harrison, C. Pell, P. M. Jones, and H. Ashton. Some
advances in model design developed for the practical
assessment of road pricing in hong kong. Transportation
Research Part A: General, 20(2):135–143, 1986.

[19] D. Joksimovic, M. Bliemer, and P. Bovy. Optimal toll design
problem in dynamic traffic networks with joint route and
departure time choice. Transportation Research Record:
Journal of the Transportation Research Board,
(1923):61–72, 2005.

[20] R. Jou, Y. Chiou, K. Chen, and H. Tan. Freeway driversâĂŹ
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