
Multi-Robot Human Guidance:
Human Experiments and Multiple Concurrent Requests

Piyush Khandelwal†,‡
†Cogitai Inc.

5308 Grover Ave
Austin, TX, 78756, USA

piyushk@{cogitai.com,cs.utexas.edu}

Peter Stone‡
‡Department of Computer Science

University of Texas at Austin
Austin, TX 78712, USA

pstone@cs.utexas.edu

ABSTRACT
In the multi-robot human guidance problem, a centralized
controller makes use of multiple robots to provide naviga-
tional assistance to a human in order to reach a goal location.
Previous work used Markov Decision Processes (MDPs) to
construct a formalization for this problem [13], and evalu-
ated this framework in an abstract setting only, i.e. without
experiments using high-fidelity simulators or real humans.
Additionally, it was unable to handle multiple concurrent
requests and did not consider buildings with multiple floors.
The main contribution of this paper is the introduction of
an extended MDP framework for the multi-robot human
guidance problem, and its application using a realistic 3D
simulation environment and a real multi-robot system. The
MDP formulation presented in this paper includes support
for planning for multiple guidance requests concurrently as
well as requests that require a human to traverse multiple
floors. We evaluate this system using real humans control-
ling simulated avatars, and provide a video demonstration
of the system implemented on real robots.

Keywords
Multi-Robot Planning; MDP; MCTS; UCT

1. INTRODUCTION
Recent progress in the development of service robots is

making it increasingly possible to deploy multiple robots in
a building to perform work such as maintenance, delivery,
and building security. Given that many robots may be ubiq-
uitously present in the environment performing such routine
activities, it is becoming realistic to envision a scenario in
which a human approaches a robot and asks for help on
a new task. Such new tasks may require coordination be-
tween multiple robots, and may have to be done in paral-
lel and without neglecting the robots’ background/routine
tasks. An automated system ought to help the human com-
plete this new task, while ensuring that robots are minimally
deviated from their duties. In this paper, we study the prob-
lem where this new task is a human asking for navigational
assistance, and how the automated system can use multiple
robots to efficiently guide the human to his goal.

Appears in: Proceedings of the 16th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2017), S. Das, E. Durfee, K. Larson, M. Winikoff
(eds.), May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

This problem, termed the multi-robot human guidance
problem, has been formulated as a Markov Decision Process
(MDP) [13]. Using this MDP, an automated system can al-
low the human to follow a robot all the way from the start
location to his goal. Alternatively, the system may choose
to use one robot to instruct the human to walk ahead in
a particular direction, while a second robot can prepare to
provide subsequent navigational assistance further ahead. If
such handoffs can be correctly executed, there are two main
advantages. First, a human’s ability to navigate crowded
building environments may be far superior to a robot’s, al-
lowing the human to reach his goal faster if he can complete
part of the route himself. Second, robots are deviated for
less time from their background duties to help the human.

MDPs are well suited to handle such a formulation, as
they can capture the uncertainty in the human’s motion
patterns in case the human misinterprets the instructions
conveyed by a robot. The first contribution of this paper
is an extended MDP framework that goes beyond previous
work by incorporating multiple concurrent guidance requests
and requests requiring traversal across multiple floors.

Additionally, such a problem cannot be preplanned for,
as the possible combinations of robot, start, and goal lo-
cations can be intractably high for even a small building.
At the same time, immediate action needs to be taken in
order to allow the human to reach his goal quickly. For
this reason, we use real-time probabilistic planning tech-
niques to solve the multi-robot coordination problem. In
this paper, we demonstrate that planning approaches based
on Monte-Carlo Tree Search (MCTS) can be used to approx-
imately solve the guidance MDP in real-time. Whereas past
work has been evaluated in comparison to naive baselines,
for the purpose of more meaningful evaluation, we introduce
a new heuristic baseline adapted from the Pickup and De-
livery Problem with Transfers (PDP-T) [7] to handoff the
human from one robot to the next.

Since MDP’s inevitably abstract away many details about
the real world, it is necessary to implement this framework
on a real system to ensure that human-robot coordination
can be effectively solved in practice. In previous work, the
multi-robot guidance system was neither implemented on
real robots nor a high-fidelity simulation environment [13].
The third contribution of this paper is the instantiation of
the MDP framework on a real multi-robot system and a real-
istic 3D simulation. We perform a user study in simulation,
where real humans control simulated avatars, to demon-
strate that planning in the abstract MDP domain does not
differ substantially from a more realistic implementation.



2. RELATED WORK
Multi-robot coordination via decentralized Partially Ob-

servable MDPs (POMDPs) has been studied by auctioning
different roles, under the assumption that each robot can
be assigned a well-defined role or behavior [6]. MCTS has
also been used to distribute a set of tasks among multiple
robots [11]. In the multi-robot human guidance problem,
there is no explicit demarcation of subtasks such that they
can be easily distributed among robots.

Recent research has investigated how multiple real robots
can coordinate to perform tasks such as delivery and box-
pushing in small controlled environments using decentral-
ized POMDPs with macro actions [1, 2]. In this prior work,
actions are designed such that robots are controlled at a
coarse granularity using the POMDP, which is similar to
how we design actions in Section 3. In our work, central-
ized communication is possible, the state is assumed to be
fully observable, and our approaches to solving the MDP
are designed towards producing good solutions in real-time
rather than the optimal solution. Consequently, the scale of
problems solvable by our system is considerably larger.

Both the Pickup and Delivery Problem with Transfers
(PDP-T) [7] and the Dial-A-Ride Problem (DARP) [10] de-
fine a system of agents performing geographically distributed
tasks, similar to the problem studied in this paper. While
both these problems are typically defined at a larger scale
than those dealt by our system, these problems assume that
action outcomes are deterministic. In contrast, the MDP
formulation described in this paper is more suitable for the
stochasticity that arises from human-robot interaction.

While multi-robot guidance has not often been studied in
previous literature, many systems have used single robots to
guide people. For instance, robots have been used to lead
tours [25] and provide navigational assistance to the elderly
and visually impaired [18, 19]. Other mediums apart from
robots have also been used to guide people in buildings. For
instance, stationary booths and personal handheld devices
have also been used to provide navigational instructions to
humans [4, 5]. Our work differs in motivation from these
previous works. We assume a system of robots is already
in place performing routine duties, and guidance is an inde-
pendent task that needs to be completed in parallel.

3. PROBLEM FORMULATION
An MDP can be expressed as M = 〈S,A, P,R〉 where

S represents the environment’s state space, A(s) is the set
of actions the system can take at state s ∈ S, P is the
transition function that gives the transition probability of
reaching a particular next state from a given state-action
pair (P : S × A × S → R such that

∑
s′ P (s, a, s′) = 1),

and R is the reward received given a transition (R : S ×
A× S → R) [24]. A task inside this MDP is episodic with a
start state where one or multiple people have just requested
navigational assistance, and a set of termination states in
which all persons have arrived at their goal locations. A
task solution is represented as a policy π(s) : S → As that
provides the action the system should take at state s.

When formulating an MDP, among the key representa-
tional decisions are how to represent the state and action
spaces, which in turn determine the transition function. In
the multi-robot human guidance problem, the main source
of uncertainty is the human’s motion. We thus construct the

(a) LEAD action (b) DIRECT action

Figure 1: The system directing a real human con-
trolling a simulated avatar, as explained in Section 6.
In Fig. 1a the system is using a robot to lead a per-
son from one graph node to an adjacent one. Fig. 1b
demonstrates how the system can direct the human
to walk ahead by himself in a particular direction.

state and action spaces such that this motion can be cap-
tured as the stochastic transition function among states that
can be influenced by robot actions. To this end, the MDP
state in the multi-robot human guidance problem needs to
keep track of locations of all the persons and robots in the
environment, as well as the background tasks each robot
needs to perform. Actions in this MDP allow the system to
proactively move robots to help humans, as well as lead or
direct humans to particular locations (see Figure 1). The re-
ward function captures the two objectives of the multi-robot
human guidance problem: (i) completing guidance requests
quickly, and (ii) reducing diversions from background tasks.

In a building environment, human and robot locations can
be expressed as 〈x, y, f〉, where x, y ∈ R represent real world
coordinates on floor f . We constrain possible locations by
expressing them using a topological graph g = 〈Ng, Eg〉.
The set of nodes Ng represent key locations in the environ-
ment where humans are likely to make navigational choices,
and the set of edges Eg connect neighboring nodes. Fig-
ure 2a illustrates the graph for a simple environment. Given
g, physical locations can be projected on edge euv from node
u to node v to produce a location tuple luvp = 〈u, v, p〉 where
p ∈ [0, 1] represents how far along edge euv the projection
lies. If p = 0, then the object projects exactly at node u,
and if p = 1 then the object projects exactly at node v.

Next, we build on the MDP described in previous work [13]
and formalize the multi-robot human guidance problem with
support for multiple concurrent requests and multiple floors.

3.1 State Representation
The MDP state uses a factored representation. A state s

can be expressed using many different sets of factors:

s = sindependent × sguidance0 × · · · × sguidancen .

Here, sindependent tracks various factors of the domain that
are independent from each individual guidance request, such
as information about each robot’s location, the background
task each robot needs to perform, and whether a robot is
currently assisting a human instead of performing its back-
ground task. sguidancei captures information specific to ith
guidance request being concurrently addressed, and n rep-
resents the total number of ongoing guidance requests.



(a) Topological repr. (b) MDP State repr.

Figure 2: Topological representation for a single-
floored environment and an example of a single-
request MDP state. The human’s location is marked
by a black h, and robots are marked as r0 and r1.
The human’s goal (node 12) is marked by a check-
ered flag, and the squares mark the location of back-
ground task for both robots (nodes 6 and 10).

Formally, sindependent comprises the following information
for every robot r, labeled as continuous (C) or discrete (D):

• lu (D), lv (D), and lp (C ) represent robot r’s topolog-
ical graph location, and can take the following values:

lu ∈ Ng, lv ∈ Ng, and lp ∈ [0, 1].

• τd ∈ Ng (D) is the location of the background task τ
that the robot needs to perform.

• τT (C ) is the total time the robot needs to spend at
τd to complete background task τ .

• τt (C ) is the time the robot has already spent at τd.
It can take any value less than τT , and is initialized
to 0 whenever a new background task τ is assigned to
robot r once the previous one is completed.

• h (D) represents if the robot has been diverted to help
a guidance request, and can take the following values:

h ∈ {NONE} ∪Ng,

where NONE represents that the robot has not been
assigned and h ∈ Ng represents that the robot should
move to h to help with a guidance request.

• preemptible (D) represents whether the robot can be
reassigned. A robot in the midst of leading a person
from graph node u to adjacent graph node v cannot
be reassigned until it reaches graph node v.

sguidancei comprises request-specific environment factors:

• locv ∈ Ng (D), locu ∈ Ng (D), and locp ∈ [0, 1] (C )
represent a person’s graph location (for request i),
where locv is always the person’s current location and
locu is the person’s previous location.

• a.type (D) represents whether any assistance was pro-
vided to the human at his current location locv by
a colocated robot. Assistance can only be provided
when the person is exactly at locv, i.e. locp = 1. Fur-
thermore, a.type can take values in {NONE, LEAD,
DIRECT}. LEAD specifies that the person should fol-
low the colocated robot, and DIRECT specifies that
the person should walk ahead by himself in the direc-
tion of an adjacent graph node.

• a.loc (D) is a location adjacent to the human’s current
location loc that the system has advised the human to
move to, and can take values in:{

NONE a.type = NONE
v : v ∈ adjacentNodes(locv) a.type 6= NONE

A special case for 〈a.type, a.loc〉 is 〈LEAD, locv〉, which
specifies that both the colocated robot and the human
should wait at location locv.

• goal represents the human’s goal location.

3.2 Action Representation
The actions in this MDP are defined at a high level of con-

trol, and it is assumed that robots have control mechanisms
for navigating to a location in the environment. Actions
are taken whenever any human completes a transition to
locv, and consequently the action duration is not constant
and the MDP formulation is semi-Markov [9]. At any given
state, there are many robots that the system needs to con-
trol concurrently. For instance, at the state represented by
Figure 2b, the system can execute an action where robot r0
directs the human to node 9, and robot r1 is assigned to stay
at node 9 to wait for the human. Once the human reaches
node 9, the system can take a second action where robot r1
leads the human to his destination at node 12.

As expressed, these actions require coordinating multiple
robots, and can contain one of the following elements:

• AssignRobot(r, v) (v ∈ Ng) – Deviate robot r from its
current background task and start navigation to any
node v to assist in a guidance request at a future time.

• ReleaseRobot(r) – Release a previously assigned robot
r, and allow it to return to its background task.

• DirectHuman(i, r, v) – Use robot r to direct a colocated
human (represented by request i) to node v adjacent
to the human’s (and robot’s) location guidancei.locv.
This action is depicted in Figure 1b.

• LeadHuman(i, r, v) – Use robot r to lead a colocated
human (represented by request i) to adjacent node v
(depicted in Figure 1a). In the special case when v =
guidancei.locv, robot r asks the human to wait at the
current location for a fixed amount of time. The robot
can use this time to work on a background task at the
current location.

For the two actions presented in the previous paragraph,
the first action equates to executing [DirectHuman(0,0,9),
AssignRobot(1,9)] when the human is at node 8, and [Lead-
Human(1,0,12)] once the human reaches node 9. In the un-
likely situation that the human chooses to move to node 6
instead of node 9 despite being directed to do so, r1 does not
need to stay at node 9 indefinitely. The system can execute
ReleaseRobot(1) as one of the constituents of the next action
to release robot r1 back to its background task, and execute
a different policy to help the human reach the goal.

It is important to note that not all combinations of action
elements constitute a valid action. For instance, the sys-
tem cannot execute [LeadHuman(0,0,9), AssignRobot(0,6)]
at the first state, as robot r0 cannot move to nodes 6 and 9
at the same time. A single robot can either be (re)assigned
a new location to aid a guidance request, lead a colocated



human to a particular location, or be released from a previ-
ous assignment. Similarly, a robot can either direct or lead
a colocated human, but not both. And finally, action ele-
ments are expressed in a canonical order such that no two
sequences of elements can lead to the same action.

One of the main challenges of the action representation
presented above is that the number of possible actions at
a given state is extremely high. For instance, at the state
represented by Figure 2b, the number of possible actions is
720.1 To reduce this branching, we use operator decompo-
sition [22] to split various concurrent elements of an action
into sequential actions. Decomposition decouples different
actions and allows simulation-based search (see Section 4.3)
to quickly prune useless action elements without considering
all possible combinations that include that element.

3.3 Transition Function
Each constituent element of the action space induces some

deterministic changes in the domain, which are outlined in
Table 1. Once the deterministic changes from a given action
sequence have been executed, the system waits for time to
pass. During this transition, changes to the state occur from
three sources (apart from those mentioned in Table 1):

1. Robots that complete background tasks are assigned
new ones. The queue of background tasks is known
apriori, resulting in a deterministic state change.

2. Robots and humans move around in the environment.
This motion is inherently non-deterministic since nav-
igation speeds can be variable, and robots and humans
may take longer if they need to navigate around ob-
stacles.

We ignore this non-determinism and assume deter-
ministic motion on the part of robots and humans,
as it constrains the set of continuous variables in the
state representation to a discrete set of values. Conse-
quently, simulation-based planners converge faster as
the same states get repeated more often since this non-
deterministic branching is ignored. In this model, hu-
mans move at an average speed of v̄h, and robots move
at an average speed of v̄r. We discuss the drawbacks of
ignoring this non-determinism while considering more
realistic implementations in Section 6.

3. It is also possible that humans may misinterpret di-
rections from robots. For instance, for the situation
depicted in Figure 1b, should the robot giving advice
be misoriented from its estimate of its own location, it
may direct the human to the path on the left instead of
the intended path on the right. The transition model
needs to account for such non-determinism.

In this model, we assume that when a robot leads a
human to an adjacent location (Figure 1a), or waits
with the human at the current location, the transi-
tion is always deterministic. If a robot directs the hu-
man, or no robot is present at a human’s location, the

1Either robot can be assigned to one of 14 locations or not
assigned (15 choices per robot). At the same time, r0 can
direct the human to nodes 6 or 9, or not direct the human
(152 × 3 choices). Alternatively, r0 can lead the human to
nodes 6 or 9, or wait at node 8, and r1 is the only robot
that can be assigned (15× 3 choices). The total number of
actions is thus 152 × 3 + 15× 3 = 720.

model assumes the human transitions to an adjacent
graph node non-deterministically, with the most likely
outcome being the direction intended by the robot, or
the human’s previous direction of motion, respectively
(formal details in [13]). If a robot directs the human to
a different floor, the robot displays the message“Please
proceed to floor X” to the human instead of an arrow,
and this transition is assumed to be deterministic.

From this description of the transition function, it is evi-
dent that we have made many design approximations in the
construction of this MDP. In Section 6, we demonstrate that
despite hand-coding the transition function, performance
metrics gathered using a multi-robot guidance system imple-
mented in a high fidelity simulation environment (with real
humans controlling simulated avatars) follow similar trends
to those observed when using these approximations.

3.4 Reward
The reward function needs to balance the time taken to

complete guidance tasks against the time for which robots
are deviated from their background task. The overall re-
ward function can be expressed as a linear combination of
individual rewards as follows:

Rss′ = −
n∑

i=0

ui∆t−
∑
r

Ur
ss′ ,

where n is the number of ongoing guidance requests, ∆t is
time elapsed during the transition from state s to state s′,
ui is the utility of performing guidance task i.

The second term in the above expression captures the cost
of deviating robots from their background tasks, and it can
be computed using the deterministic motion model of robots
as follows. The utility loss for a robot r diverted from its
background task τ (with average utility τ̄u) is dependent on
the amount of time the robot is delayed in reaching task
location τd:

Ur
ss′ = τ̄u(timeDest(rs′ , rs.τd) + ∆t− timeDest(rs, rs.τd)),

where timeDest(rs, rs.τd) is the time robot r needs to reach
τd from state s in which robot r is located at rs.〈lu, lv, lp〉,
and can be computed using average robot speed v̄r.

Now that we have described all the elements of the MDP,
in the next section we describe how this MDP can be ap-
proximately solved using various approaches, and present an
empirical comparison of these approaches.

4. MDP SOLUTION APPROACHES
In this section, we present three main approaches along

with a number of variants to generate a policy for guiding
humans given an MDP as formulated in the previous sec-
tion. The first two approaches are intuitive heuristics for
solving the MDP, and only make use of actions in the do-
main that have deterministic outcomes in order to ensure
that humans reach their destination. The third approach,
based on MCTS, makes use of simulation-based search to
find actions that maximize the cumulative reward estimate.

4.1 Single Robot Approach
In the guidance MDP, it is assumed that for every human

requesting assistance, a human approaches a robot perform-
ing a background task at a location. One straightforward
solution is to use that robot to lead the human all the way to



Action Next State s′ = s except:
AssignRobot(r,v) s′.robotr.h = u
ReleaseRobot(r) s′.robotr.h = NONE
DirectHuman(i,r,v) s′.guidancei.a.〈type, loc〉 = 〈DIRECT, v〉
LeadHuman(i,r,v) s′.guidancei.a.〈type, loc〉 = 〈LEAD, v〉, s′.robotr.h = v, s′.robotr.preemptible = false.
∅ (passage of time) s′.guidancei.a.〈type, loc〉 = 〈NONE,NONE〉,

∀r : s′.robotr.〈h, preemptible〉 =
{

〈NONE, true〉 s.robotr.preemptible = false
〈s.robotr.h, true〉 otherwise

,

and other deterministic and non-deterministic changes described in Section 3.3.

Table 1: Transition functions for each action in the MDP. ∅ represents the action when time moves ahead in
the domain, after all individual action elements in the sequence have been executed.

his goal. This heuristic can be implemented by taking a se-
quence of LeadHuman actions to the adjacent node along the
shortest path to the human’s goal. Once the human reaches
the goal location, the robot returns back to the start loca-
tion and continues its original background task. We term
this approach the SingleRobot approach.

Sometimes, completing the robot’s background task at the
start location and then leading the human all the way to
his goal can generate a higher reward than directly follow-
ing the SingleRobot approach, for instance when the robot’s
next background task is in the same direction as the goal.
This approach can be achieved by executing LeadHuman
(with the current location as the argument) repeatedly at
a request’s start location until the background task is com-
pleted, after which the SingleRobot approach is followed.
We term this approach as SingleRobot with Wait, or Sin-
gleRobotW.

4.2 PDP-T Approach
Previous work has looked at the Pickup and Delivery

Problem with Transfers (PDP-T) [7] where a set of packages
need to be delivered by multiple robots given specific deliv-
ery windows and robot capacity constraints. The problem
is solved in a decentralized manner where each robot uses
heuristics to decide on package transfers, and an auction
mechanism is used to coordinate between multiple robots.
While there are differences between the multi-robot guid-
ance and PDP-T domains, we present a heuristic approach
adapted from that work here.

Intuitively, this approach follows the same principle as the
SingleRobot approach, except it attempts to exchange the
robot leading the human should it yield a higher reward,
using one of the following two handoff situations:

1. The robot leading the human and the second robot are
at the same location, and the second robot can take
over leading the human to the goal.

2. The robot leading the human reaches an elevator, and
directs the human to another floor where the second
robot is waiting to lead the human.

The pseudocode for the PDP-T approach is outlined in
Algorithm 1. Similar to the SingleRobot approach, a robot
is leading a human to the goal (Lines 3-5). The system at-
tempts to find a free robot that is performing background
tasks whose path to perform these tasks will intersect the
human’s path to the goal (Lines 8-10). If an intersection
exists, the systems finds the policy with the highest cumu-
lative reward that satisfies one of the two handoff situations
(Line 11). Such a policy can perform better than leading
the human all the way to goal using the original robot, and

Algorithm 1 The PDP-T approach

1: for all request i ∈ s.guidance do
2: if transitionIncomplete(i) then cont. to next i

3: r ← getColocatedRobotId(i)
4: rewardbest ← rewardForSingleRobotPolicy(i, r)
5: pathr ← pathToGoalForSingleRobotPolicy(i, r)
6: rexchange ← null
7: for all robot r′ ∈ s.robots do
8: if notFree(r′) then cont. to next r′

9: pathr′ ← pathForFutureBackgroundTasks(r′)
10: if noIntersect(pathr, path′

r) then cont. to next r′

11: rewardr′ ← rewardForExchangePolicy(i, r, r′)
12: if rewardr′ > rewardbest then
13: rexchange ← r′

14: rewardbest ← rewardr′

15: if rexchange is not null then
16: planExchange(i, r, r′)
17: setNotFree(r′)

the system selects the policy among all robots that max-
imizes this reward (Lines 12-15). The system then plans
and executes actions necessary to execute this policy (Lines
15-17).

4.3 MCTS Planning Approach
Using approximate planning algorithms such as MCTS to

search through the space of available actions can help a sys-
tem find a policy that produces a better cumulative reward
than heuristic approaches in expectation [16]. Using a simu-
lator of the MDP to generate samples, MCTS executes many
planning simulations from the current state to compute esti-
mates of the cumulative reward for taking different actions,
while building a tree to guide search. In the multi-robot
human guidance problem, the system can make many such
planning simulations while humans are in midst of making
transitions from one graph node to another.

Furthermore, MCTS can restrict search to more relevant
regions of the state space using intelligent action selection
schemes such as UCB1 [3], which is used in experiments
presented in this paper. Whenever it encounters a state
in the search tree it has not previously seen, it can boot-
strap exploration using a default policy, such as the Sin-
gleRobot approach in the multi-robot human guidance prob-
lem. Whenever a simulation reaches a terminal state, or
the length of the trajectory in the simulation reaches a pre-
specified length, the rewards observed along the simulation
are backpropagated back to the tree root, informing the ac-
tion selection process in the tree. In this paper, we use the
MaxMCTS(λ) backup strategy [14], which promotes faster



convergence than standard Monte Carlo backups by biasing
reward estimates quickly to good yet potentially suboptimal
policies.

Unfortunately, action branching in the multi-robot human
guidance MDP is still too high for MCTS to converge to poli-
cies that outperform the heuristic approaches. We reduce
the action branching in the domain by eliminating certain
actions using the following domain specific heuristics:

1. As explained in Section 3.2, robots can be assigned
to any location v ∈ Ng. However, the path to any
location v ∈ Ng must pass through one of the one of
the robot’s adjacent locations. With this knowledge,
we limit assignable locations to the robot’s current or
adjacent graph nodes. The system can move a robot
to a non-adjacent location using multiple AssignRobot
actions at subsequent timesteps.

2. The maximum number of robots that can be diverted
to help humans in the environment is limited to the
number of active guidance requests. For example, if
the environment has 10 robots and the system is ser-
vicing 2 guidance requests, only 2 robots can lead hu-
mans or be assigned to a location at a given time.

3. A robot colocated with a human must provide some
assistance to the human, in the form of a LeadHuman
or DirectHuman action.

Using heuristics may remove an action necessary for opti-
mality, but similar to biased backpropagation, it can speed
up convergence to a good yet potentially suboptimal policy.

To demonstrate the importance of incorporating stochas-
ticity during planning, we also evaluate MCTS with a plan-
ning model where each action with non-deterministic out-
comes has been determinized to its most likely outcome.
MCTS-D trades planning with an inaccurate model for faster
convergence of value estimates due to smaller branching
within this inaccurate model. Finally, while MCTS planning
simulations can be performed while the human is moving
around in the environment to select future actions, the sys-
tem does not have time to perform planning when initially
approached by a human to perform a guidance task. Con-
sequently, the system can either make the human Wait at
the start location to perform planning, or start to Lead the
human to the goal (as per the SingleRobot policy), and take
MCTS planning actions subsequently. These variations in
MCTS planning strategy lead to 4 variants that will be eval-
uated in the following section: MCTS(Wait), MCTS(Lead),
MCTS-D(Wait), and MCTS-D(Lead).

5. EVALUATION
We first describe the experimental setup. Experiments

were run on 2 different domain sizes (Figure 3). The small
domain contains 1 floor and 5 robots, and the large domain
contains 2 floors, 10 robots, and 3 elevators. We assume it
takes a human 15 seconds to use the elevator to move from
one floor to the other. Since real robots need considerable
human assistance to enter and exit the elevator, in contrast,
we assume a robot takes 30 seconds instead. At the start of
each episode, the system needs to solve for either 1 or 2 con-
current requests. An episode terminates if all humans have
reached their destination, or 300/600 seconds have elapsed
for the small/large domain, respectively.

Figure 3: Small domain and graph (50m × 50m in
size). The large domain contains two such floors,
connected via 3 elevators marked by red squares.

Domain parameters required for evaluation were set as
follows. Humans moved with an average speed (v̄h) of 1m/s.
Robots moved with an average speed (v̄r) of 0.5m/s. The
background task time across all tasks (τT ) was set to 10s.
The fixed amount of time for which a robot asks a colocated
human to wait at the current location (the special case of the
LeadHuman action) was set to 10s. The utility of guidance
requests (ui), was always set to 1 for all guidance requests.

The average background task utility (τ̄u) was varied to
observe performance at different settings of the parameter.
A value of 0 specifies that deviating robots from background
tasks incurs no reward loss. A value in between 0 and 1
specifies that background tasks carry a weight less than that
of guidance tasks. A value of 1 specifies that background and
guidance tasks are equally weighted in the reward metric.

Since actions are taken whenever a human completes a
transition to a graph node, the time in between successive
actions can be computed. This computed time is provided
to a single-threaded MCTS implementation for planning,
emulating planning time available in a real-world system.
MCTS planning trajectories were run up to a horizon of
150/300 seconds in the small/large domain, respectively.

All results have been averaged across 1,000 trials with ran-
domly assigned start and goal locations. Since the distance
from start to goal may be different for different trials, we
normalize episode time and cumulative reward prior to ag-
gregation. Each result is normalized by the minimal amount
of time required for all humans in the domain to walk to their
destination, given an average human speed (v̄h) of 1m/s.

Prior to evaluating all approaches, the λ bias parame-
ter for the MaxMCTS(λ) backup strategy was tuned for
MCTS variants. Performance was evaluated for λ ∈ {0,
0.2, 0.4, 0.6, 0.8, 1.0} at 4 different combinations of domain
size, number of concurrent guidance requests, and τ̄u. The
best average performance across these domain settings for
MCTS(Wait), MCTS(Lead), MCTS-D(Wait), and MCTS-
D(Lead) was achieved at λ equal to 0.4, 0.4, 0, and 0, re-
spectively. These values of λ were then used for each corre-
sponding MCTS variant throughout remaining experiments.

Figure 4 compares the performance of all baselines and
MCTS variants under various problem configurations and
difficulties. From these results, we can make the following
observations. SingleRobot performs better than SingleR-
obotW only when the background task utility is low, since
waiting to complete a low utility background task is a poor
idea. PDP-T always performs equivalently or better than
SingleRobot (as expected), and performs significantly better
when multiple floors are present by directing people from one



(a) 1 Req, Small Domain (b) 1 Req, Large Domain (c) 2 Req, Small Domain (d) 2 Req, Large Domain

Figure 4: Performance of MCTS and Heuristic approaches as the number of concurrent requests, domain size,
and background task utility are varied. A higher normalized value indicates better performance. Problem
difficulty increases from left to right. Error bars represent standard error on reward performance.

floor to another instead of making a robot traverse through
the elevator to lead a human.

Similar to SingleRobot and SingleRobotW, MCTS(Lead)
and MCTS-D(Lead) outperform MCTS(Wait) and MCTS-
D(Wait) at low background task utilities, respectively. At
most domain settings (Figures 4a–4c), MCTS variants out-
perform corresponding MCTS-D variants, indicating the im-
portance of incorporating the domain’s stochasticity dur-
ing planning. However, at the most difficult domain setting
(Figure 4d), MCTS-D variants start performing better. At
this difficulty, due to a much larger state-action space, faster
convergence of value estimates in MCTS-D, due to smaller
branching in its planning model, outweighs the detrimental
effects of using an incorrect model.

In all but one domain configuration, an MCTS approach
outperforms the best performing heuristic baseline. At τ̄u =
0 in Figure 4d, the PDP-T baseline outperforms both MCTS
Lead variants, as MCTS is unable to produce a policy that
outperforms the elevator transfer approach used by PDP-T.

Overall, these results demonstrate that in most problem
settings, MCTS planning can outperform domain-specific
heuristic approaches. Furthermore, incorporating stochas-
ticity in planning is necessary for improving performance,
especially in smaller domains.

6. IMPLEMENTATIONS
The multi-robot guidance framework was implemented on

the BWIBot multi-robot system [15], which is built using
ROS [20], GAZEBO 3D simulator [17], and ROCON multi-
robot coordination framework [23]. Dijkstra’s algorithm is
used to find a path to a destination, and the robot moves
along this path using the Elastic Bands approach [21]. This
approach makes use of active contours [12] to execute local
control that balances the straightness of the executed path
with distance from obstacles. Consequently, robots do not
move in straight lines along graph edges as expressed in the
MDP. Monte Carlo Localization [8] is used by the robot to
estimate it’s own position, and there may be some uncer-
tainty in this estimate. The visualization in Figure 1 has
been generated using the 3D simulation implementation.

There are two main issues that need to be resolved in or-
der to implement the multi-robot guidance MDP. The first
pertains to the position and motion of robots and humans in

the environment. The position of robots and humans need
to be projected on the MDP topological representation dur-
ing initialization, and this projection then needs to be con-
stantly updated as entities move around. The topological
representation does not account for the robot’s orientation,
and the speed of the robot provided to planning based ap-
proaches (0.5m/s) is less than its true linear speed (0.75m/s)
to account for rotation time. Finally, as explained in Sec-
tion 3.3, the transition function assumes a deterministic mo-
tion model, whereas the motion of entities in the real world
is quite non-deterministic. As a result, when an MCTS vari-
ant is used, once a state transition occurs, it is necessary to
map the real state to the closest one in the planning tree in
order to determine the best action estimated via planning.
When such a mapping cannot be made, the SingleRobot
baseline is executed at the state instead.

The second issue relates to the fact the model used to
make human decisions, explained in Section 3.3, is different
from real humans. In fact, it may be the case that real
humans differ considerably from one another in behavior.
Specifically, real humans tend to gravitate towards any robot
in their field of view, which is not captured in the model
presented in Section 3.3. A good direction for future work
is the investigation of better or learned models for planning.

In this work, we mitigate this issue in part by changing
how transitions in the MDP are implemented. Through ini-
tial empirical observations, it was noted that when a human
transitions to a location and observes a robot approach-
ing the same location, he typically waits for the robot to
stop moving under the expectation of receiving instructions.
Consequently, in the implementations, a human transition
was only registered once any robots close to approaching the
same location had completed navigation as well.

Figure 5a illustrates the map and topological representa-
tion (with 3 robots) used to construct a 3D simulation en-
vironment (based off a floorplan of a real building). While
being reasonably realistic, this simulation environment lacks
many artifacts present in the real world. For instance, a hu-
man being guided to a coffee shop or office can finish the
navigation task on his own based on his own perception of
the environment. Since the simulation environment does
not contain artifacts to indicate that the human’s destina-
tion was reached, the simulation implementation was con-



(a) User Study Map (80m × 60m) and Problems

(b) Predicted Times (c) Actual Times

Figure 5: Figure 5a shows the map for the simula-
tion environment and user study problems, and Fig-
ures 5b-5c show the model predicted and empirically
determined times for completing each problem.

strained to ensure that a robot was present with the human
upon reaching the goal to declare that the goal was reached.

We performed a user study using this simulation environ-
ment, with real humans controlling simulated avatars. The
user study was limited to simulation due to the prohibitive
difficulty of setting up a repeatable experiment in the real
world where multiple robots are distributed across a build-
ing. While perception and control of the avatar in simulation
is different from a human walking around in the real world,
the modules for robot navigation, localization and user in-
terface on the robot are the same in both simulation and the
real multi-robot system. Thus, this user study can help eval-
uate the system in a semi-realistic setting where the model
used for planning is likely inaccurate.

The goal of this user study is to establish that performance
metrics gathered using a more realistic implementation still
follow similar trends to those gathered using the method-
ology in Section 5, where planning was performed using an
accurate model. Anonymized videos are available showcas-
ing the system working both in simulation (https://vid.
me/fOvE) and with real robots (https://vid.me/Qghh).

Each of the 22 participants performed 3 guidance prob-
lems (indicated in Figure 5a), with 11 participants perform-
ing the SingleRobotW baseline, and 11 participants perform-
ing the MCTS(Wait) approach. The following domain pa-
rameters were used (v̄h = 1m/s, v̄r = 0.5m/s, τT = 10s, ui =
1, and τ̄u = 0.5). Only the SingleRobotW and MCTS(Wait)
were evaluated in this section as these approaches perform
best among all heuristic and MCTS approaches, respec-

tively, at the selected domain parameters.
Since the MDP reward computation makes use of a model

to estimate the utility loss of deviating robots from their
background tasks (see Section 3.4), utility loss cannot be
directly measured in simulation or the real world. In con-
trast, the time required by a human to reach his goal can
be directly measured. For this reason, we compare comple-
tion times predicted by using the model (across 1,000 trials)
and those from the user study (across 11 trials) in Figure 5.
One instance of the SingleRobotW policy was excluded from
results – the participant followed the robot at too far a dis-
tance to trigger state transitions in the MDP, and never
attempted to move closer to the robot.

For Problems 1 and 2, the times from the actual case study
match predicted times. In Problem 3, MCTS performed bet-
ter than predicted, and we provide one observed discrepancy
between prediction and reality. When directed by a robot at
node 14 to walk towards node 6, the model predicts the most
likely outcome as [14→ 6→ 8→ 9→ 8→ 6 . . . ]. In reality,
even if a human walked into the dead end at node 9, they
were more likely to explore the corridor along nodes 5 ↔ 3
themselves, which was the desired direction of motion for the
goal at node 4. This discrepancy outlines a shortcoming of
using a simple hand-coded model for human behavior, and
more realistic models are necessary for planning to closely
match real world performance.

7. DISCUSSION
This paper demonstrates that real-world multi-robot co-

ordination problems requiring stochastic transitions can be
successfully implemented at a scale of 5 to 10 robots, and
MCTS can be used to approximately solve such problems
in real-time. This paper also demonstrates that straightfor-
ward models of human behaviors are useful for solving the
multi-robot human guidance MDP, but can also generate
idiosyncratic behavior that does not reflect the behavior of
real humans (Problem 3 in our user study). Future work
should look at not only learning such models, but how to
quickly select an appropriate model for a particular human
if many such models are available.

We also demonstrated that the multi-robot human guid-
ance problem can support multiple concurrent guidance re-
quests, albeit making the policy search and planning prob-
lems more difficult. The relative improvement of MCTS
planning over heuristic baselines is considerably less when
2 concurrent requests are present in the large domain (Fig-
ure 4d), compared to other problems (Figures 4a–4c). Over-
all, this paper successfully demonstrates that MCTS plan-
ning can be used to solve multi-robot coordination problems
in real-time, giving performance much better than special-
ized heuristic baselines in most domain configurations.

Acknowledgments
This work has taken place in the Learning Agents Research
Group (LARG) at UT Austin. LARG research is supported
in part by NSF (CNS-1330072, CNS-1305287, IIS-1637736,
IIS-1651089), ONR (21C184 - 01), AFOSR (FA9550-14-1-
0087), Raytheon, Toyota, AT&T, Lockheed Martin, and Yu-
jin Robot. Peter Stone serves on the Board of Directors of,
Cogitai, Inc. The terms of this arrangement have been re-
viewed and approved by the University of Texas at Austin
in accordance with its policy on objectivity in research.



REFERENCES
[1] C. Amato, G. D. Konidaris, , A. Anders, G. Cruz,

J. P. How, and L. P. Kaelbling. Policy search for
multi-robot coordination under uncertainty. In
Robotics: Science and Systems Conference (RSS),
2015.

[2] C. Amato, G. D. Konidaris, G. Cruz, C. A. Maynor,
J. P. How, and L. P. Kaelbling. Planning for
decentralized control of multiple robots under
uncertainty. In International Conference on Robotics
and Automation (ICRA), 2015.

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time
analysis of the multiarmed bandit problem. Machine
Learning, 2002.

[4] J. Baus, A. Krüger, and W. Wahlster. A
resource-adaptive mobile navigation system. In
International Conference on Intelligent User
Interfaces (IUI), 2002.

[5] A. Butz, J. Baus, A. Krüger, and M. Lohse. A hybrid
indoor navigation system. In International Conference
on Intelligent User Interfaces (IUI), 2001.

[6] J. Capitan, M. T. Spaan, L. Merino, and A. Ollero.
Decentralized multi-robot cooperation with auctioned
pomdps. International Journal of Robotics Research
(IJRR), 2013.

[7] B. Coltin and M. Veloso. Online pickup and delivery
planning with transfers for mobile robots. In
International Conference on Robotics and Automation
(ICRA), 2014.

[8] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte
Carlo localization: Efficient position estimation for
mobile robots. National Conference on Artificial
Intelligence/Innovative Applications of Artificial
Intelligence Conference (AAAI/IAAI), 1999.

[9] R. A. Howard. Dynamic Probabilistic Systems, Volume
II: Semi-Markov and Decision Processes. Courier
Dover Publications, 2013.

[10] J.-J. Jaw, A. R. Odoni, H. N. Psaraftis, and N. H.
Wilson. A heuristic algorithm for the multi-vehicle
advance request dial-a-ride problem with time
windows. Transportation Research Part B:
Methodological, 1986.

[11] B. Kartal, E. Nunes, J. Godoy, and M. Gini. Monte
Carlo tree search with branch and bound for
multi-robot task allocation. In IJCAI-16 Workshop on
Autonomous Mobile Service Robots, 2016.

[12] M. Kass, A. Witkin, and D. Terzopoulos. Snakes:
Active contour models. International Journal of
Computer Vision (IJCV), 1988.

[13] P. Khandelwal, S. Barrett, and P. Stone. Leading the
way: An efficient multi-robot guidance system. In
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2015.

[14] P. Khandelwal, E. Liebman, S. Niekum, and P. Stone.
On the analysis of complex backup strategies in Monte
Carlo tree search. In International Conference on
Machine Learning (ICML), 2016.

[15] P. Khandelwal, S. Zhang, J. Sinapov, M. Leonetti,
J. Thomason, F. Yang, I. Gori, M. Svetlik, P. Khante,
V. Lifschitz, J. Aggarwal, R. Mooney, and P. Stone.
BWIBots: A platform for bridging the gap between AI

and human-robot interaction research. International
Journal of Robotics Research (IJRR), 2017.

[16] L. Kocsis and C. Szepesvári. Bandit based
Monte-Carlo planning. In European Conference on
Machine Learning (ECML), 2006.

[17] N. Koenig and A. Howard. Design and use paradigms
for gazebo, an open-source multi-robot simulator. In
International Conference on Intelligent Robots and
Systems (IROS), 2004.

[18] G. Lacey and K. M. Dawson-Howe. The application of
robotics to a mobility aid for the elderly blind.
Robotics and Autonomous Systems, 1998.

[19] M. Montemerlo, J. Pineau, N. Roy, et al. Experiences
with a mobile robotic guide for the elderly. In
Innovative Applications of Artificial Intelligence
(IAAI), 2002.

[20] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng. Ros: an
open-source robot operating system. In ICRA-09
Workshop on Open Source Software, 2009.

[21] S. Quinlan and O. Khatib. Elastic bands: Connecting
path planning and control. In International Conference
on Robotics and Automation (ICRA), 1993.

[22] T. S. Standley. Finding optimal solutions to
cooperative pathfinding problems. In AAAI
Conference on Artificial Intelligence (AAAI), 2010.

[23] D. Stonier, J. Lee, and H. Kim. Robotics in concert.
http://www.robotconcert.org/, 2015.

[24] R. S. Sutton and A. G. Barto. Reinforcement learning:
An introduction. Cambridge University Press, 1998.

[25] S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers,
F. Dellaert, D. Fox, et al. MINERVA: A
second-generation museum tour-guide robot. In
International Conference on Robotics and Automation
(ICRA), 1999.


