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ABSTRACT

Automated care systems are becoming more tangible than ever:
recent breakthroughs in robotics and machine learning can be used
to address the need for automated care created by the increasing
aging population. However, such systems require overcoming sev-
eral technological, ethical, and social challenges. One inspirational
manifestation of these challenges can be observed in the training
of seeing-eye dogs for visually impaired people. A seeing-eye dog
is not just trained to obey its owner, but also to “intelligently dis-
obey”: if it is given an unsafe command from its handler, it is taught
to disobey it or even insist on a different course of action. This
paper proposes the challenge of building a seeing-eye robot, as a
thought-provoking use-case that helps identify the challenges to
be faced when creating behaviors for robot assistants in general.
Through this challenge, this paper delineates the prerequisites that
an automated care system will need to have in order to perform
intelligent disobedience and to serve as a true agent for its handler.
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1 INTRODUCTION

Recent advances in Al and robotics have enabled impressive break-
throughs in automated care design, whether in service [23, 35, 57,
73], rehabilitation [58, 69, 74], socially assistive care [8, 20, 31, 56],
or guidance [17, 44, 68]. Each of these areas provides fertile research
grounds and can be discussed individually at length. However, in
these works, a “good” care system is one that is obedient and works
in a predictable manner under the consent of its handler [15, 55].
We propose a different perspective, where a system might choose
to intelligently disobey its handler due to a deep understanding of
the handler’s intentions. With this long-term vision, we propose
the seeing-eye robot grand challenge as a guiding use-case that will
help imagine how to design an autonomous care system that is able
to make decisions as a knowledgeable extension of its handler.
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Figure 1: “Hop Up” is the command for a seeing-eye dog to
move forward when stalling. These dogs learn to ignore this
command if they perceive obeying it to be dangerous.

To further discuss the capabilities of current autonomous system,
we remind the reader of Asimov’s three laws of robotics [4], as a
reasonable starting point from which we can then elaborate on
necessary research directions:

(1) A robot may not injure a human being or, through inaction,
allow a human being to come to harm.

(2) A robot must obey the orders given it by human beings
except where such orders would conflict with the First Law.

(3) A robot must protect its own existence as long as such pro-
tection does not conflict with the First or Second Law.

Existing autonomous systems enforce the first law through hard
constraints upon the system’s abilities. Fully implementing the
second law is more intricate, and the main contribution of many
modern systems is to provide a better understanding of the instruc-
tions given by a human [6, 27], within the limits of the “first law”
safety restrictions [1, 33, 37, 52]. Moreover, modern Al systems will
need to reason about situations in which the “right” thing to do is
exactly the opposite from the instruction given by the handler. For
example, a semi-autonomous vehicle in a near-collision situation
might choose to brake, even if the human driver keeps pressing the
gas. Lastly, sometimes there is an even more subtle conflict between
an instruction given by a human, and the actual desired outcome
due to an imperfect instruction. Such conflicts are known as the
value alignment problem [21].

Modern autonomous systems do not yet have the required level
of context- and state- understanding to be able to reason about the
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aforementioned conflicts. To address this challenge, many works let
ahuman be the judge in complex decision-making scenarios [29, 66].
Alternatively, Murphy and Woods [46] proposed a modified set for
responsible robotics laws. In their proposal, the second law becomes
“A robot must respond to humans as appropriate for their roles”. This
modification allows the designers of a robot to bypass the need to
understand the meaning and implications of an instruction that
conflicts with the first law. While this modification is a pragmatic
solution given existing technology, we present a long-term vision
where an autonomous system will indeed be able to reason about
such cases and perform adequate autonomous decision making.

While acknowledging the unique benefits and abilities of modern
Al to solve “second law” gaps, the most sophisticated intelligence
we know of is still the natural mind, and we take inspiration from it
to address the issues discussed above, in the form of the intelligent
capabilities of a dog. Intelligent Disobedience occurs when a seeing-
eye dog, who is trained to help its handler, goes directly against
the handler’s instructions in an effort to make a better decision
[13]. We advocate that a comprehensive treatment of “second law”
issues must include a component of intelligent disobedience.

This call is not the first to propose the design of a robot that
will replace a service dog: Tachi and Komoriya were the first to
construct a robotic guide dog for collision avoidance, and they dis-
cussed a specific implementation of intelligent disobedience in the
context of obstacle avoidance [64]. Recently, several works pro-
posed various mechanisms that can partially or completely replace
the functionality of a white cane by signaling about proximity to
obstacles. Sakhardande et al. [54] devised a detachable device that
can augment an existing white cane. Additional works proposed
enhanced walkers [18, 70, 72]. Other solutions that offer a guiding
system for the blind include canes [10, 28], smartphones [2] and
wearable augmented reality devices [39].

However, all of the works mentioned above propose a passive
apparatus that can advise using various cues but cannot physically
enforce its decisions in dangerous situations [51]. As advocates of
embodied intelligent disobedience, we seek a solution in which the
robot is an active guide which can have the last word in specific,
hazardous scenarios. This requirement might be achieved by ex-
tending the application of a personal assistant robot that is already
present in the handler’s environment [49], but such a solution relies
on existing hardware and is likely to be unsatisfactory given the
unique requirement of a guide robot: it needs to have excellent
maneuverability and robustness, otherwise it will simply replace a
visual impairment with a mobility impairment.

2 THE SEEING-EYE ROBOT CHALLENGE

There are more than 1 million people in the US who are blind,
millions more with severe visual impairment, and this number is
expected to multiply by 5 in the next 30 years. However, only about
2% of blind people work with guide dogs. It costs over $50,000 and
up to two years to breed, raise, train, and place one guide dog, and
the net time it can serve as a seeing-eye dog is less than ten years
before it retires. Moreover, a dog requires constant care from its
handler, including daily walks, regardless of weather conditions.
Even under these requirements, the use of a service dog can greatly
increase a blind person’s freedom and ability to integrate in the

community. In order to enable more people to enjoy the benefits
of a guide dog, even if they cannot afford or take care of one, we
propose the following grand challenge:

Can we design and build a service robot that can replace
or surpass the functionalities of a seeing-eye dog?

We define some basic terms to enable a clear discussion about
what steps and problems this challenge encompasses: The Robot is
the combination of the physical embodiment of the seeing-eye robot,
along with any cognitive processes it leverages, both locally and
remotely. The Handler is the person who handles the robot. We
assume this person is either blind or has a severe visual impairment.
Passers are any additional people that might interact with the
robot and its handler: other people that accompany the handler,
pedestrians, service providers, etc.

Consider the specific scenario depicted in Figure 1. In this case
the handler wishes to cross the road and is unaware of the approach-
ing vehicle. Ideally, the robot should refuse to cross the road, even
if the handler insists on moving forward, using the command “hop
up”, which is the common way to coerce a guide-dog to move on.
In addition, we lay out the different components of the process of
intelligent disobedience, all of which the robot must be capable:

Global Objectives understand a set of standing objectives like
“keep the handler safe”. This stage requires an understanding
of the environment and comprehension of the abilities of
the robot under “first law” constraints.

Local Objectives understand what the handler wants to do
now. This stage introduces the value alignment problem.
Plan Recognition understand how the handler thinks the lo-
cal objectives should be accomplished. This step requires
yet again an understanding of the environment, its objective

limitations, and theory of mind in relation to the handler.

Consistency Check judge whether the given instruction is
in conflict with the global objectives.

Mediation if so, make decisions about the given instruction vs.
the global objectives. This mediation could range from com-
ing up with a different way to accomplish the local objectives,
to ignoring them altogether.

An important global objective in our running example from Fig-
ure 1is the safety of the handler. The local objective in this scenario is
the destination of the handler. Notice that there might be more than
one crossings nearby, which means that there might be different
plans to achieve this objective. Plan recognition is the stage where
the robot should disambiguate these different plans and recognize
which one the handler is following. The robot will then perform a
consistency check to find that moving forward, as requested, will
conflict with the safety global objective. At this point, the robot
should be certain enough in its understanding of the global and
local objectives to decide to override the “hop up” command. The
robot should then use mediation which might just be stopping and
waiting for the environment to change, or leveraging alternative
plans and guiding the handler towards a different crossing, knowing
that there is an alternative path to the handler’s goal location.
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3 REQUIREMENTS

As a way to raise points that are relevant to all automated care
systems, we now proceed to discuss in depth the scientific require-
ments of each of these steps, and mention relevant research areas
that can be called upon for assistance. In addition, in each compo-
nent we refer to specific efforts of our research community that can
improve the robot’s capabilities along the path to intelligent dis-
obedience and better automated care in general. Finally, we briefly
discuss how these steps should be assessed and what metrics can
be used to create a future standard evaluation.

3.1 Global Objectives

Many global objectives of the robot refer to its safety around its
handler and passers [65]. It should also behave in a predictable
and explicable way when interacting with new people [12, 15].
Additional objectives can be defined to identify social norms that
the robot should follow [45]. Lastly, the robot might have additional
global interests that go beyond serving the immediate interests of
its handler, such as logistical constraints (e.g., battery time) or
data collection for self-improvement [14, 61, 62]. Specifying these
objectives and balancing between them are closely related to inverse
reinforcement learning (IRL) and can benefit from leveraging this
approach [25, 48]. Thus, the robot’s performance in this step can
be evaluated using common metrics used in IRL and other learning
approaches: accuracy, precision, and efficiency.

3.2 Local Objectives

This stage in the process of intelligent disobedience requires the
robot to take into consideration the current local goals of the han-
dler: most of the time, this goal is to reach a specific location, but
it can also encompass opportunistic goals such as letting the han-
dler know that they are passing a new grocery store, that a bus
is reaching the station, or that a familiar person is near [11, 32].
Local objectives change, by definition, so the robot will need to
progressively assess these objectives during execution [7, 53].

A key step in understanding local objectives is to clearly convey
this information to the robot - this communication can be verbal
and rely on NLP [40, 67] or by using a controller to portray instruc-
tions [19]. Moreover, a potential ability of a robot that can surpass
a dog’s is that it cannot only understand vocal commands, but also
speak or question its handler. This aspect of the problem involves
(1) What additional information should be shared with the handler?
(2) When will communicating a piece of information be valuable,
and when is it interrupting? Lastly, regardless of the model and
the modality chosen for conveying local objectives to the robot,
the robot will still need to correctly assess these objectives, while
avoiding failures due to poor coordination [21, 26]. The evaluation
of this step is similar to the first one but will require evaluating the
handler’s subjective impressions as is often done in HRI research
[20, 22]. For example, how does the handler perceive the robot’s
abilities and how do they convey the goal behind specific actions?

3.3 Plan Recognition

Reasoning about the plans of teammates is one of the biggest ar-
eas in which natural intelligence still surpasses Al The concept
of “theory of mind” is often used to model other agents and their
goals [5, 34, 38, 59]. This challenge involves not only to understand

what is the goal of the handler, but also how they plan to achieve
it. Current state of the art algorithms are both expressive and fast
enough to be used in real-world settings to infer human traces in
closed environments with pre-defined settings [41, 50]. In order
to be useful “in the wild”, the next generation of recognizers will
need to overcome the gap between local objective understanding
and plan prediction in open-world environments. An additional
challenge related to plan recognition that the robot will need to
overcome is ambiguity: there can be multiple hypotheses that can
explain a sequence of observed actions. An active observer can
interact with the actor in order to disambiguate between those hy-
potheses [42, 43, 60]. Thus, the robot should take into consideration
both its ability to correctly recognize plans in new environments
and to disambiguate between competing hypotheses.

3.4 Consistency Check

Evidence shows that pre-linguistic children will not only recognize
the plans of adults they do not know, but will also detect a plan
failure and will act to help the adult achieve their plan [36, 71]. The
robot will need to evaluate the recognized plan and to see if it fits
both the global and the local objectives that were defined.

If the plan does not suit a local objective, there might still be
a possibility to resolve the conflict without invoking intelligent
disobedience: the robot might communicate with the handler for
additional clarifications or explain the inconsistency between the
objective and the proposed plan to accomplish it [12, 63]. If this
effort fails, or if a plan conflicts with a strict global objective, the
proposed plan cannot be executed and a different solution should
be found, as we elaborate on next. The evaluation of the robot’s
capabilities in this step should consider two aspects: capturing in-
consistencies efficiently and in a timely manner, and the percentage
of cases in which the robot was able to resolve a conflict without
reaching intelligent disobedience.

3.5 Mediation

Once the robot decides that intelligent disobedience is needed, it
will require a reasonable amount of force to stop the handler from
executing the plan, while still keeping in mind the handler’s safety.
Impedance control, an approach to dynamically control the forces
and position of the robot, will be needed to be personalized and
adaptable so that the robot’s actions remain safe and efficient [1].
With respect to personalization, the context in which the robot is
acting can influence the type and the intensity of the disobedience
act. For example, ignoring a drift to the left that might cause the
handler to get off the sidewalk will require a different mechanism
than an emergency brake to avoid a passing car [16, 24].

No matter what action the robot chooses to take, it will need to
predict or estimate how its actions will affect the handler, in order
to avoid any further conflicts with the global and local objectives
[47]. In addition, as the final step in the process of intelligent dis-
obedience, evaluation of this step can also encompass the general
ability of the robot in this task, which means measuring the robot’s
success at achieving safe, efficient, and explainable disobedience.

4 ADDITIONAL MILESTONES

So far, we discussed the main components that the seeing-eye robot
will need to have in order to be a useful proxy for its handler while
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employing intelligent disobedience. All of the identified landmarks
and the accomplishments mentioned above are just the beginning —
each solution that was presented opens up many new questions,
each of which supports new fascinating research directions.

There is also an abundance of challenges related to the deploy-
ment of a seeing-eye robot, that are not of immediate use in the
intelligent disobedience process but will need to be considered. To
name a few: What should be the robot’s navigational protocols?
What type of sensors with the robot require to perceive the state
accurately enough? Will the robot be linked to a server, or will
it be independent? How to prioritize between different global or
local objectives? And this list can go on. We provide a more de-
tailed discussion of specific challenges that are independent from
the intelligent disobedience discussion but are necessary for the
realization of fully functional seeing-eye robots.

Rehabilitation and Teaching. Diabetes is the leading cause of
blindness in American adults, and diabetic people with blindness
might have other health issues that can also affect their mobility. In
other cases, people’s visual impairment can interfere with their bal-
ance, but if assisted by a guide dog, they can slightly lean on it to get
another reference point for balance. These types of behaviors are
dynamic and fast, which can make it hard for the robot to respond
properly. A challenging task can be to model this problem as a
constraint satisfaction problem and use existing techniques to solve
it. In addition, the robot can be used for long-term rehabilitation
where it changes the level of support it provides the person. For
this aspect, curriculum learning can be used to model the learning
progress and to design the robot’s behavior [9]. On top of all of
the challenges mentioned above, a persistent robot will need to
respond to changes in the physical abilities of its handler, and to its
own changes of software or hardware. This challenge will require
interdisciplinary collaborations with physiotherapists and mechan-
ical engineers that will aim to enhance the robot with balancing
and rehabilitation abilities.

Social Companionship. It is important to note that being a social
companion is not the main goal of the seeing-eye robot. However,
it is also not the main goal of seeing-eye dogs and yet they are
perceived as companions. An artificial guide robot that is explicitly
meant to replace a seeing-eye dog is thus also an opportunity to
investigate its performance as a social companion. A unique chal-
lenge in this context will be to investigate the dynamics between
the robot’s functional performance and its social behavior and per-
ceived social abilities. This type of project will require assistance
from HRI researchers and psychologists.

Ethics. The seeing-eye robot can be fertile ground for discussing
the role of ethics in Al Any care system should respect and support
autonomy, which might conflict with the need to perform intelli-
gent disobedience [30]. Once the robot will be given the ability to
override the decisions of its handler, its designers become account-
able for the consequences of these decisions, and hence there is a
need to define its morals in a more crisp sense than Asimov’s rules
[3]. Moreover, in the design of any particular solution, the engineer-
ing process will require incorporating a diversity of perspectives:
the cost of a functioning robot that is capable of the proposed feats
is not negligible, and will not be accessible to all. The community

should aim to produce a robot that costs significantly less than the
cost of raising and training a seeing-eye dog.

Human and Environment Engineering. In addition to enhance-
ments and improvements that will be applied to the robot, this
challenge can include comprehensive solutions that change the
environment in such a way that will take the burden off the robot.
For example, RFID tags in crosswalks can assist the robot with
identifying its current location without the need to use expensive
sensors or GPS signals. In a similar fashion, the human mind and
body can adapt greatly to changes, and some of the challenges
discussed in this paper will be most efficiently solved by human
training, such that the handler or passers will adapt to the robot’s
abilities instead of the other way around. For example, a handler
might feel at first that the robot’s jerk is too high and will want to
try to calibrate the robot’s motions. However, the same issue can
be resolved faster by walking alongside the robot for a couple of
days until the handler learns the motor skills required to use the
robot better. For comparison, the training process of a handler with
a new seeing-eye dog takes about two weeks and might require
occasional guidance after that.

5 DISCUSSION

We have introduced a long-term challenge to design a robot that
can be at least as intelligent and capable as a seeing-eye dog. We
discussed the different steps this robot will need to go through
in order to perform intelligent disobedience and proposed initial
ways to approach these steps and how to assess the robot’s per-
formance. This challenge crosses disciplines and motivates new
ideas and directions for the Autonomous Agents and Multi-Agent
Systems community to explore. The ultimate goal of this challenge
will be to create robots that are better than seeing-eye dogs in all
way. However, even partial solutions may have immediate utility,
especially for people who don’t have access to seeing-eye dogs.

We also acknowledge that many of the approaches proposed
throughout the paper may require expensive, durable, and robust
hardware as well as massive computation power, which could cause
useful robots to be drained of battery power quickly. However, given
the increasing speed in which the robotics field is advancing, we
remain optimistic and hope that this challenge will inspire the com-
munity towards groundbreaking advances. We therefore put forth
this seeing-eye robot as a new grand challenge for the community
to address, that will ultimately improve handlers’ autonomy, while
leading to new, broadly applicable agent technologies.
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