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Abstract—Empirical evaluations play an important role in
machine learning. However, the usefulness of any evaluation
depends on the empirical methodology employed. Designing good
empirical methodologies is difficult in part because agents can
overfit test evaluations and thereby obtain misleadingly high
scores. We argue that reinforcement learning is particularly
vulnerable to environment overfitting and propose as a remedy
generalized methodologies, in which evaluations are based on
multiple environments sampled from a distribution. In addition,
we consider how to summarize performance when scores from
different environments may not have commensurate values.
Finally, we present proof-of-concept results demonstrating how
these methodologies can validate an intuitively useful range-
adaptive tile coding method.

I. INTRODUCTION

In machine learning, algorithms are typically evaluated
subjectively, theoretically, and/or empirically. While subjective
evaluations leverage intuition to identify novel methods, they
may fail to validate counterintuitive approaches or expose
fallacious assumptions. Theoretical results are more rigorous
but cannot always be obtained and may not consistently predict
performance in practice, e.g., when there are large constant
factors or the requisite assumptions do not hold.

Empirical evaluations are thus an important complement
to subjective and theoretical evaluations. They can illuminate
salient underlying algorithmic properties and spur the devel-
opment of increasingly practical algorithms [1], [2], [3]. For
example, the UCI repository [4] has helped machine learning
gain a critical role in real-world applications.

However, the usefulness of any empirical evaluation de-
pends on the empirical methodology employed. If not carefully
designed, the methodology may fail to guard against evalua-
tion overfitting, in which the system under evaluation obtains
misleadingly high scores by overspecializing to the evaluation
setting. Many types of overfitting are possible, e.g., in data
overfitting, a well-known concern in supervised learning, a
learned function is overfit to a specific data set.

The primary aim of this paper is to devise empirical method-
ologies that guard against overfitting in on-line reinforcement
learning.1 We argue that, in this setting, data overfitting is
less of a concern than environment overfitting, wherein the

'While the methodologies we propose may also be useful in batch rein-
forcement learning or other related settings, we do not consider them here.

learning algorithm itself is overspecialized to the environment,
i.e., Markov decision process (MDP), in which it is evaluated.

For example, consider one evaluation methodology in com-
mon use: measuring the average cumulative reward accrued by
an algorithm on a set of independent learning trials on a single
benchmark environment. Through various design choices, e.g.,
about the state representation, initial value function, learning
rate, etc., the algorithm designer can construct an algorithm
that excels at this evaluation but performs poorly in other
environments. In the extreme case, a familiar benchmark such
as Mountain Car [5] can be trivially overfit by an algorithm
that uses the optimal policy throughout and thus outperforms
any competitor that actually learns.

The unfairness of this comparison highlights the fundamen-
tal limitation of methodologies based on single environments:
they do not control for the designer’s prior knowledge about
the environment. Such concerns have led some to question
whether performance improvements on benchmark environ-
ments reflect real progress in machine learning or simply an
increase in prior knowledge about those environments [6], [7],
[8].

While environment overfitting can occur in any learning al-
gorithm, it is particularly pernicious in reinforcement learning.
Unlike supervised learning, in which evaluations are typically
based on fixed data sets, reinforcement learning often relies on
publicly available simulators for evaluation. Since designers
can generate unlimited data for tuning, there may be little
uncertainty about the environment left when the algorithm is
tested and thus little protection against environment overfitting.

To address this problem, we advocate departing from
methodologies based on single environments. While the use of
multi-environment evaluation has been suggested before, it is
not common practice in reinforcement learning. Furthermore,
to the best of our knowledge, specific methodologies for multi-
environment evaluation in reinforcement learning have not
been formulated.

We propose a simple solution based on generalized method-
ologies in which evaluations are based on multiple environ-
ments sampled from a distribution. By creating uncertainty
about the evaluation conditions, these methodologies place
a consistent limit on the prior knowledge available to any
designer. Furthermore, they make explicit what generality
across environments is desired from agents, as the distribution



specifies both a target class and the likelihood of encountering
environments in that class.

We propose two specific generalized methodologies, one
suitable for comparing algorithms across time and another for
one-shot settings such as competitions, as well as two ways
of summarizing performance across environments. In addition,
we illustrate the potential of generalized methodologies by
comparing Sarsa(\) with tile coding to a range-adaptive variant
on several generalized environments. These proof-of-concept
results demonstrate that generalized methodologies can em-
pirically validate an intuitively useful form of adaptation that
single-environment methodologies cannot.

II. EVALUATION OVERFITTING

The purpose of an empirical evaluation in machine learning
is to gather data that helps characterize a learning algorithm’s
behavior. In this paper, we model the evaluation process as
an interaction between a designer, who designs an agent,
and an evaluator, who evaluates the agent. We formulate the
evaluation as a series of independent frials and the behavior of
interest as a scalar performance metric or score. The purpose
of the evaluation is thus to estimate some statistic, e.g., the
expected value, of the score distribution based on the data
gathered during the trials.

We assume a self-interested designer: one who seeks the
agent that will obtain the best score, even if that agent will not
generalize well. This does not imply that actual designers aim
to misrepresent their algorithms in empirical results. On the
contrary, bias is typically implicit and unintentional. However,
by seeking methodologies that cannot be manipulated even
by self-interested designers, we strive to free designers from
having to worry about their own biases, because the goals
of finding good agents and doing well on the evaluations are
closely aligned.

In some cases, the score that the evaluation produces may
be of inherent importance, such as when the evaluation setting
exactly corresponds to a real-world problem. However, in
most research settings, the experimental results do not have
inherent value, e.g., Mountain Car policies and classifiers
for UCI datasets have little practical use. Instead, such ex-
periments are intended to represent, implicitly or explicitly,
performance on some farget distribution of conditions. For
example, based on Sutton’s well-known tile-coding paper [5],
no reader would infer that tile coding is useful only for the
particular environments to which he applied it or the particular
random number seeds he used in his experiments. Instead,
those experiments suggest tile coding is a useful approach in
a variety of conditions.

We define evaluation overfitting as a general phenomenon in
which an algorithm performs well in an empirical evaluation
without performing well in the target distribution. The Al
community has identified various problems that can be broadly
classified as evaluation overfitting, including data overfitting,
method overfitting [7], and reliance on fixed benchmarks [9]
or unrealistic prior knowledge of utility functions [10].

A. Data Overfitting

Perhaps the most familiar form of evaluation overfitting is
data overfitting, which occurs when the function produced by
the agent, e.g., a classifier or policy, is so customized to a
particular data set that it fails to generalize to independently
sampled data from the same environment. In this case, the
target distribution corresponds to the distribution over labeled
examples that defines the environment, from which the data
to which the function is customized is merely a sample.

Data overfitting is a familiar concern in supervised learning,
in which evaluations are typically conducted on fixed data sets.
In such a setting, separating the data into training and test
sets, e.g., via cross-validation, is essential for ensuring that
the evaluation scores are unbiased estimates of performance
on the target distribution.

In contrast, data overfitting is typically not a concern in
reinforcement learning. The primary reason is that reinforce-
ment learning, in an on-line setting, is interactive, i.e., the
actions chosen by the agent affect what data it sees. As a
result, evaluations cannot be conducted on fixed data sets.
Instead, evaluators typically have access to simulators with
which they can generate unlimited data. Thus, data overfitting
can be avoided simply by using fresh data for each evaluation,
without the need for cross-validation or similar mechanisms.

B. Environment Overfitting

Environment overfitting occurs when the learning algorithm
is so customized to the environment on which it is evaluated
that it performs poorly on other environments for which it
was intended. In environment overfitting, the learning algo-
rithm itself, rather than the function it produces, is overfit.
Furthermore, the target distribution is a distribution over
environments, rather than a distribution over data in a single
environment.

Whereas data overfitting is more problematic in super-
vised learning, environment overfitting is more problematic
in reinforcement learning. In supervised learning, the limited
availability of data restricts the designer’s ability to find an
algorithm that overfits the environment because he or she is
uncertain from what distribution the data was drawn. Hence,
to maximize the expected score on new data, the designer
must submit an agent that performs well across the range of
environments that could have generated the data. In contrast,
in reinforcement learning, designers typically also have access
to a simulator. Since they can generate unlimited data, they can
try out unlimited state representations, initial value functions,
learning rates, etc. during the design process. In doing so, they
iteratively acquire more and more knowledge about the future
evaluation conditions. As a result, during testing there may be
little environment uncertainty and thus little protection against
environment overfitting.

C. Fitting versus Overfitting

The notion of environment overfitting invites the question:
how broad should the target distribution be? Theoretical work
often aims to discover algorithms whose performance can



be guaranteed across a wide range of environments, such as
the set of all discrete MDPs. However, many researchers are
focused on more practical problems, such as how to learn
effectively in specific settings. In such cases, customizing an
algorithm to a particular setting at the expense of performance
in other settings is often an effective algorithmic design
strategy. In fact, when No Free Lunch theorems [11] apply,
it may be the only option.

While it may seem that environment overfitting can actually
be desirable because it allows more specialization, this is not
the case. On the contrary, the target distribution is simply
smaller in such cases. The confusion is eliminated if we
distinguish between fitting and overfitting. The former means
customizing an algorithm to the target distribution at the
expense of environments outside that distribution. The latter
means customizing an algorithm to the evaluation setting at
the expense of the target distribution. Thus, fitting is always
desirable and overfitting is always undesirable.

While the target distribution may be large or small, it typi-
caly contains more than one environment in a reinforcement-
learning problem. Intuitively, reinforcement-learning methods
use data to reduce their uncertainty about the agent’s envi-
ronment. This occurs explicitly in model-based methods and
implicitly in model-free ones. If the target distribution contains
only one environment, then such uncertainty does not exist,
and planning methods e.g., dynamic programming [12], could
be used instead.

Although a target distribution with only one environment
may still involve other forms of uncertainty, e.g., via a stochas-
tic transition function, such uncertainty does not necessitate
learning because it is not reducible. For example, once the
transition function is known, no amount of data can further
help predict a state transition before it occurs.

III. GENERALIZED ENVIRONMENTS

In this section, we consider how to construct an empiri-
cal methodology that protects against environment overfitting
in reinforcement learning. Clearly, the single-environment
methodologies in common use are not ideal in this regard.
If the target distribution contains multiple environments, a
methodology that uses only one environment invites the de-
signer to overfit it at the expense of performance on the target
distribution’s other environments.

However, this does not imply that single-environment
methodologies are useless. On the contrary, even when the
target distribution contains multiple environments, single-
environment methodologies can still produce meaningful re-
sults if the designers make a good-faith effort not to overfit
the environment. For example, though the optimal policy for
Mountain Car is well known, researchers still regularly use
that environment to publish results that show evidence of real
learning. Such results are meaningful if designers ignore their
prior knowledge about the environment when constructing
agents.

Nonetheless, such solutions are not completely satisfying.
Even well-intentioned researchers may implicitly incorporate

prior knowledge about the environment into their design deci-
sions. As a result, there is no way to be sure that performance
improvements are due to the development of better learning
algorithms rather than simply an increase in prior knowledge
about the environment.

To avoid this problem and ensure protection against en-
vironment overfitting, we advocate departing from single-
environment evaluations. In their place, we propose method-
ologies based on generalized environments. The main idea is
simple: to evaluate agents on multiple environments drawn
from the target distribution.

We define a generalized environment G = (O, u) as a
distribution g over a set of environments ©. In a general-
ized methodology, the agent’s score is summarized across
experimental trials in different environments sampled from ©
according to p. Each 6 € © is an MDP.

For example, consider the Generalized Helicopter Hovering
environment [13], one of several generalized environments
used in the recent Reinforcement Learning Competitions [14].
The agent’s goal is to hover a helicopter as close as possible
to a fixed position. However, in each trial, the agent faces a
different # with an unknown wind velocity, forcing the agent
to adapt on-line to maximize performance.

Because the agent does not know in advance what environ-
ment it will face in each trial, a generalized environment based
on MDPs can be alternatively viewed as a partially observable
MDP (POMDP) in which 6 is a hidden state factor and G is
the distribution over this factor in the initial state. This view
corresponds to how the problem of learning in an MDP is often
formulated in Bayesian reinforcement learning [15], [16].

However, regardless of whether we view the generalized
environment as a POMDP, the critical point is that an empirical
methodology that evaluates an agent’s ability to learn in an
MDP should model, not just a single MDP, but the agent’s
uncertainty about what MDP it faces. By doing so, generalized
environments control for the uncertainty the agent faces at
the start of each trial. This enables fair comparisons between
agents because no amount of tuning by designers can eliminate
the uncertainty represented by G. The generalized environment
also makes explicit what generality is desired, as the choice
of G specifies both a target class and the relative importance
of environments in that class.

A. Open Generalized Methodology

Figure 1 depicts one way to use a generalized environment
for empirical evaluations, which we call an open generalized
methodology because G is known to the designer. In the
tuning phase, the designer samples environments freely from
G. For each sampled 6, the designer can generate unlimited
data, i.e., by trying out various agents that select actions,
receive rewards, and observe state transitions. In the fest phase,
the designer submits an agent for evaluation. The evaluator
conducts a set of trials to evaluate the agent, selecting for
each trial a new 6 sampled independently from G.

Since the experimental trials used for testing are interac-
tive and generate data independent of the tuning phase, this
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Fig. 1. Generalized evaluation methodology for reinforcement learning.

methodology protects against data overfitting, like conven-
tional reinforcement-learning experiments. Additionally, be-
cause each 0 is not fixed but sampled independently from G,
it also protects against environment overfitting. Even though
unlimited tuning is permitted, the designer does not know
in advance what environments the agent will face. Thus,
overspecializing the agent to any particular 6 will yield poor
test performance. Of course, agents that excel within G may
perform poorly on environments that are unlikely according
to u. However, since G is a designation of what generality is
desirable, such an agent is fit, not overfit, to G.

B. Secret Generalized Methodology

In the open generalized methodology, G creates uncertainty
about the evaluation conditions. However, there is no uncer-
tainty about G itself. Instead, G is fixed and public, enabling
the designer to construct agents customized to G. In some
cases, when the robustness desired from the agent can be
accurately formalized, such customization is appropriate, since
G corresponds exactly to the target distribution. However, in
many cases, the target distribution is not known exactly. For
example, when training a helicopter to hover, only limited
information about typical wind conditions may be available.
Thus, G may only approximate the target distribution. In such
cases, the open methodology allows designers to create agents
that perform well in G but poorly in the true target distribution,
a phenomenon we call uncertainty overfitting.

To protect against uncertainty overfitting, we propose a
secret generalized methodology. Unlike the open variant, G is
hidden from the designer, who receives access only to a fixed
set of tuning environments. Agents are tested on a different
sample of environments from G, as in the open generalized
methodology. A limited selection of tuning environments
creates uncertainty about G and agents that are inappropriately
specialized to the tuning environments will perform poorly
when evaluated on new environments from G. Consequently,
the agent must not overfit the tuning environments in order to
perform well across the hypothetical distribution of G’s that
could have generated the tuning environments.

In addition, the secret generalized methodology obviates the
need to explicitly define © and p. When the target distribution

is not understood well enough to be formalized, generalized
evaluations can still be conducted if sample environments
can be generated for tuning and testing. This is analogous
to common practice in supervised learning, in which labeled
data sets are generated without making explicit the distribution
over all labeled examples.

Furthermore, the secret generalized methodology retains
good protection against data and environment overfitting, for
the same reasons as the open methodology. However, unlike
the open methodology, the secret generalized methodology
requires secrecy, as G must remain hidden from the designer.

The need for secrecy has significant practical implications,
as it means that the evaluation cannot be conducted by the
designer. Instead, a neutral, trusted third party is required.
While arranging such a setup is not trivial, it is feasible in
one-shot settings, such as competitions, in which all agents are
evaluated at approximately the same time. One person or group
can oversee the evaluations and guard the secret information
during the competition. However, using such a methodology
to compare agents across time is probably infeasible, as
the hidden information must stay hidden during the whole
intervening period.

Therefore, the choice between the open and secret gener-
alized methodologies involves a trade-off between protection
against overfitting and ease of use. The secret version gives
the best protection but involves constraints that in practice
probably limit its applicability to one-shot settings. The open
variation abandons protection against uncertainty overfitting
but can be used to compare agents evaluated at different times
and thus assess the progress of the field.

C. Meta-Generalized Methodology

In principle, we can avoid the trade-off between the open
and secret methodologies. In fact, we can protect against
uncertainty overfitting without requiring secrecy by redefining
each element of © to be an entire generalized environment
instead of an MDP. For convenience, we denote this meta-
generalized environment as H = (I", 7), where 7 is a distri-
bution over a set of generalized environments I'. Variations
between generalized environments in I" can capture the eval-
uator’s own uncertainty about the true target distribution of
environments.

In an open version of this meta-generalized methodology,
the designer is allowed to sample an unlimited number of
generalized environments from I' for tuning. When evaluated,
the agent’s performance is aggregated across multiple mera-
trials. At the beginning of each meta-trial 7, a generalized
environment G; is sampled from I" according to 7. G, remains
fixed throughout the meta-trial, during which the agent inter-
acts with a series of MDPs sampled from G;.

Note that, though 7 is a distribution over distributions, it
cannot be ‘flattened’ into a single distribution because the
MDPs within a meta-trial are not sampled independently.
Instead, they are conditional on G;. Thus, within each meta-
trial, the agent can learn, not only about each MDP it faces,
but about G;. To perform well across meta-trials, an agent’s



learning algorithm must be robust to different possible values
of G, though it can be fit to H.

Just as a generalized methodology controls for uncertainty
about the environment by defining a distribution over ©, a
meta-generalized methodology controls for uncertainty about
the target distribution by defining a distribution over G.
While this approach may seem like overkill, it is no more
elaborate than meta-learning models proposed for supervised
learning [17], [18] and reinforcement learning [15]. However,
in many empirical settings, the number of trials required
could be prohibitive, in which case the secret generalized
methodology may be a more practical approach to protecting
against uncertainty overfitting.

IV. GENERALIZED PERFORMANCE MEASURES

When using generalized environments, an agent’s scores
must be summarized across trials conducted on different
environments. A straightforward approach is to simply average
the scores: estimating the expected score across G. Abusing
notation a bit, we can treat G as a random variable with sample
space © and distribution pu, let S, be a random variable for
the score of some agent x, and then write the expected score
as E[E[S;|G]] = E[S,]. However, averaging may not be a safe
function for summarizing scores when the MDPs that generate
those scores are on different scales. According to Roberts, a
statement about a summary is meaningful only “if its truth
value is unchanged whenever every scale is replaced by an-
other acceptable scale” [19]. For example, consider two pairs
of measurements on incommensurate scales, (—32°C, 130°F)
and (—10°C, 100°F). The statement “the average of the first
pair is larger than the second (49 > 45)” is true but not
meaningful: if we convert the °F measurements to °C, the
first average is smaller than the second (4 % 7).

Issues with scales can arise with generalized domains be-
cause the rewards (and therefore the scores) from different
environments often do not have commensurate value due to
differences in difficulty, length of trials, range of rewards, etc.
In fact, the scale of rewards in an MDP is arbitrary in the
sense that the partial ordering over policies is unchanged for all
positive scalings of the reward function. In practice, the scale
is often selected arbitrarily and does not directly correspond
to a standard unit such as dollars, time, or utility. In Mountain
Car, for example, the agent receives a reward of -1 per step
but could just as easily receive —1000 or —0.001. Therefore,
if agents are compared using average scores, their relative
performance can be changed abruptly simply by scaling the
rewards for some environments up or down. Related issues
have been noted in supervised machine learning [20], [21] and
may explain why average accuracy across multiple data sets is
rarely used to summarize performance in that community [21].

However, other summarization functions are possible, each
with their own advantages and limitations. For example, to
better balance the impact of each environment and to obviate
any need for commensurate scales between environments, the
agents can be evaluated by the probability that one agent
would outperform the other in a random trial on the same

environment: E[P(S, > S,|G)] = P(S; > S,). Using the
sign test [22], we can evaluate the hypothesis that P(S, >
Sy) > 0.5 by counting how many times z outscores y in a
series of matched trials. The sign test is useful when pairs of
observations arise under similar conditions and different pairs
arise under different conditions [23], a situation also identified
for comparing classifiers across environments [21].

V. RESULTS

To illustrate the potential of generalized methodologies,
we present proof-of-concept results that demonstrate that a
novel, range-adaptive tile-coding function approximator is not
inferior to a conventional approach that requires prior knowl-
edge about the range of state variable values. Our aim is to
evaluate the empirical methodologies, not the learning methods
themselves. Hence, we are not advocating the range-adaptive
method but rather illustrating how generalized methodologies
can validate an intuitively useful form of adaptation in a way
that single-environment methodologies cannot.

One disadvantage of a simple tile-coding implementation is
that it requires environment-specific prior knowledge of the
range of possible states.> To address this, the range-adaptive
tile coder dynamically spreads its fixed memory resources
over the range of values observed so far. Each time the agent
observes values outside of this range, the value function is
transplanted to a new, larger range.

In particular, the transplant operation, shown in Algorithm
1, is called once for each tiling. It iterates over every tile,
calculating the range of values that activate each tile under
the old range and what tile will be activated under the new
range. Then, the old feature weights are summed in the new
tile positions and divided by the number of old tiles that
were transplanted there. Given a state, the getTileForState
operation determines which tile in the current tiling is activated
by that state. The getCenterOfTile operation is one way to
approximately invert this operation: given a tile, it returns one
state, the center of that tile, which would activate it.

Algorithm 1 TRANSPLANT
for i := 0 ... numTiles do
¢ = getCenterOfTile(i,oldInputRanges)
k := getTileForState(c,newInputRanges)
newWeights[k] := newWeights[k] + oldWeights[i]
newWeightCounts[k] := newWeightCounts[k] + 1
end for
for i := 0 ... numTiles do
newWeights[i] := newWeights[i]/newWeightCounts[i]
end for

By automatically finding an appropriate resolution for the
function approximator, the range-adaptive approach has a clear
potential performance advantage. However, demonstrating that

2Some variations use infinite planes with hashing and require information
about tile width instead of range: see http://webdocs.cs.ualberta.ca/~sutton/
tiles2.html.



advantage experimentally is not straightforward. In a single-
environment methodology, the designer can eliminate uncer-
tainty about the observation ranges through repeated exper-
imentation and thus there is no need for range adaptability.
On the contrary, the usefulness of range adaptability lies
in its robustness across multiple environments with different
ranges. Convincingly demonstrating this usefulness requires
a methodology that ensures the designer cannot know the
observation ranges a priori. In other words, it requires a
methodology that uses more than one environment.

Therefore, we evaluate the range-adaptive tile coder by
comparing it to a fixed-range alternative in a generalized
environment. In particular, we use a generalized environment
comprised of variations of three standard benchmark envi-
ronments: Mountain Car, Acrobot, and Puddle World [5].
First we created three generalized environments: ©); based
on Mountain Car, © 4 based on Acrobot, and ©p based on
Puddle World. Each particular environment in each © has three
distinct and independent generalizations 0; € © = (N, T, 7).
First, at each time step, the change in the state caused by the
agent’s action is modified by a random perturbation sampled
uniformly from a range [-N,N], with N itself selected
uniformly from [0,0.5] for each environment. Second, the
observation values are transformed by a randomly selected
series of environment-specific transformation functions 7 that
scale, translate, invert, and apply trigonometric nonlinearities.
These transformations are reversible, preserving the Markov
property. Finally, with equal probability, Z specifies either
fixed initial conditions or a randomized starting state for each
episode. These transformations create ranges of observations
that vary dramatically between environments.

Our experiments use three families of agents, which we
call A, B, and C. The adaptive approach (A) receives no
prior knowledge about the range of the state variables in each
environment and uses Algorithm 1 to automatically distribute
its memory resources over the range of observed values in each
trial. The baseline approach (1), which is expected to perform
poorly, uses fixed ranges: the smallest range for each variable
that covers the values possible across all environments in the
experiment. Finally, the cheater approach (C') uses a fixed-
range tile coding but receives perfect environment-specific
information about the range of the state variable values for
the environment used in each trial.

We first conducted a set of three experiments, one for
each of Oy, ©4, and Op. All algorithms were debugged
using the canonical, non-generalized versions of these envi-
ronments. To create the runed agents for the final evaluation,
we ran a large number of candidate agent configurations
for 1 trial each on a fixed tuning set of 25 environments
sampled from the generalized environment. The candidate
set of agents was comprised of all combinations of the
following settings for each of the three agent families: o €
{2.0,1.0,.75,.5,.25,.125,0.06125}, A € {.99,.95,.9,.75, .5,
.25,.125,.06125, 0}, tilings € {4, 8,16, 32}, cells per dimen-
sion € {4, 8,16, 32}, and tile configurations (stripes over each
variable, joint tiling over all variables, or all factorial variable
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Fig. 2. Generalized methodology results for the adaptive (A), baseline (B),
and cheater (C) approaches on three generalized environments.

combinations), totalling 3024 candidate agent configurations
for each family. Each experimental trial lasted 70,000 time
steps. The tuned agent for each family was the candidate agent
with the highest average reward per completed episode across
the tuning set of MDPs.

For each agent family and generalized environment, the
tuned agent was run for one trial in each of the 100 additional
environments in the test set. Box plots of the results are shown
in Figure 2.

Not surprisingly, B performs quite poorly. Because it does
not know the correct range for each environment, it must
use a range that is often much too large, sacrificing resolu-
tion in its function approximation. In contrast, A performs
much better (Student’s t-tests confirm that the performance
difference between A and B is statistically significant for
all three generalized environments at p < 0.05). In fact, by
adapting online, A roughly matches the performance of C,
even without oracle range information. Because the general-
ized environments create uncertainty about the correct range,
range adaptability becomes advantageous, which no amount
of overfitting by B can change. Hence, this methodology,
unlike the single-environment alternative, makes it possible
to empirically validate the intuitive value of this adaptability.

We also analyzed our experimental results on all three
generalized environments with the probabilistic summarization
described in Section IV. The probabilistic summarization is a
pairwise measure, so we treated the tuning-selection problem
as a voting problem, where each experimental trial was a voter
and each agent was a candidate. We used Copeland’s method
[24] to select as our tuned agent the agent that performed best
in all pairwise comparisons with other agents. In the Mountain
Car and Acrobot environments, this approach selected the
same agent as the average score approach. In Puddle World,
a different agent was selected by the probabilistic approach,
but experimentation showed that the differences between those
agents were not significantly different.

We also ran the tuned agents selected by the probabilistic
summarization on the test set of 100 environments. The results



are analogous to the expected score approach: P(A > B) >
0.5 with p < 0.05 in all three environments, but a similar state-
ment about A and C cannot be made with confidence. Thus,
in these three generalized environments the score distributions
are sufficiently similar that the expected score approach is not
misleading. However, note that the score axis in the figure
shows that the scores in each of the generalized environments
are from different ranges.

Of course, this experimental setup is artificial because the
distribution over environments does not reflect some real-
world uncertainty, but was designed to yield a comparison
favoring the adaptive approach. However, the point is that
generalized methodologies make such a comparison possible.
The distribution over environments indicates what type of
task generality is desirable and thus enables us to formalize
the problem that the adaptive approach solves. Using single-
task methodologies, this and many other forms of adaptability
will not show an empirical advantage, as simpler task-overfit
methods will perform as well or better.

To explore this variation between score distributions, we
also combined the three generalized environments to make
new union environments Oy = O, UO 4 UOp. In Oy, we
compared A to C' using the probabilistic summary. As before,
we could not determine with confidence whether A and C
were different. However, within the adaptive approach, the
agent with the highest expected score is statistically signifi-
cantly worse than the agent selected by Copeland’s method
when they are compared using the probabilistic criteria. Thus,
the expected score can be a misleading summarization of
performance across the union environment.

VI. DISCUSSION

Overall, we believe that generalized methodologies are a
promising way to improve empirical evaluations in reinforce-
ment learning. They protect against environment overfitting
and enable fairer comparisons between agents. By specifying
a distribution over environments, they make explicit what
environment generality is desired and thus incentivize the
kinds of adaptability that can make reinforcement-learning
algorithms more useful in practice.

What form of generalized methodology is most appropriate
depends on the purpose of the empirical evaluation. In a
competitive setting, the secret generalized methodology is
appealing because it protects against both environment and un-
certainty overfitting. However, when comparing agents across
time, the open variant is more practical, as it obviates the need
for secrecy.

What performance measure is most appropriate depends
on the type of generalized environment, its scores, and the
goals of the evaluator. Encouraging the design of all-purpose
methods requires generalized environments like the union
environment that contain qualitatively different environments,
in which case probabilistic measures like the sign test are
preferable. However, when the environments are similar and
the distribution captures some real-world uncertainty, e.g., over

wind conditions when flying helicopters, maximizing expected
cumulative reward may better reflect the evaluator’s goals.

VII. RELATED WORK

Many researchers have argued for the importance of empir-
ical evaluations in artificial intelligence [2], [3] and machine
learning in particular [1]. In addition, competitions based on
empirical evaluations have long been popular. For instance, the
well-publicized Netflix competition used a single-environment
methodology with holdout data, encouraging innovation by
many teams over a multi-year period [25]. There have also
been three recent RL Competitions [14], which used general-
ized benchmarks to evaluate participating agents.

However, several researchers have also raised concerns
about overemphasizing empirical results. To our knowledge,
Falkenauer [7] was the first to identify the problem of en-
vironment overfitting (which he called “method overfitting”).
Similarly, Ponce et al. [8] point out that public data sets can
become stale and Langford [9] enumerates many types of
overfitting, some of which are special cases of environment
overfitting. Others have pointed out statistical problems in
typical evaluations [22] or bemoaned the emphasis they create
on software engineering instead of research innovation [26].
Drummond and Japkowicz [6] liken statistical benchmarking
to an addiction and argue it is time to “kick the habit.”

Furthermore, some researchers argue that an overem-
phasis on generality has limited the empirical success of
reinforcement-learning methods. For example, Lane and
Smart [27] claim that “(PO)MDPs are so general as to be
nearly useless in many cases of practical interest.” Focusing
on specialized methods is also consistent with recent findings
in the study of learning in natural systems, which has led
Gallistel to conclude that assuming there is a general purpose
learning process in the brain “is equivalent to assuming that
there is a general purpose sensory organ, which solves the
problem of sensing” [28].

In addition to generalized environments, several other mod-
els of multi-environment learning have been proposed, in-
cluding learning to learn [17], inductive bias learning [18],
multi-task reinforcement learning [15], [29], [30], and transfer
learning [31]. However, until now, multi-environment models
have not been proposed as a means to combat environment
overfitting. Nonetheless, many of the methods developed for
such settings may, like Bayesian approaches that explicitly rea-
son about environment distributions [15], [16], be particularly
well suited to generalized environments.

Nouri et al. [32] propose an empirical methodology for
evaluating performance in policy evaluation, a subproblem of
reinforcement learning. By using fixed data sets, they avoid the
complications of interactivity. The scarcity of data available
to the designer in this approach provides some protection
against environment overfitting without the need for multiple
environments. However, this methodology cannot evaluate an
agent’s ability to explore efficiently, a critical component of
the on-line reinforcement-learning problem.



Many benchmarking resources designed to facilitate ex-
periments in reinforcement learning are currently available.
For instance, the RL-Repository? and RL-Library* provide
a number of RL environments and RL-Glue [33] provides
a way of allowing agents to easily interact with different
environments. While both help enable experiments on many
environments, they do not help protect against environment or
uncertainty overfitting.

VIII. FUTURE WORK

Although this paper focuses on reinforcement learning,
generalized methodologies could also be used in other areas
of machine learning. In supervised learning, the need for
such methodologies may not be as acute, since the limited
availability of data already provides some protection against
environment overfitting. However, generalized methodologies
could still be used to eliminate the need for secrecy or to add
protection against uncertainty overfitting.

Generalized methodologies may prove most useful in other
interactive learning settings such as active learning [34],
in which the agent can select which training examples it
sees. Since the requirements in terms of empirical evaluation
are similar to those of reinforcement learning, the potential
advantages of generalized methodologies are similar too.

In the future, we will investigate the application of general-
ized methodologies to such settings. Also, we hope to develop
a formal framework for empirical methodologies and use it to
prove properties of generalized methodologies. Finally, we in-
tend to develop specific benchmark generalized methodologies
with which the community can assess its progress.

We hope that one consequence of using such general-
ized benchmarks will be the development and refinement of
more specialized reinforcement-learning methods. As Lane
and Smart put it,“a profitable approach for the future is to
cleave RL into a number of sub-disciplines, each studying
important ’special cases’. By doing so, we will be able to take
advantage of the properties of these cases in ways that our
current (PO)MDP frameworks are unable to” [27].
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