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ABSTRACT

Reinforcement Learning (RL) agents could benefit society by
learning tasks that require learning and adaptation. How-
ever, learning these tasks efficiently typically requires a well-
engineered reward function. Intrinsic motivation can be
used to drive an agent to learn useful models of domains with
limited or no external reward function. The agent can later
plan on its learned model to perform tasks in the domain
if given a reward function. This paper presents the tex-

plore with Variance-And-Novelty-Intrinsic-Rewards algo-
rithm (texplore-vanir), an intrinsically motivated model-
based RL algorithm. The algorithm learns models of the
transition dynamics of a domain using decision trees. It cal-
culates two different intrinsic rewards from this model: one
to explore where the model is uncertain, and one to acquire
novel experiences that the model has not yet been trained
on. This paper presents experiments demonstrating that
the combination of these two intrinsic rewards enables the
algorithm to learn an accurate model of a domain with no
external rewards and that the learned model can be used
afterward to perform tasks in the domain. While learn-
ing the model, the agent explores the domain in a devel-
oping and curious way, progressively learning more complex
skills. In addition, the experiments show that combining the
agent’s intrinsic rewards with external task rewards enables
the agent to learn faster than using external rewards alone.
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1. INTRODUCTION
Reinforcement Learning (RL) agents could be useful in

society because of their ability to learn and adapt to new
environments and tasks. However, they typically require a
well-engineered reward function to specify the task to be
learned and enable it to be learned efficiently. Intrinsic mo-
tivation can be used to make agents learn more efficiently
by augmenting external rewards in a task. They can also
be used in the absence of external rewards to drive an agent

to learn as much as possible about the world. This learned
knowledge can be used later to perform tasks in the world.

This paper presents an intrinsically motivated model-based
RL algorithm, called texplore with Variance-And-Novelty-
Intrinsic-Rewards (texplore-vanir), that learns a model
of a domain without external rewards. The agent is based
on a typical model-based RL framework. texplore-vanir

combines model learning through the use of decision trees
with two unique intrinsic rewards calculated from the tree
models. texplore-vanir uses its decision tree models to
calculate two different intrinsic rewards. The first reward
is based on variance in its models’ predictions to drive the
agent to explore where its model is uncertain. The second
reward drives the agent to novel states which are the most
different from what its models have been trained on so far.
The combination of these two rewards enables the agent to
explore in a developing curious way, learning progressively
more complex skills in the domain. In addition, the agent
can learn an accurate and useful model of the domain.

This paper presents two main contributions:

1. Novel methods for obtaining intrinsic rewards from a
decision tree based model of the world.

2. The texplore-vanir algorithm for intrinsically moti-
vated model learning.

Section 4 presents experiments showing that the algorithm:
1) explores in a developing, curious way; 2) learns a more
accurate model than other approaches; and 3) can use its
learned model later to perform tasks specified by a reward
function. In addition, it shows that the agent can use the
intrinsic rewards in conjunction with external rewards to
learn a task faster than if using external rewards alone.

2. BACKGROUND
This section presents background in two main areas. Sec-

tion 2.1 covers background material on Reinforcement Learn-
ing (RL), which is used as the framework for texplore-

vanir. Section 2.2 describes background on other approaches
to Intrinsic Motivation (IM).

2.1 Reinforcement Learning
We adopt the standard Markov Decision Process (MDP)

formalism for this work [23]. An MDP is defined by a tuple
〈S,A,R, T 〉, which consists of a set of states S, a set of ac-
tions A, a reward function R(s, a), and a transition function
T (s, a, s′) = P (s′|s, a). In each state s ∈ S, the agent takes
an action a ∈ A. Upon taking this action, the agent receives



a reward R(s, a) and reaches a new state s′, determined from
the probability distribution P (s′|s, a). Many domains utilize
a factored state representation, where the state s is repre-
sented by a vector of n state variables: s = 〈x1, x2, ..., xn〉.
A policy π specifies for each state which action the agent
will take.
The value Qπ(s, a) of a given state-action pair (s, a) is an

estimate of the expected future reward that can be obtained
from (s, a) when following policy π. The goal of the agent
is to find the policy π mapping states to actions that maxi-
mizes the expected discounted total reward over the agent’s
lifetime. The optimal value function Q∗(s, a) provides max-
imal values in all states and is determined by solving the
Bellman equation:

Q
∗(s, a) = R(s, a) + γ

∑

s′

P (s′|s, a)max
a′

Q
∗(s′, a′), (1)

where 0 < γ < 1 is the discount factor. The optimal policy
π is then as follows:

π(s) = argmaxaQ
∗(s, a). (2)

RL methods fall into two general classes: model-based
and model-free methods. Model-based RL methods learn a
model of the domain by approximating R(s, a) and P (s′|s, a)
for each state and action. The agent can then calculate a
policy (i.e. plan) using this model. Model-free methods
update the values of actions only when taking them in the
real task. One of the advantages of model-based methods is
their ability to plan multi-step exploration trajectories. The
agent can plan a policy to reach intrinsic rewards added into
its model to drive exploration to interesting state-actions.

2.2 Intrinsic Motivation
This section presents background on Intrinsic Motivation

(IM). Work on intrinsically motivated agents originally came
from two different goals [16]. The first goal is for the intrinsic
motivation to drive the agent to maximize its knowledge
about the world and its ability to control it. The second
goal is to enable cumulative, open-ended learning on robots.
Work towards the first goal fits nicely within the RL frame-

work. Intrinsic rewards can be used with model-free RL
agents to drive them to update their value function (and
thus learn a good policy) as quickly as possible [5]. For
model-based agents, rewards can be used to drive the agent
to learn an accurate model as efficiently as possible [2].
These different approaches demonstrate that the correct

intrinsic motivation is dependent on the type of algorithm.
For example, with a q-learning agent [25], it makes sense
to give intrinsic rewards for where the value backups will
have the largest effect, as done in [5]. When learning with
a tabular model, the agent must gain enough experiences in
each state-action to learn an accurate model of it. Thus it
makes sense to use intrinsic motivation to drive the agent to
acquire these experiences, as done by r-max [2].
This work takes the approach of using a model-based RL

algorithm in a domain with no external rewards. This ap-
proach can be thought of as a pure exploration problem,
where the agent’s goal is simply to learn as much about the
world as possible. Bayesian methods such as Duff’s opti-
mal probe [7] attempt to solve this problem optimally, but
are computationally intractable. texplore-vanir extends a
model-based RL algorithm called texplore to use intrinsic
motivation. Its intrinsic rewards should drive it to quickly

learn an accurate model in a domain with no external re-
wards.

3. ALGORITHM
This section presents the texplore with Variance-And-

Novelty-Intrinsic-Rewards algorithm (texplore-vanir), an
algorithm for an intrinsically motivated curious agent. First
we present some essential properties that the agent should
have, before presenting its specific approach to model learn-
ing and intrinsic motivation.

Our goal is to develop an RL agent that uses intrinsic
rewards to explore in a developing curious way and learn a
useful model of the domain’s transition dynamics. To this
end, we have the following desiderata for such an algorithm:

1. The algorithm should be model-based, both to enable
multi-step exploration trajectories and to allow the
agent to use the learned model later to perform tasks.

2. It should incorporate generalization into its model learn-
ing to learn the model quickly.

3. It should not be required to visit every state-action in
the task.

4. It should decide which areas of the state space are
interesting to it without having to sample them first.

Now, we present texplore-vanir, an algorithm that has
all of these desired properties. It uses decision trees to learn
models that generalize predictions across state-actions in the
domain, similar to spiti [6] and texplore [10]. It incor-
porates intrinsic rewards that drive the agent towards two
types of state-actions: ones where its model is uncertain
and ones where its model may have generalized incorrectly.
texplore-vanir extends the texploremodel-based RL al-
gorithm [10] by incorporating intrinsic rewards that moti-
vate the agent to explore in a developing, curious way to
learn useful models of domains with no external rewards.

texplore-vanir follows the typical approach of a model-
based RL agent. It plans a policy using its learned model
(including intrinsic rewards), takes actions following that
policy, acquiring new experiences which are used to improve
its model, and repeats. In order to be applicable to learn-
ing on robots, texplore-vanir uses the Real-Time Model
Based Architecture presented in [9]. This architecture uses
approximate planning with uct [13] and parallelizes the
model learning, planning, and acting such that the agent
can take actions in real-time at a specified frequency.

The following section presents details on texplore’s model
learning approach, which is used by texplore-vanir. Then,
Section 3.2 describes how the learned models are used in
calculating intrinsic rewards for exploration by texplore-

vanir.

3.1 Model Learning
Making the intrinsically motivated agent model-based en-

ables it to: 1) plan multi-step exploration trajectories; 2)
learn faster than model-free approaches; and 3) use the
learned model to solve tasks given to it after its learning.
It is desirable for the model to generalize the learned tran-
sition and reward dynamics across state-actions. This gen-
eralization enables the model to make predictions about un-
seen or infrequently visited state-actions, and therefore not



have to visit each and every one. Thus, texplore-vanir
approaches the model learning task as a supervised learning
problem, with the current state and action as the input, and
the next state as the output to be predicted. In order to im-
prove generalization, texplore-vanir follows the approach
of [15] and [11] in predicting the relative transitions (s′ − s)
between states rather than absolute outcomes.
Like Dynamic Bayesian Network (dbn) based RL algo-

rithms [8, 4], texplore-vanir learns a model of the fac-
tored domain by learning a separate prediction for each of
the n state features. texplore-vanir assumes that each of
the state variables transitions independently, as dbn-based
methods do. Therefore, the separate feature predictions can
be combined to create a prediction of the complete state
vector.
texplore-vanir follows the approach of texplore [10]

by using a decision tree to predict the change in each state
feature. The decision trees are learned using an implemen-
tation of Quinlan’s C4.5 algorithm [18]. The C4.5 algorithm
builds a tree that splits on the inputs (current state features
and action), with each leaf of the tree making a different pre-
diction. The splits are formed by choosing the feature with
the highest information gain. Decision trees were chosen
because they generalize broadly at first, but can be refined
with training to make accurate predictions for individual
state-actions.
Another desirable property for the model learning algo-

rithm to have is a measure of uncertainty in the model’s pre-
dictions. texplore-vanir accomplishes this goal by build-
ing multiple hypotheses of the true model of the domain in
the form of a random forest. The variance of the different
trees’ predictions can be used as a measure of the uncertainty
in the model. A random forest is a collection of m decision
trees, each of which differ because they are trained on a ran-
dom subset of experiences and have some randomness when
choosing splits at the decision nodes. The agent then plans
over the average of the predictions made by each tree in the
forest. Random forests have been proven to converge with
less generalization error than individual tree models [3]. A
complete diagram of texplore-vanir’s model learning pro-
cess is shown in Figure 1.

3.2 Intrinsic Motivation
The main contribution of this paper is a method for ex-

tending the model-based texplore algorithm for learning
specific RL tasks to the texplore-vanir algorithm for ex-
ploration by a curious agent. This curiosity is operational-
ized via intrinsic rewards for 1) preferring to explore areas
of the state space where there is a large degree of uncer-
tainty in the model, and 2) preferring regions of the state
space that are far from previously explored areas (regardless
of how certain the model is).
The variance of the predictions of each of the trees in

the forest can be used to motivate the agent towards the
state-actions where its models disagree. These state-actions
are the ones where there are still multiple hypotheses of the
true model of the domain that make differing predictions.
texplore-vanir calculates a measure of the variance in the
predictions of the change in each state feature for a given
state-action:

D(s, a) =
n∑

i=1

m∑

j=1

m∑

k=1

DKL(Pj(x
rel
i |s, a)||Pk(x

rel
i |s, a)), (3)

Figure 1: Model Learning. This is how the algo-
rithm learns a model of the domain. The agent cal-
culates the difference between s′ and s as the tran-
sition effect srel. Then it splits up the state vector
and learns a random forest to predict each state fea-
ture. Each random forest is made up of stochastic
decision trees, which get each new experience with
probability w. The random forest’s predictions are
made by averaging each tree’s predictions, and then
the predictions for each feature are combined into a
complete model of the domain.

where for every pair of models (j and k) in the forest, it
sums the KL-divergences between the predicted probability
distributions for each feature i. This measureD(s, a) tells us
how much the predictions of the different models disagree.
This measure is different than just measuring where the pre-
dictions are noisy, as D(s, a) will be 0 if all the tree models
predict the same stochastic outcome distribution. An in-
trinsic reward proportional to this variance measure, called
the variance-reward, can then be incorporated into the
agent’s model for planning:

R(s, a) = vD(s, a), (4)

where v is a coefficient determining how big this reward
should be. This reward can be combined with other rewards
(intrinsic or extrinsic) to drive the agent.

This reward will drive the agent to the state-actions where
its models have not yet converged to a single hypothesis of
the world’s true dynamics. However, there will still be cases
where all of the agent’s models are making incorrect predic-
tions. Therefore, texplore-vanir also needs a measure of
how likely it is for the model’s predictions to be incorrect.
For the decision tree model that texplore-vanir uses, the
model is more likely to be incorrect when it has to general-



State id, x, y, key, locked, red-e, red-w, red-n, red-s,
Features green-e, green-w, green-n, green-s,

blue-e, blue-w, blue-n, blue-s,

Actions east, west, north, south, press, pickup

Table 1: Properties of the Light World domain.

ize its predictions farther from the experiences it is trained
on. Therefore, texplore-vanir utilizes a second intrinsic
reward based on the L1 distance in feature space from a
given state-action and the nearest one that the model has
been trained on. If X is a set of all seen state-actions, then
the L1 distance from a given state-action to the nearest seen
state-action is:

δ(s, a) = min
〈sx,ax〉∈X

|| 〈s, a〉 − 〈sx, ax〉 ||1. (5)

A reward proportional to this distance, called the novelty-
reward, drives the agents to explore the state-actions that
are the most novel compared to the state-actions it has seen
before:

R(s, a) = nδ(s, a), (6)

where n is a coefficient determining how big this reward
should be. One nice property of this reward is that given
enough time, it will drive the agent to explore all the state-
actions in the domain, as any unvisited state-action is differ-
ent in some feature from the visited ones. However, it will
start out driving the agent to explore the state-actions that
are the most different from ones it has seen.
The texplore with Variance-And-Novelty-Intrinsic-Rewards

algorithm (texplore-vanir) is completed by combining these
two intrinsic rewards together. They can be combined with
different weightings of their coefficients (v and n) to drive
the agent to both explore novel state-actions where its model
may have generalized incorrectly and state-actions where its
model is uncertain. In addition, these two intrinsic rewards
can be combined with an external reward defining a task.
A combination of these two intrinsic rewards should drive
the agent to explore in a developing and curious way: seek-
ing out novel and interesting state-actions, while exploring
increasingly complex parts of the domain.

4. EMPIRICAL RESULTS
Evaluating an agent’s curiosity is not as straightforward

as evaluating a standard RL agent on a specific task. Rather
than attempting to accrue reward on a specific task, a curi-
ous agent’s goal is better stated as preparing itself for any
task. We therefore evaluate texplore-vanir in four ways
on a complex domain with no external rewards. First, we
measure the accuracy of the agent’s learned model in pre-
dicting the domain’s transition dynamics. Second, we test
whether the learned model can be used to perform tasks
in the domain when given a reward function. Third, we
examine the agent’s exploration to see if it is exploring in
a developing, curious way. Finally, we demonstrate that
texplore-vanir can combine its intrinsic rewards with ex-
ternal rewards to learn faster than if it was given only ex-
ternal rewards. These results demonstrate that the intrinsic
rewards and model learning approach texplore-vanir uses
are sufficient for the agent to explore in a developing curi-
ous way and to learn a transition model that is useful for
performing tasks on the domain.

Figure 2: The Light World domain. In each room,
the agent must navigate to the key, pickup they key,
navigate to the lock, press it, and then navigate to
and exit through the door to the next room.

The agent is tested on the Light World domain, presented
in [14], and shown in Figure 2. In this domain, the agent
goes through a series of rooms. Each room has a door, a
lock, and possibly a key. The agent must go to the lock
and press it to open the door, at which point it can then
leave the room. It cannot go back through the door in the
opposite direction. If a key is present, it must pickup the
key before pressing the lock. Open doors, locks, and keys
each emit a different color light that the agent can see. The
agent has sensors that detect each color light in each cardinal
direction. The sensors have a maximal value of 1 when the
agent is at the light, and their values go down to 0 when
the light is 20 steps away. The agent’s state is made up of
17 different features: its x and y location in the room, the
id of the room it is in, whether it has the key, whether the
door is locked, as well as the values of the 12 light sensors,
which detect each of the three lights in the four cardinal
directions. The agent can take six possible actions: it can
move in each of the four cardinal directions, press the lock,
or pickup the key. The first four actions are stochastic; they
move the agent in the intended direction with probability 0.8
and to either side with probability 0.1 each. The press and
pickup actions are only effective when the agent is on top
of the lock and the key, respectively. The agent starts in a
random state in the top left room in the domain, and can
proceed through the rooms indefinitely. The states features
and actions of the domain are listed in Table 1.

This domain is well-suited for this task because the do-
main has a rich feature space and complex dynamics. There
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Figure 3: Model accuracy of each algorithm plotted
versus number of steps the agent has taken, aver-
aged over 30 trials. The versions of TEXPLORE-
VANIR with n >= 1 learn the most accurate models.

are simple actions that move the agent in different direc-
tions, as well as more complex actions (pickup and press)
that interact with objects in different ways. There is a pro-
gression of the complexity of the uses of these two actions.
Picking up the key is easier than pressing the lock, as the
lock requires the agent to have already picked up the key
and not yet unlocked the door.
Five versions of the algorithm using the following sets of

coefficients are compared:

1. v = 1, n = 0

2. v = 0, n = 1

3. v = 1, n = 1

4. v = 3, n = 1

5. v = 1, n = 3

In addition, texplore-vanir is tested against the following
agents:

1. Agent which selects actions randomly

2. Agent which selects the least taken action at each state

3. Agent which acts randomly with a tabular model

4. Intelligent Adaptive Curiosity (iac) [17]

These four algorithms provide two different ways to explore
using texplore-vanir’s tree model, as well as an algorithm
using a tabular model, and an existing model for intrinsically
motivated learning (iac).
Intelligent Adaptive Curiosity (iac) [17] is a method for

providing intrinsic reward to encourage a developing agent
to explore. Their approach does not adopt the RL frame-
work, but is similar in many respects. iac splits the state
space into regions and attempts to learn a model of the tran-
sition dynamics in each region. It maintains an error curve
for each region and uses the slope of this curve as the in-
trinsic reward for the agent, driving the agent to explore
the areas where its model is improving the most. Since this
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Figure 4: Cumulative rewards received by each algo-
rithm over the 1000 steps of the task, averaged over
30 trials. TEXPLORE-VANIR with v = 1, n = 3 re-
ceives the most reward.

approach is not using the RL framework, it selects actions
only to maximize the immediate reward, rather than the dis-
counted sum of future rewards. Another drawback of this
approach is that before intrinsic rewards from any region can
be calculated, the agent must take actions from that part of
the domain a few times to build an error curve for its model
of that region.

All the algorithms are run in the Light World domain for
1000 steps without any external reward. During this phase,
the agent is free to play and explore in the domain, all the
while learning a model of the dynamics of this world. For
some of the experiments, a second phase of the experiment
is run with external rewards to see if the agent’s learned
model is useful. All of the algorithms use the rtmba parallel
architecture [9] and take actions at 1 Hz.

First, the accuracy of the agent’s learned model is exam-
ined. After every 25 steps, 5000 state-actions from the do-
main are randomly sampled and the model’s predicted prob-
abilities of each next state are compared with the true next
state probabilities. Figure 3 shows 1.0 minus the average
error in the predicted probabilities of the model learned by
each agent. This figure shows that the versions of texplore-
vanir with n >= 1 learn the most accurate models, with
the version with v = 1, n = 3 having the highest accuracy.
iac, the tabular model, and the random agent have the
poorest model accuracy.

While all the versions of texplore-vanir with n >= 1
reach similar levels of model accuracy, it is more important
for the algorithm to be accurate in the interesting and use-
ful parts of the domain than for it to be accurate about
every state-action. Therefore, we want to test if the learned
models are useful to perform a task. After the algorithms
learned models without rewards for 1000 steps, they are pro-
vided with a reward function for a task. The task is for the
agent to continue moving through the rooms (requiring it to
use the keys and locks). The reward function is a reward of 1
for moving from one room to the next, and a reward of 0 for
all other actions. The agents are tested using their learned
transition models, the given external reward function, and
no intrinsic rewards for 1000 steps on the task.

Figure 4 shows the cumulative external reward received



 0

 2

 4

 6

 8

 10

 0  200  400  600  800  1000

N
u

m
b

e
r 

o
f 

O
c
c
u

re
n

c
e

s

Number of Steps

Exploration of Press Actions by VANIR v=1, n=3

Press Lock Correct
Press Lock Incorrect
Press Key
Press Door
Press Other

(a) texplore-vanir with v = 1, n = 3

 0

 2

 4

 6

 8

 10

 0  200  400  600  800  1000

N
u

m
b

e
r 

o
f 

O
c
c
u

re
n

c
e

s

Number of Steps

Exploration of Press Actions by Random Agent

Press Lock Correct
Press Lock Incorrect
Press Key
Press Door
Press Other

(b) Random Agent.

Figure 5: This plot shows the number of times that TEXPLORE-VANIR with v = 1, n = 3 and a Random
Agent select the press action in various states over 1000 steps in the task with no external rewards, averaged
over 30 trials. Note that the random agent attempts the press action much less than TEXPLORE-VANIR
does. TEXPLORE-VANIR starts out trying to press the key, which is the easiest object to find, and eventually
does learn to press the lock, but has difficulty learning when to press the lock (it must be with the key but
without the door already being open). The agent does not try calling the press action on random states very
often. In contrast, the random agent calls press action on random states more often than it calls it correctly
on the lock.

by each algorithm over the 1000 steps of the task. For com-
parison, an optimal policy would be expected to receive a
cumulative reward of 60.2 over the 1000 steps. This figure
shows more variation in the abilities of each agent to per-
form the task. Although all the versions of texplore-vanir
with n >= 1 have similar model accuracies, texplore-

vanir with v = 1, n = 3 has the greatest cumulative re-
ward for most of the steps. At the end of the 1000 steps,
however, texplore-vanir with v = 1, n = 3 is equaled by
texplore-vanir with n = 1. In comparison, the versions
exploring randomly or with v = 1 perform much worse than
texplore-vanir with n >= 1 and all the methods using
tree models perform much better than the tabular model.
Next, the exploration of the texplore-vanir agent with

v = 1, n = 3 is examined. In addition to learning an accurate
and useful model of the task, we desire the agent to exhibit
a developing curiosity. Precisely, the agent should progres-
sively learn more complex skills in the domain, rather than
explore randomly or exhaustively. In this domain, the agent
should first learn to pick up the key, then learn how to use
the key at the lock, and then how to go through the door to
the next room.
Figures 5(a) and 5(b) show the number of times that

texplore-vanir with v = 1, n = 3 and the random agent
select the press action in various states over 1000 steps in
the task with no external rewards, averaged over 30 trials.
Comparing the two figures clearly shows that texplore-

vanir calls the press action many more times than the ran-
dom agent. Figure 5(a) also shows that texplore-vanir

tries press on objects more often than on random states in
the domain. In contrast, Figure 5(b) shows that the random
agent tries press on arbitrary states in the domain more of-
ten than it uses it correctly.
Analyzing the exploration of texplore-vanir further,

Figure 5(a) shows that it initially tries press on the key,
which is the easiest object to access, then tries it on the

lock, and then on the door (which is not visible until un-
locked). The figure also shows that texplore-vanir takes
longer to learn the correct dynamics of the lock, as it con-
tinues to press the lock incorrectly, either without the key
or with the door already unlocked. These plots show that
texplore-vanir is acting in an intelligent, curious way, try-
ing actions on the objects in order from the easiest to hardest
to access, and going back to the lock repeatedly to learn its
more complex dynamics.

Finally, not only should the agent’s intrinsic rewards be
useful when learning in task without external rewards, they
should also make an agent in a domain with external re-
wards learn more efficiently. For this experiment, the algo-
rithms are run for 1000 steps with their intrinsic rewards
added to the previously used external reward function that
rewards moving between rooms. Figure 6 shows the cumu-
lative external reward received by each agent over the 1000
steps of the task. The versions of texplore-vanir with
both n >= 1 and v >= 1 receive the most reward, with
texplore-vanir with v = 1, n = 3 once again performing
the best, receiving an average of 4.2 reward over the 1000
steps. In contrast, the agent using only external rewards
(texplore-vanir with v = 0, n = 0) receives only an aver-
age of 0.07 reward over the 1000 steps, and the agent using a
tabular model receives 0 reward. These results demonstrate
that texplore-vanir’s intrinsic rewards can also be used
to speed up learning in tasks that already provide external
rewards.

These results show that texplore-vanir, in particular
with v = 1, n = 3, out-performs all other algorithms on the
four evaluations. It learns more accurate models than the
other approaches when given no external reward and can
use its learned model to perform better on a task than the
other methods as well. It explores the domain in a curious
manner progressing from state-actions with easier dynamics
to those that are more difficult. Finally, texplore-vanir
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Figure 6: Cumulative rewards received by each al-
gorithm, using intrinsic and external rewards com-
bined, over the 1000 steps of the task, averaged over
30 trials. The versions of TEXPLORE-VANIR with
both n >= 1 and v >= 1 receive the most reward,
while the agent using only external rewards per-
forms very poorly.

can use its intrinsic rewards to speed up learning in a case
where it is given external rewards.

5. RELATEDWORK
This section reviews related work on intrinsic motivation,

with a focus on work which is built within the RL framework.
Schmidhuber [19] tries to drive the agent to where the

model has been improving the most, rather than trying to
estimate where the model is poorest. The author takes a
traditional model-based RL method, and adds a confidence
module, which is trained to predict the absolute value of
the error of the model. This module could be used to create
intrinsic rewards encouraging the agent to explore high-error
state-action pairs, but then the agent would be attracted to
noisy states in addition to poorly-modeled ones. Instead
the author adds another module that is trained to predict
the changes in the confidence module outputs. Using this
module, the agent is driven to explore the parts of the state
space that most improve the model’s prediction error.
iac [17] (described in the previous section) and later Robust-

iac [1] are based on a similar idea. They are both methods
that encourage a developing agent to explore areas of the
state space where the model is improving the most. These
approaches do not use the RL framework and have no way of
incorporating external rewards, but could be used to provide
intrinsic rewards to an existing RL agent. Both of these last
two algorithms require the agent to have sampled part of the
state space before it can judge if intrinsic rewards should be
provided in that region.
r-max [2] is a reinforcement learning method that ex-

plores efficiently through the use of intrinsic rewards. The
algorithm learns a maximum-likelihood tabular model of the
task. The model used by the algorithm provides the maxi-
mum reward in the domain, rmax, as an intrinsic reward to
any state-actions that have been visited less than m times.
This reward drives the agent to visit each state-action m

times so that the agent can learn an accurate model of each

state-action. The algorithm is guaranteed to learn an op-
timal policy in a number of time steps polynomial in the
number of state-actions in the domain.

Jonsson and Barto [12] take a similar approach to texplore-
vanir, in that they also learn trees to model the domain.
Their method learns conditional trees using Bayesian Infor-
mation Criterion to perform splits. Since having a uniform
distribution over input values will provide the best infor-
mation for making splits in the tree, their method provides
intrinsic motivation for actions that would increase the uni-
formity of the inputs to the tree. This reward only drives
local exploration, but does enable the agent to quickly learn
accurate models of certain tasks. This work was extended
to perform more global exploration by adding options to set
each state feature to any possible value [24]. The agent could
then select options to set features to values where it could
then take actions to better improve the uniformity of input
features to its trees. However, this approach assumes that
the agent can set each feature of the domain independently
and learn options to do so.

Singh, Barto, and Chentanez [20] present an approach to
learning a broad set of reusable skills in a playroom domain.
They learn option models for a variety of skills and show
that the agent progresses from learning easier to more diffi-
cult skills. However, the skills the agent is to learn are pre-
defined, rather than being entirely intrinsically motivated.

Simsek and Barto [5] present an approach for the pure ex-
ploration problem, where there is no concern with receiving
external rewards. They provide a q-learning agent [25]
with intrinsic rewards for where its value function is most
improving. This reward speeds up the agent’s learning of
the true task. However, such a reward to make the agent
perform more value backups on its value function is not nec-
essary for model-based agents, which can perform all the
necessary backups using its model without having to re-visit
each state-action. Stout and Barto [22] extend this work to
the case where the agent is learning multiple tasks and must
balance the intrinsic rewards that promote the learning of
each skill. These algorithms still require an external reward,
as the intrinsic reward is speeding up the learning of the task
defined by the external reward function.

Singh et al. [21] present an interesting perspective on in-
trinsically motivated learning. They argue that in nature,
intrinsic rewards come from evolution and exist to help us
perform any task. Agents using intrinsic rewards combined
with external rewards should be able to perform better on
tasks than those using solely external rewards. For two dif-
ferent algorithms and tasks, they search over a broad set of
possible task and agent specific intrinsic rewards and find
rewards that make the agent learn faster than if it solely
used external rewards.

6. DISCUSSION
This paper presents the texplore-vanir algorithm for

intrinsically motivated learning. This algorithm combines
decision tree based model learning with two novel intrinsic
rewards. One reward drives the agent to where the model is
uncertain in its predictions, and the second drives the agent
to acquire novel experiences that its model has not been
trained on. Experiments show empirically that texplore-

vanir can learn accurate and useful models in a domain
with no external rewards. In addition, texplore-vanir’s
intrinsic rewards drive the agent to learn in a developing



and curious way, progressing from learning easier to more
difficult skills. texplore-vanir can also combine its intrin-
sic rewards with external task rewards to learn a task faster
than using external rewards alone.
One of the major advantages of texplore-vanir in com-

parison to others is that it does not require the agent to
sample each region of the state space first to determine if
they are interesting. It can decide certain states are inter-
esting because of the novelty of their state features without
having to visit that region of the state space first. The agent
takes an intelligent approach to exploration, building multi-
ple hypotheses of the true dynamics of the domain and driv-
ing itself through the variance motivation to explore where
the various hypotheses make different predictions. In addi-
tion, the agent continues seeking out novel states that may
provide different dynamics from what it has seen before.
Our main interest in the pursuit of this research is to

apply it to developmental learning on robots. Therefore,
one area of future work is to extend the algorithm to work
in large continuous state spaces, such that it can apply on
a robot. Once the algorithm is extended in this way, we
plan to perform experiments on humanoid robots such as
the Aldebaran Nao.
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Monte-Carlo planning. In Proceedings of the
Seventeenth European Conference on Machine
Learning (ECML), 2006.

[14] G. Konidaris and A. G. Barto. Building portable
options: Skill transfer in reinforcement learning. In
Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI), pages
895–900, 2007.

[15] B. Leffler, M. Littman, and T. Edmunds. Efficient
reinforcement learning with relocatable action models.
In Proceedings of the Twenty-Second AAAI Conference
on Artificial Intelligence, pages 572–577, 2007.

[16] M. Lopes and P.-Y. Oudeyer. Guest editorial: Active
learning and intrinsically motivated exploration in
robots: Advances and challenges. IEEE Transactions
on Autonomous Mental Development (TAMD),
2(2):65–69, 2010.

[17] P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner. Intrinsic
motivation systems for autonomous mental
development. IEEE Trans. Evolutionary Computation,
11(2):265–286, 2007.

[18] R. Quinlan. Induction of decision trees. Machine
Learning, 1:81–106, 1986.

[19] J. Schmidhuber. Curious model-building control
systems. In Proceedings of the International Joint
Conference on Neural Networks, pages 1458–1463.
IEEE, 1991.

[20] S. Singh, A. G. Barto, and N. Chentanez. Intrinsically
motivated reinforcement learning. In Advances in
Neural Information Processing Systems (NIPS) 17,
2005.

[21] S. P. Singh, R. L. Lewis, A. G. Barto, and J. Sorg.
Intrinsically motivated reinforcement learning: An
evolutionary perspective. IEEE Transactions on
Autonomous Mental Development (TAMD),
2(2):70–82, 2010.

[22] A. Stout and A. Barto. Competence progress intrinsic
motivation. In Proceedings of the Ninth International
Conference on Development and Learning (ICDL),
pages 257–262, 2010.

[23] R. Sutton and A. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

[24] C. M. Vigorito and A. G. Barto. Intrinsically
motivated hierarchical skill learning in structured
environments. IEEE Transactions on Autonomous
Mental Development (TAMD), 2(2), 2010.

[25] C. Watkins. Learning From Delayed Rewards. PhD
thesis, University of Cambridge, 1989.


