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Motivation: A General Optimization Task

Goal: Optimize parameters for an autonomous vehicle for task of driving across town

Optimization tasks: Different obstacle courses to drive car on

Research Question:
Which optimization task(s) to use for learning, and can we determine this while
simultaneously optimizing parameters?
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RoboCup 3D Simulation Domain

Teams of 11 vs 11 autonomous robots play soccer
Realistic physics using Open Dynamics Engine (ODE)
Simulated robots modeled after Aldebaran Nao robot
Robot receives noisy visual information about environment
Robots can communicate with each other over limited bandwidth channel
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Omnidirectional Walk Engine Parameters to Optimize

Notation Description
maxStep{x,y,θ} Maximum step sizes allowed for x , y , and θ

yshift Side to side shift amount with no side velocity
ztorso Height of the torso from the ground
zstep Maximum height of the foot from the ground

fg
Fraction of a phase that the swing

foot spends on the ground before lifting
fa Fraction that the swing foot spends in the air
fs Fraction before the swing foot starts moving
fm Fraction that the swing foot spends moving

φlength Duration of a single step
δstep Factor of how fast the step sizes change
xoffset Constant offset between the torso and feet

xfactor
Factor of the step size applied to
the forwards position of the torso

δtarget{tilt,roll}
Factors of how fast tilt and roll

adjusts occur for balance control

ankleoffset
Angle offset of the swing leg foot

to prevent landing on toe
errnorm Maximum COM error before the steps are slowed
errmax Maximum COM error before all velocity reach 0

COMoffset Default COM forward offset

δCOM{x,y,θ}
Factors of how fast the COM changes x , y , and θ

values for reactive balance control

δarm{x,y}
Factors of how fast the arm x and y
offsets change for balance control
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CMA-ES (Covariance Matrix Adaptation Evolutionary Strategy)

(image from wikipedia)

Evolutionary numerical optimization method

Candidates sampled from multidimensional Gaussian and evaluated for their
fitness

Weighted average of members with highest fitness used to update mean of
distribution

Covariance update using evolution paths controls search step sizes
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Obstacle Course Optimization Video

Agent is measured on its cummulative performance across 11 activities

Agent given reward for distance it is able to move toward active targets

Agent is penalized it if falls over

Click to start
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gototargetfast.mov
Media File (video/quicktime)



Obstacle Course Optimization Activities

1 Long walks forward/backwards/left/right
2 Walk in a curve
3 Quick direction changes
4 Stop and go forward/backwards/left/right
5 Alternating moving left-to-right & right-to-left
6 Quick changes of target to simulate a noisy target
7 Weave back and forth at 45 degree angles
8 Extreme changes of direction to check for stability
9 Quick movements combined with stopping

10 Quick alternating between walking left and right
11 Spiral walk both clockwise and counter-clockwise
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Evalution Function: 4v4 Game
Teams of four agents play a 5 minute game against each other
Team being evaluated plays against team using walk optimized with
obstacle course

Fitness4v4 = goalsDifferential ∗ 15{1
2

Field_Length}+ avgBallPosition

Click to start
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4v4.mp4
Media File (video/mp4)



Single Activity Analysis

Fitness4v4 = 0 in expectation for for optimizing across all 11 activities

Activity Fitness4v4 StdErr
1 -26.961 1.296
2 -31.250 1.088
3 -26.245 1.152
4 -23.779 1.074
5 -65.951 1.285
6 -66.005 0.912
7 -44.425 1.155
8 -79.694 0.941
9 -80.161 0.816
10 -68.743 0.958
11 -82.862 0.928

No single activity gives as good or better performance than all activities
combined.
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Weighting Each Activity

Weights = w1...w11
Baseline wi∈[1,11] = 1

Activity rewards = r1...r11

reward =
∑

i∈[1,11] wi · ri

where ri is the activity reward from the i-th activity and wi is its weight

Want to learn weights that improve performance of fitness4v4
simultaneously as we optimize parameters for the walk
engine.

..otherwise weighting problem becomes waiting problem.
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Activity Weight Analysis

Activity Fitness4v4,wi = 0 Fitness4v4,wi = 2
1 5.142 1.126
2 1.529 5.238
3 -23.076 -0.373
4 -12.437 4.720
5 0.181 -3.659
6 1.801 -1.321
7 -0.997 5.325
8 4.262 -6.358
9 -7.979 -3.077
10 2.473 -18.182
11 2.403 4.203

Colors represent statistically significant positive and negative fitness
All standard errors less than 1.76

Baseline combination of all equal weights of 1 is not optimal
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Learning Weights

Run 4v4 evaluation of population members every 10th generation of
CMA-ES

Compute least squares regression between activity rewards and
the 4v4 evaluation task reward

Find w vector such that
reward =

∑
i∈[1,11] wi · ri ≈ fitness4v4

Update weights for each activity based on the computed regression
coefficients
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Negative Weights
Allowing for negative weights is bad as it encourages poor
performace on tasks
Must use non-negative least squares regression or set negative
weights equal to zero so as to not have negative weights

Click to start
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pretzel.mp4
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Population Convergence

Correlation drops close to zero amplifying noise
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Regression Activity Weights
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Learning Rate and Normalization
Compute correlation of act. rewards to Fitness4v4 for learning rate
wi = lastWeighti + (currentWeighti − LastWeighti) ∗ |correlationi |
Use z-score based normalization for each activity reward such that
ri =

ri−r̄i
σi

Best value 6.535 (1.399)
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Activity Weights
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Weights begin to converge
Highest weight activities: spirals, stop and go, weave
Zero weight activities: quick direction change, noisy target, extreme
movements, quick alternating directions
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Future Work

Experiment with different activities for an obstacle course
I Infant walk trajectories
I Record walk trajectories from gameplay

Automate the construction of activities by learning/evolving
activities during the course of optimization

Watching 100s of simulated soccer games
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More Information

UT Austin Villa 3D Simulation Team homepage:
www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/

Email: patmac@cs.utexas.edu

Wedesday at 12:20, Session A1 - Robotics I:
Humanoid Robots Learning to Walk Faster: From the Real World to
Simulation and Back
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Cummulative Approach
Compute correlation across all generations
Use z-score based normalization for each activity reward such that
ri =

ri−r̄i
σi
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