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Abstract

As the use of virtualization and partitioning grows, it be-

comes possible to deploy a multi-tier web-based applica-

tion with a variable amount of computing power. This in-

troduces the possibility of provisioning only for a minimum

workload, with the intention of renting more resources as

necessary, but it also creates the problem of quickly and ac-

curately identifying when more resources are needed or un-

needed resources are being paid for. This paper presents a

machine learning based approach to handling this problem.

An autonomous adaptive agent learns to predict the gain

(or loss) that would result from more (or less) resources;

this agent uses only low-level system statistics, rather than

relying on custom instrumentation of the operating system

or middleware. Our agent is fully implemented and eval-

uated on a publicly available multi-machine, multi-process

distributed system (the online transaction processing bench-

mark TPC-W). We show that our adaptive agent is compet-

itive with any static choice of computing resources over a

variety of test workloads. We also show that the agent out-

performs each static choice in at least one case, implying

that it is well suited for a situation where the workload is

unknown

1. Introduction

With the recent explosion in computing power available

in a single system, much attention has been turned towards

the concepts of virtualization of these systems. This has

ranged from work in virtual machines [9, 12] to partition-

ing hypervisors [2, 17] to on-demand resource availabil-

ity [1, 4]. As this trend continues, it is logical to assume

that deploying an entire web-based service on an externally

managed virtualized environment will soon be not only

plausible, but common. As this happens, administrators will

need to make decisions about how much they should invest

in resources (compute time, memory, etc.), and when more

(or less) resource capacity is a good investment. This paper

∗currently employed by IBM Systems and Storage Group. Any opin-

ions expressed in this paper may not necessarily be the opinions of IBM.

presents one approach to learning how to make this decision

autonomously.

We consider here the situation where more compute time

can be purchased for the database machine of a simple

online bookstore, which we model using the standardized

TPC-W1 benchmark. A service level agreement (SLA) de-

fines the value of the system, using throughput and response

time as metrics. The autonomous agent must weigh the po-

tential gain (or loss) in value defined by the SLA against the

cost of purchasing (or relinquishing) compute time.

This paper reports on the results of our autonomous

agent. We show that it is possible to outperform many static

choices of compute power, over a number of test workloads

and sample costs of compute power. Additionally, over the

workloads tested, the autonomous agent is significantly bet-

ter than each static configuration in at least one test. These

results are obtained using only raw, low-level system statis-

tics, without the need for custom instrumentation of the

middleware or operating system.

The remainder of the paper is organized as follows. The

next section discusses the implementation, training, and

evaluation of our autonomous agent. Section 3 contains the

results of our experiments and some discussion of their im-

plications. Section 4 gives an overview of related work, and

Section 5 concludes.

2. The testbed and tuning agent

Through the use of virtualization, it is possible to have

a single physical machine or grid of machines implement a

set of logical machines, each of which appears to have pri-

vate access to CPUs, memory, and other resources, enabling

each virtual machine to run its own instance of an operat-

ing system. This isolation can be used to segregate parts

of a larger system, with the benefits of minimization of re-

source contention and fault isolation. In addition, this pro-

vides the capability to increase resources available to part of

the system, without allowing the other parts to “steal” this

resource.

However, increasing resources has a cost associated with

1TPC-W is a trademark of the Transaction Processing Performance

Council.



it. This cost may represent the price of the additional power

necessary to run and cool the machine as in a datacenter;

it may represent a cost to a hosting service to supply more

compute time; or it may represent the price of renting more

memory or processors, as in IBM’s Capacity on Demand

model [4]. In exchange for this cost, the system gains some

amount of value as measured by the administrator (e.g., in

terms of transactions processed, SLA agreements, or im-

proved availability). The challenge is to ensure that the

increase in value exceeds the cost. The research reported

in this paper simulates such a resource-on-demand system,

specifically with regard to compute time resources. A full

description of our testbed is described in our previous re-

search [14, 15]. In this work, we consider value in terms

of an SLA agreement where the system recieves credit for

satisfying the expected response time of a page, but is pe-

nalized for exceeding this threshold. The SLA we simulate

is displayed in Figure 1.

While the cost of in-
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a single transaction

creased resources is known

or easily estimated, the in-

crease in value can be very

hard to determine. Real-time

observation of the system

and modification of resource

availability can help to make

this choice. In particular, a

tuning agent that can learn

to estimate the value of more

(or less) resource can help make an informed decision

about whether the current quantity of resources is under-

utilized, overutilized, or sufficient. The agent described in

this research performs such a task, as well as handling au-

tonomous changes to the compute power available to the

back-end machine.

The agent simulated is one that learns the value of adding

or removing compute power. This agent could be a set of

hand-coded rules, a learned model, or any number of other

methods. The agent discussed in this work is based on a

learned regression model that uses only low-level system

statistics in its prediction. This learned version of the tuning

agent is discussed in detail in Section 2.1, and our method-

ology for testing it is discussed in Section 2.2.

2.1. Training the model for a learning agent

In order for the agent to have the ability to make in-

formed decisions about when to increase or decrease com-

puting power, it must be able to predict the gain or loss in

SLA value. The value we consider here, and for the remain-

der of this paper, is in value per second. Additionally, we

would like this prediction to be done using only low-level

kernel statistics, which are efficient to collect and indepen-

dent of the version of OS and middleware.

In order to acquire training data, 100 random workloads

are run against the SUT; each workload is run with each

possible quantity of compute power available to the back-

end machine (See Table 1). These 500 runs are used in

building the training file for the learned model.

Generation of the random workload is accomplished

through a 3-step process. First, a total number of EBs for

the workload is chosen. This number, Etot, is chosen uni-

formly at random from [400, 800]. Next, two values, E1

and E2 are chosen, with E1 uniformly random over [0, Etot]
and E2 uniformly random over [0, Etot − E1]. E3 is then

defined as Etot − E1 − E2. This defines the number of

EBs running each workload. Finally, because this tends to

be biased towards E1, this triplet is randomly permuted into

{M1,M2,M3}. The workload then consists of M1 brows-

ing users, M2 shopping users, and M3 ordering users.

Each run has a measurementFraction of

Slices maximum

0 3

4

1 13

16

2 7

8

3 15

16

4 1

Table 1. Correlation

between slices and

maximum compute

time.

interval of 300 seconds. Af-

ter each workload’s five runs are

done, the SLA value is com-

puted for each individual run2.

These SLA values are used in

generating a set of data points

for each workload. While it

is possible that the individual

run may be abnormally good or

bad (there is substantial vari-

ability in individual runs), the

large number of random work-

loads helps mitigate this effect.

We propose that low-level system statistics ought to be

able to help determine if a system is overloaded, under-

loaded, or correctly utilized. Furthermore, we would like

these statistics to help guide our agent in determining how

much extra resource is needed or how much excess resource

is present in the system. Previous research [14] has shown

that these statistics can help an agent choose an optimal con-

figuration from a set of possible static configurations; we

here extend this to predicting the benefit of extra resources.

To gather the system statistics for the training data, a log

is collected during each training run using the vmstat com-

mand. In order to ensure that the vmstat data represents the

system during the measurement interval, the command is

only run for 200 seconds during the middle of the measure-

ment interval.

The statistics reported by vmstat are listed in Table 2. In

order to make these statistics as configuration-independent

as possible, the memory statistics are converted to percent-

ages and the CPU percentages are corrected for the simu-

lated hardware and renormalized. The resulting vector of

statistics comprises the input representation for our trained

model. During testing of the model, a similar vector is gen-

erated on-line; the agent’s model uses this vector to predict

2The current implementation does not provide for online SLA values.



both the gain in SLA value for adding one slice
(

1

16

)

of

compute time and the loss in SLA value for removing one

slice. If the gain is greater than the cost of one slice, and the

system is not already at the maximum available CPU, more

compute time is requested; a similar analysis is done for the

possibility of releasing some compute time.

processes (number) runnable blocked

memory (KB) VM used idle

inactive active

swapping (KB/s) swapped in swapped out

I/O (blocks/s) received sent

System (per second) interrupts context switches

CPU (%) user system

idle waiting

Table 2. The statistics reported by vmstat.

Given the SLA value and log of system statistics for a

single run, generation of a set of data points is accomplished

as follows. First, the collected system statistics are divided

into non-overlapping 30 second intervals, for a total of 6

training intervals from each 200 second training run. Each

interval is averaged, providing the input representation for

a training vector. The target value for each vector from a

given run is the difference between the given run’s SLA

value and the SLA value of the run with one more slice of

compute power (i.e., how much benefit there is from adding

computing power). In this way, each run gives 6 data vec-

tors, for a total of 2,400 vectors3. A similar method is used

to generate a set of data vectors representing the cost (in

SLA value) of removing computing power.

Given these two sets of data vectors, the WEKA [16]

package is used to build a regression model to predict the

benefit (cost) of adding (removing) a slice of compute time,

given only the system statistics. The WEKA package im-

plements many common machine learning algorithms; for

this work, we use M5′ trees [13]. This learning method

combines the interpretability of a decision tree with the re-

gression learning of a multi-dimensional linear function ap-

proximator. By using M5′ trees, we can view and under-

stand the predictor, without overly reducing the complexity

of the learning algorithm.

In general, the trees and rules generated by WEKA are

too complex to display in their entirety. The tree for adding

compute time has nine possible regression rules, and the

tree for removing compute time has twelve rules. The tree

learned for increasing compute time and an example rule

can be found in Figure 2.

35 runs only allow 4 comparisons, as we cannot add compute power

when we already have the maximum.

2.2. Evaluating the learned model

The learned model is evaluated by running it against new

randomly generated workloads. However, unlike the train-

ing workloads, these workloads are not static throughout

the measurement interval; instead, each workload consists

of three randomly generated phases of 300 seconds each.

Within each phase, the workload is generated in the same

manner as the training workloads are generated. 5 random

workloads are used to test the learned model.

During each run, the agent collects system statistics from

the back-end machine. A persistent connection running a

favored priority process ensures that the statistics are not

blocked by the benchmark. A sliding 30-second window of

these statistics is averaged and normalized, as in the gener-

ation of the training data, and used as the input vector to the

two learned trees. Each tree predicts a single number, which

is the value or loss of more or less compute time. These

values are compared to a known static cost. First, if the pre-

dicted value of more compute time exceeds the cost, a new

slice is purchased, if available. If time was not purchased,

the loss predicted for less compute time is compared to the

cost recouped by using less slices; if the savings exceed the

loss, a slice is released. In order to achieve some measure of

hysteresis, the agent sleeps for 30 seconds if compute time

was either purchased or released.

In order to determine the robustness of the agent, all runs

are done with 3 possible costs for a CPU slice: 10, 15, and

25. We assume the units here are the same as those used for

the SLA measurement. The actual unit is arbitrary, as long

as both can be expressed in a common unit.

3. Results and Discussion

To analyze our adaptive agent, the 5 possible static quan-

tities of compute time purchased are first run against the 5

randomly generated test workloads. Each of these runs is

performed 15 times. The average SLA value for each static

run is then computed. This gives us the raw SLA value for

the workload and configuration. However, to get the overall

value of the workload and configuration, it is necessary to

subtract the cost of the CPU slices used in the static config-

uration.

The adaptive agent also makes 15 runs; however a sepa-

rate set of 15 runs is necessary for each of the three costs.

For each of these runs, an independent value is computed by

taking the single run’s SLA value and removing the average

cost per second of CPU purchased4. The values from the

15 runs for each cost are averaged to get the overall average

value for the adaptive agent for the given CPU slice cost.

4The SLA value is in units per second and the cost per CPU slice is in

units per second, but the number of CPU slices varies over the interval of

the run.



Memory active

[0, 31.5%]
time spent in

kernel mode

[0, 6.1%)
Rule 1

(6.1%, 7.4%]
Rule 2

(7.4%, 8.0%]
# processes

runnable

[0, 16.95]
Rule 3

(16.95,∞)
Rule 4

(8.0%, 9.9%]
Rule 5

(9.9%, 100]
# processes

runnable

[0, 16.28]
Rule 6

(16.28,∞)
Rule 7

(31.5%, 34.9%]
Rule 8

(34.9%, 100%]
Rule 9

Rule 1: SLA gain from 1 more slice =

0.555 * runnable processes +

0.5854 * blocked processes -

796.4686 * % virtual memory used -

82.7233 * % memory idle -

19.3325 * % memory inactive +

22.4356 * % memory active +

0.0182 * blocks per second received -

0.0051 * blocks per second sent +

0.0002 * context switches per second +

18.4187 * % CPU time in user space -

526.532 * % CPU time in kernel space +

66.1193 * % CPU time idle -

3.3529 * % CPU time waiting for I/O +

87.2663

Figure 2. The tree and one regression rule learned for increasing compute time. Each of the rules is a simple linear function

approximator that calculates a weighted sum of the numeric values of the input vector.

The results of the adaptive agent and static configura-

tions are shown graphically in Figure 3. The relationship

between number of slices and fraction of maximum com-

pute time is found in Table 1.

When we look at the results for the adaptive agent, we

see that, although it does not always outperform all the static

configurations, it is generally able to compete favorably. Al-

though it is never the single statistically best configuration,

there are two important points to notice. First, the adaptive

agent is generally competitive with the best static configu-

ration. In only 1 of the 15 cases is the agent significantly

worse than the best static configuration. More important,

however, is that there is at least one situation where each

static configuration is significantly worse than the adaptive

agent. This implies that the agent has the capability to out-

perform all static choices for some situation and could be a

useful tool if the exact workload is not known.

From the average CPU choices shown in Figure 4, we

can see that the amount of CPU used throughout the test

changed, but examination of the specific choices over time

shows an unexpected benefit of the agent. For workload 3,

we see some unusual oscillation during the second phase of

the test. This seems to imply that the agent believed the op-

timal CPU choice for that phase was actually between 3 and

4 slices, and this oscillation was an attempt to approximate

the possibility of having 3.5 CPU slices. This allows the

agent to take advantage of a configuration that is not avail-

able as a static configuration, looking for a “sweet spot”

between configurations.

The graphs also show that the agent is generally more

willing to purchase CPU slices when they are cheaper, as

is expected, and is more conservative when the price in-

creases. However, we can also see that it is willing to pur-

chase the maximum CPU if it believes it will help, as in

workload 2. Finally, we can see that the agent often makes

changes in the CPU purchased as the workload changes. In

workload 1, the purchased CPU in phase 2 is noticeable less

than in phase 1; in workload 2, the agent steadily purchases

CPU through phase 2 and into phase 3.

It is clear that there is a potential benefit to this au-

tonomous compute time decision process. In most cases,

the agent is competitive with the optimal static configu-

ration, indicating that it is a viable alternative. Since the

optimal static configuration is not always the same, this

agent enables the system to be configured for an unknown

workload, whereas the best static configuration may not be

known. Additionally, the autonomy of the agent to toggle

back and forth between configurations allows the agent to

take advantage of partial compute time slices without need-

ing to always pay the price of a full slice.

4. Related Work

The concept of purchasing extra CPU time has, until re-

cently, been primarily restricted to use in datacenters, where

the initial provisioning of a machine hinders rapid changes

and, therefore, flexibility. This section reviews the work

most related to the concepts reported in this paper.

Tesauro et al. [10] discuss a method for using reinforce-

ment learning to determine how to best allocate servers in

a data center in order to maximize the value of the entire

data center. However, in order to use a reinforcement learn-

ing approach, the learner must have some knowledge of the

value of a given transaction or set of transactions. As such,

this requires some knowledge within the agent of the online

SLA value. In contrast, our work is trained with only an

aggregate value for a given run.

Kusic and Kandasamy [7] propose using a Limited
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Figure 3. Results of the adaptive agent and static configurations with various costs. Boxes show the average and 95%

confidence interval; the whiskers show the 99% confidence interval. The static configuration number corresponds to a

number of slices as listed in Table 1.
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Figure 4. Average CPU slices purchased by the adaptive agent for various costs on the 5 random workloads.

Lookahead Controller for balancing the revenue from an

SLA with the cost to operate the cluster; rather than request-

ing more or less CPUs, their work deals with the frequency

of the CPU. In order to model the controller, a queuing

model is needed that understands the system both in terms

of tiers and connections and has facts about the response

time of the system for different frequencies built in. Our

work obviates the need for this information by using only

the low-level system statistics.

Chen et al. [3] address automatically adding and re-

moving database servers to a multi-tier system using a k-

nearest-neighbors approach. Although they use similar sys-

tem statistics to this work, they also use some metrics from

the application. Their work is also primarily concerned with

avoiding any violations of the SLA, rather than the trade-

off between SLA gain or loss and the cost of operating the

additional hardware. In contrast, our system is willing to

consider increasing SLA violations if the resulting savings

on compute time cost exceed the penalties associated with

the SLA violations.

Urgaonkar et al. [11] use a queuing model to assist in

provisioning a multi-tier Internet application. This work

takes into account the concept of unused capacity, but as-

sumes that it is already present and does not have a usage

cost associated with it. Our work takes advantage of the

growing field of on-demand resources.

Norris et al. [8] address the problem of handling ex-

cess workload by renting extra systems in a datacenter from

other users. However, they do not address the issue of deter-

mining the value of extra systems, instead focusing on the

issue of how the servers are priced. In contrast, we assume

the price is fixed and known and the value of the additional

capacity is learned.

5. Conclusion

As more companies begin offering resource-on-demand

systems and virtualization solutions with variable resource

allocations, there is likely to be growth in the number of



businesses run on these types of systems. While the current

method of capacity planning tends toward overprovisioning

of systems, this new implementation model will enable ad-

ministrators to target the expected workload for their perma-

nent system capacity, while increasing their resource limits

when needed. We demonstrate that an autonomous agent

can quickly make the decision about when the application

needs resources, freeing the administrator from the need to

constantly monitor the system.

This paper presents one such autonomous agent. We

show that our agent is able to make competitive choices bal-

ancing cost of compute time and gain in value, when mea-

sured against an SLA that defines both a per-transaction re-

ward for satisfying a requirement and penalty for violating

the requirement. The agent is also able to take advantages

of intermediate configurations, which are not available as

static choices, by oscillating between configurations.

Our ongoing research involves further work with im-

proving the learning agent, including learning the value of

other resources (such as memory). Another research direc-

tion involves the agent taking into account an additional

one-time cost of switching the resource state; this could

be the cost to the owner of the temporary unavailability of

the resource. We also want to experiment with non-static

costs (e.g., the first slice of compute time is more expensive

than the second) and with different SLAs or applications.

Finally, we plan to extend our framework to report online

SLA values and experiment with reinforcement learning

and other online learning algorithms.
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